
Advanced Quantitative Economics with
Python

Thomas J. Sargent & John Stachurski

Dec 19, 2023

CONTENTS

I Tools and Techniques 3
1 Orthogonal Projections and Their Applications 5

1.1 Overview . 5
1.2 Key Definitions . 6
1.3 The Orthogonal Projection Theorem . 10
1.4 Orthonormal Basis . 13
1.5 Projection Via Matrix Algebra . 15
1.6 Least Squares Regression . 17
1.7 Orthogonalization and Decomposition . 19
1.8 Exercises . 20

2 Continuous State Markov Chains 23
2.1 Overview . 23
2.2 The Density Case . 24
2.3 Beyond Densities . 30
2.4 Stability . 31
2.5 Exercises . 34
2.6 Appendix . 43

3 Reverse Engineering a la Muth 45
3.1 Friedman (1956) and Muth (1960) . 46
3.2 A Process for Which Adaptive Expectations are Optimal . 46
3.3 Some Useful State-Space Math . 47
3.4 Estimates of Unobservables . 48
3.5 Relationship of Unobservables to Observables . 49
3.6 MA and AR Representations . 51

4 Discrete State Dynamic Programming 53
4.1 Overview . 53
4.2 Discrete DPs . 55
4.3 Solving Discrete DPs . 58
4.4 Example: A Growth Model . 59
4.5 Exercises . 64
4.6 Solutions . 64
4.7 Appendix: Algorithms . 73

II LQ Control 75
5 Information and Consumption Smoothing 77

i

5.1 Overview . 77
5.2 Two Representations of One Nonfinancial Income Process . 78
5.3 Application of Kalman filter . 80
5.4 News Shocks and Less Informative Shocks . 80
5.5 Representation of 𝜖𝑡 Shock in Terms of Future 𝑦𝑡 . 81
5.6 Representation in Terms of 𝑎𝑡 Shocks . 82
5.7 Permanent Income Consumption-Smoothing Model . 82
5.8 State Space Representations . 83
5.9 Computations . 83
5.10 Simulating Income Process and Two Associated Shock Processes . 89
5.11 Calculating Innovations in Another Way . 90
5.12 Another Invertibility Issue . 90

6 Consumption Smoothing with Complete and Incomplete Markets 91
6.1 Overview . 91
6.2 Background . 92
6.3 Linear State Space Version of Complete Markets Model . 93
6.4 Model 1 (Complete Markets) . 97
6.5 Model 2 (One-Period Risk-Free Debt Only) . 102

7 Tax Smoothing with Complete and Incomplete Markets 107
7.1 Overview . 107
7.2 Tax Smoothing with Complete Markets . 112
7.3 Returns on State-Contingent Debt . 113
7.4 More Finite Markov Chain Tax-Smoothing Examples . 117

8 Markov Jump Linear Quadratic Dynamic Programming 145
8.1 Overview . 145
8.2 Review of useful LQ dynamic programming formulas . 146
8.3 Linked Riccati equations for Markov LQ dynamic programming . 147
8.4 Applications . 148
8.5 Example 1 . 148
8.6 Example 2 . 166
8.7 More examples . 197

9 How to Pay for a War: Part 1 199
9.1 Reader’s Guide . 199
9.2 Public Finance Questions . 201
9.3 Barro (1979) Model . 201
9.4 Python Class to Solve Markov Jump Linear Quadratic Control Problems 205
9.5 Barro Model with a Time-varying Interest Rate . 206

10 How to Pay for a War: Part 2 209
10.1 An Application of Markov Jump Linear Quadratic Dynamic Programming 209
10.2 Two example specifications . 210
10.3 One- and Two-period Bonds but No Restructuring . 210
10.4 Mapping into an LQ Markov Jump Problem . 211
10.5 Penalty on Different Issuance Across Maturities . 214
10.6 A Model with Restructuring . 216
10.7 Restructuring as a Markov Jump Linear Quadratic Control Problem 219

11 How to Pay for a War: Part 3 223
11.1 Another Application of Markov Jump Linear Quadratic Dynamic Programming 223
11.2 Roll-Over Risk . 224
11.3 A Dead End . 224

ii

11.4 Better Representation of Roll-Over Risk . 225

12 Optimal Taxation in an LQ Economy 229
12.1 Overview . 229
12.2 The Ramsey Problem . 230
12.3 Implementation . 236
12.4 Examples . 241
12.5 Exercises . 247

III Multiple Agent Models 251
13 Default Risk and Income Fluctuations 253

13.1 Overview . 253
13.2 Structure . 254
13.3 Equilibrium . 256
13.4 Computation . 257
13.5 Results . 263
13.6 Exercises . 265

14 Globalization and Cycles 273
14.1 Overview . 273
14.2 Key Ideas . 274
14.3 Model . 275
14.4 Simulation . 277
14.5 Exercises . 287

15 Coase’s Theory of the Firm 291
15.1 Overview . 291
15.2 The Model . 293
15.3 Equilibrium . 295
15.4 Existence, Uniqueness and Computation of Equilibria . 297
15.5 Implementation . 298
15.6 Exercises . 302

IV Dynamic Linear Economies 305
16 Recursive Models of Dynamic Linear Economies 307

16.1 A Suite of Models . 307
16.2 Econometrics . 324
16.3 Dynamic Demand Curves and Canonical Household Technologies . 327
16.4 Gorman Aggregation and Engel Curves . 328
16.5 Partial Equilibrium . 329
16.6 Equilibrium Investment Under Uncertainty . 330
16.7 A Rosen-Topel Housing Model . 330
16.8 Cattle Cycles . 330
16.9 Models of Occupational Choice and Pay . 331
16.10 Permanent Income Models . 333
16.11 Gorman Heterogeneous Households . 334
16.12 Non-Gorman Heterogeneous Households . 335

17 Growth in Dynamic Linear Economies 337
17.1 Common Structure . 337
17.2 A Planning Problem . 338

iii

17.3 Example Economies . 339

18 Lucas Asset Pricing Using DLE 349
18.1 Asset Pricing Equations . 350
18.2 Asset Pricing Simulations . 350

19 IRFs in Hall Models 357
19.1 Example 1: Hall (1978) . 357
19.2 Example 2: Higher Adjustment Costs . 360
19.3 Example 3: Durable Consumption Goods . 363

20 Permanent Income Model using the DLE Class 367
20.1 The Permanent Income Model . 367

21 Rosen Schooling Model 373
21.1 A One-Occupation Model . 373
21.2 Mapping into HS2013 Framework . 374

22 Cattle Cycles 379
22.1 The Model . 379
22.2 Mapping into HS2013 Framework . 380

23 Shock Non Invertibility 387
23.1 Overview . 387
23.2 Model . 388
23.3 Code . 390

V Risk, Model Uncertainty, and Robustness 395
24 Risk and Model Uncertainty 397

24.1 Overview . 397
24.2 Basic objects . 398
24.3 Five preference specifications . 401
24.4 Expected utility . 402
24.5 Constraint preferences . 402
24.6 Multiplier preferences . 403
24.7 Risk-sensitive preferences . 404
24.8 Ex post Bayesian preferences . 407
24.9 Comparing preferences . 407
24.10 Risk aversion and misspecification aversion . 409
24.11 Indifference curves . 410
24.12 State price deflators . 413
24.13 Iso-utility and iso-entropy curves and expansion paths . 416
24.14 Bounds on expected utility . 417
24.15 Why entropy? . 419

25 Etymology of Entropy 421
25.1 Information Theory . 421
25.2 A Measure of Unpredictability . 422
25.3 Mathematical Properties of Entropy . 422
25.4 Conditional Entropy . 423
25.5 Independence as Maximum Conditional Entropy . 423
25.6 Thermodynamics . 424
25.7 Statistical Divergence . 424

iv

25.8 Continuous distributions . 424
25.9 Relative entropy and Gaussian distributions . 425
25.10 Von Neumann Entropy . 425
25.11 Backus-Chernov-Zin Entropy . 426
25.12 Wiener-Kolmogorov Prediction Error Formula as Entropy . 426
25.13 Multivariate Processes . 427
25.14 Frequency Domain Robust Control . 427
25.15 Relative Entropy for a Continuous Random Variable . 428

26 Robustness 431
26.1 Overview . 431
26.2 The Model . 435
26.3 Constructing More Robust Policies . 436
26.4 Robustness as Outcome of a Two-Person Zero-Sum Game . 437
26.5 The Stochastic Case . 441
26.6 Implementation . 443
26.7 Application . 443
26.8 Appendix . 448

27 Robust Markov Perfect Equilibrium 451
27.1 Overview . 451
27.2 Linear Markov Perfect Equilibria with Robust Agents . 452
27.3 Application . 455

VI Time Series Models 471
28 Covariance Stationary Processes 473

28.1 Overview . 473
28.2 Introduction . 474
28.3 Spectral Analysis . 478
28.4 Implementation . 486

29 Estimation of Spectra 495
29.1 Overview . 495
29.2 Periodograms . 496
29.3 Smoothing . 500
29.4 Exercises . 504

30 Additive and Multiplicative Functionals 511
30.1 Overview . 511
30.2 A Particular Additive Functional . 512
30.3 Dynamics . 513
30.4 Code . 525
30.5 More About the Multiplicative Martingale . 528

31 Classical Control with Linear Algebra 535
31.1 Overview . 535
31.2 A Control Problem . 536
31.3 Finite Horizon Theory . 537
31.4 Infinite Horizon Limit . 541
31.5 Undiscounted Problems . 544
31.6 Implementation . 545
31.7 Exercises . 554

v

32 Classical Prediction and Filtering With Linear Algebra 557
32.1 Overview . 557
32.2 Finite Dimensional Prediction . 558
32.3 Combined Finite Dimensional Control and Prediction . 569
32.4 Infinite Horizon Prediction and Filtering Problems . 570
32.5 Exercises . 574

33 Knowing the Forecasts of Others 577
33.1 Introduction . 577
33.2 The Setting . 579
33.3 Tactics . 579
33.4 Equilibrium Conditions . 581
33.5 Equilibrium with 𝜃𝑡 stochastic but observed at 𝑡 . 582
33.6 Guess-and-Verify Tactic . 585
33.7 Equilibrium with One Noisy Signal on 𝜃𝑡 . 586
33.8 Equilibrium with Two Noisy Signals on 𝜃𝑡 . 591
33.9 Key Step . 595
33.10 An observed common shock benchmark . 595
33.11 Comparison of All Signal Structures . 597
33.12 Notes on History of the Problem . 599

VII Asset Pricing and Finance 601
34 Asset Pricing II: The Lucas Asset Pricing Model 603

34.1 Overview . 603
34.2 The Lucas Model . 604
34.3 Exercises . 611

35 Elementary Asset Pricing Theory 615
35.1 Overview . 615
35.2 Key Equation . 616
35.3 Implications of Key Equation . 616
35.4 Expected Return - Beta Representation . 617
35.5 Mean-Variance Frontier . 619
35.6 Sharpe Ratios and the Price of Risk . 622
35.7 Mathematical Structure of Frontier . 622
35.8 Multi-factor Models . 622
35.9 Empirical Implementations . 623
35.10 Exercises . 624

36 Two Modifications of Mean-Variance Portfolio Theory 629
36.1 Overview . 629
36.2 Mean-Variance Portfolio Choice . 630
36.3 Estimating Mean and Variance . 631
36.4 Black-Litterman Starting Point . 631
36.5 Details . 633
36.6 Adding Views . 635
36.7 Bayesian Interpretation . 636
36.8 Curve Decolletage . 637
36.9 Black-Litterman Recommendation as Regularization . 640
36.10 A Robust Control Operator . 642
36.11 A Robust Mean-Variance Portfolio Model . 644
36.12 Appendix . 644
36.13 Special Case – IID Sample . 645

vi

36.14 Dependence and Sampling Frequency . 646
36.15 Frequency and the Mean Estimator . 647

37 Irrelevance of Capital Structures with Complete Markets 651
37.1 Introduction . 651
37.2 Competitive equilibrium . 655
37.3 Code . 661

38 Equilibrium Capital Structures with Incomplete Markets 671
38.1 Introduction . 671
38.2 Asset Markets . 675
38.3 Equilibrium verification . 678
38.4 Pseudo Code . 678
38.5 Code . 680
38.6 Examples . 690
38.7 A picture worth a thousand words . 707

VIII Dynamic Programming Squared 709
39 Optimal Unemployment Insurance 711

39.1 Overview . 711
39.2 Shavell and Weiss’s Model . 711
39.3 Private Information . 714
39.4 Outcomes . 721

40 Stackelberg Plans 725
40.1 Overview . 725
40.2 Duopoly . 726
40.3 Stackelberg Problem . 729
40.4 Two Bellman Equations . 731
40.5 Stackelberg Plan for Duopoly . 732
40.6 Recursive Representation of Stackelberg Plan . 733
40.7 Dynamic Programming and Time Consistency of Follower’s Problem 735
40.8 Computing Stackelberg Plan . 736
40.9 Time Series for Price and Quantities . 738
40.10 Time Inconsistency of Stackelberg Plan . 740
40.11 Recursive Formulation of Follower’s Problem . 741
40.12 Markov Perfect Equilibrium . 746
40.13 Comparing Markov Perfect Equilibrium and Stackelberg Outcome 748

41 Ramsey Plans, Time Inconsistency, Sustainable Plans 751
41.1 Overview . 752
41.2 The Model . 752
41.3 Structure . 754
41.4 Intertemporal Structure . 755
41.5 Four Models of Government Policy . 755
41.6 A Ramsey Planner . 756
41.7 A Constrained-to-a-Constant-Growth-Rate Ramsey Government . 758
41.8 Markov Perfect Governments . 758
41.9 Outcomes under Three Timing Protocols . 759
41.10 A Fourth Model of Government Decision Making . 766
41.11 Sustainable or Credible Plan . 767
41.12 Whose Credible Plan is it? . 773
41.13 Comparison of Equilibrium Values . 773

vii

41.14 Note on Dynamic Programming Squared . 774

42 Optimal Taxation with State-Contingent Debt 775
42.1 Overview . 775
42.2 A Competitive Equilibrium with Distorting Taxes . 776
42.3 Recursive Formulation of the Ramsey Problem . 787
42.4 Examples . 795

43 Optimal Taxation without State-Contingent Debt 803
43.1 Overview . 803
43.2 Competitive Equilibrium with Distorting Taxes . 804
43.3 Recursive Version of AMSS Model . 812
43.4 Examples . 819

44 Fluctuating Interest Rates Deliver Fiscal Insurance 827
44.1 Overview . 827
44.2 Forces at Work . 829
44.3 Logical Flow of Lecture . 829
44.4 Example Economy . 832
44.5 Reverse Engineering Strategy . 842
44.6 Code for Reverse Engineering . 842
44.7 Short Simulation for Reverse-engineered: Initial Debt . 844
44.8 Long Simulation . 852
44.9 BEGS Approximations of Limiting Debt and Convergence Rate . 854

45 Fiscal Risk and Government Debt 859
45.1 Overview . 859
45.2 The Economy . 860
45.3 Long Simulation . 862
45.4 Asymptotic Mean and Rate of Convergence . 886

46 Competitive Equilibria of a Model of Chang 895
46.1 Overview . 895
46.2 Setting . 897
46.3 Competitive Equilibrium . 899
46.4 Inventory of Objects in Play . 899
46.5 Analysis . 900
46.6 Calculating all Promise-Value Pairs in CE . 904
46.7 Solving a Continuation Ramsey Planner’s Bellman Equation . 919

47 Credible Government Policies in a Model of Chang 927
47.1 Overview . 927
47.2 The Setting . 928
47.3 Calculating the Set of Sustainable Promise-Value Pairs . 934

IX Other 951
48 Troubleshooting 953

48.1 Fixing Your Local Environment . 953
48.2 Reporting an Issue . 954

49 References 955

50 Execution Statistics 957

viii

Bibliography 959

Index 965

ix

x

Advanced Quantitative Economics with Python

This website presents a set of advanced lectures on quantitative economic modeling, designed and written by Thomas J.
Sargent and John Stachurski.

• Tools and Techniques
– Orthogonal Projections and Their Applications

– Continuous State Markov Chains

– Reverse Engineering a la Muth

– Discrete State Dynamic Programming

• LQ Control
– Information and Consumption Smoothing

– Consumption Smoothing with Complete and Incomplete Markets

– Tax Smoothing with Complete and Incomplete Markets

– Markov Jump Linear Quadratic Dynamic Programming

– How to Pay for a War: Part 1

– How to Pay for a War: Part 2

– How to Pay for a War: Part 3

– Optimal Taxation in an LQ Economy

• Multiple Agent Models
– Default Risk and Income Fluctuations

– Globalization and Cycles

– Coase’s Theory of the Firm

• Dynamic Linear Economies
– Recursive Models of Dynamic Linear Economies

– Growth in Dynamic Linear Economies

– Lucas Asset Pricing Using DLE

– IRFs in Hall Models

– Permanent Income Model using the DLE Class

– Rosen Schooling Model

– Cattle Cycles

– Shock Non Invertibility

• Risk, Model Uncertainty, and Robustness
– Risk and Model Uncertainty

– Etymology of Entropy

– Robustness

– Robust Markov Perfect Equilibrium

• Time Series Models
– Covariance Stationary Processes

CONTENTS 1

http://www.tomsargent.com/
http://www.tomsargent.com/
http://johnstachurski.net/

Advanced Quantitative Economics with Python

– Estimation of Spectra

– Additive and Multiplicative Functionals

– Classical Control with Linear Algebra

– Classical Prediction and Filtering With Linear Algebra

– Knowing the Forecasts of Others

• Asset Pricing and Finance
– Asset Pricing II: The Lucas Asset Pricing Model

– Elementary Asset Pricing Theory

– Two Modifications of Mean-Variance Portfolio Theory

– Irrelevance of Capital Structures with Complete Markets

– Equilibrium Capital Structures with Incomplete Markets

• Dynamic Programming Squared
– Optimal Unemployment Insurance

– Stackelberg Plans

– Ramsey Plans, Time Inconsistency, Sustainable Plans

– Optimal Taxation with State-Contingent Debt

– Optimal Taxation without State-Contingent Debt

– Fluctuating Interest Rates Deliver Fiscal Insurance

– Fiscal Risk and Government Debt

– Competitive Equilibria of a Model of Chang

– Credible Government Policies in a Model of Chang

• Other
– Troubleshooting

– References

– Execution Statistics

2 CONTENTS

Part I

Tools and Techniques

3

CHAPTER

ONE

ORTHOGONAL PROJECTIONS AND THEIR APPLICATIONS

Contents

• Orthogonal Projections and Their Applications

– Overview

– Key Definitions

– The Orthogonal Projection Theorem

– Orthonormal Basis

– Projection Via Matrix Algebra

– Least Squares Regression

– Orthogonalization and Decomposition

– Exercises

1.1 Overview

Orthogonal projection is a cornerstone of vector space methods, with many diverse applications.
These include

• Least squares projection, also known as linear regression
• Conditional expectations for multivariate normal (Gaussian) distributions
• Gram–Schmidt orthogonalization
• QR decomposition
• Orthogonal polynomials
• etc

In this lecture, we focus on
• key ideas
• least squares regression

We’ll require the following imports:

5

Advanced Quantitative Economics with Python

import numpy as np
from scipy.linalg import qr

1.1.1 Further Reading

For background and foundational concepts, see our lecture on linear algebra.
For more proofs and greater theoretical detail, see A Primer in Econometric Theory.
For a complete set of proofs in a general setting, see, for example, [Rom05].
For an advanced treatment of projection in the context of least squares prediction, see this book chapter.

1.2 Key Definitions

Assume 𝑥, 𝑧 ∈ ℝ𝑛.
Define ⟨𝑥, 𝑧⟩ = ∑𝑖 𝑥𝑖𝑧𝑖.

Recall ‖𝑥‖2 = ⟨𝑥, 𝑥⟩.
The law of cosines states that ⟨𝑥, 𝑧⟩ = ‖𝑥‖‖𝑧‖ cos(𝜃) where 𝜃 is the angle between the vectors 𝑥 and 𝑧.
When ⟨𝑥, 𝑧⟩ = 0, then cos(𝜃) = 0 and 𝑥 and 𝑧 are said to be orthogonal and we write 𝑥 ⟂ 𝑧.
For a linear subspace 𝑆 ⊂ ℝ𝑛, we call 𝑥 ∈ ℝ𝑛 orthogonal to 𝑆 if 𝑥 ⟂ 𝑧 for all 𝑧 ∈ 𝑆, and write 𝑥 ⟂ 𝑆.
The orthogonal complement of linear subspace 𝑆 ⊂ ℝ𝑛 is the set 𝑆⟂ ∶= {𝑥 ∈ ℝ𝑛 ∶ 𝑥 ⟂ 𝑆}.
𝑆⟂ is a linear subspace of ℝ𝑛

• To see this, fix 𝑥, 𝑦 ∈ 𝑆⟂ and 𝛼, 𝛽 ∈ ℝ.
• Observe that if 𝑧 ∈ 𝑆, then

⟨𝛼𝑥 + 𝛽𝑦, 𝑧⟩ = 𝛼⟨𝑥, 𝑧⟩ + 𝛽⟨𝑦, 𝑧⟩ = 𝛼 × 0 + 𝛽 × 0 = 0
• Hence 𝛼𝑥 + 𝛽𝑦 ∈ 𝑆⟂, as was to be shown

A set of vectors {𝑥1, … , 𝑥𝑘} ⊂ ℝ𝑛 is called an orthogonal set if 𝑥𝑖 ⟂ 𝑥𝑗 whenever 𝑖 ≠ 𝑗.
If {𝑥1, … , 𝑥𝑘} is an orthogonal set, then the Pythagorean Law states that

‖𝑥1 + ⋯ + 𝑥𝑘‖2 = ‖𝑥1‖2 + ⋯ + ‖𝑥𝑘‖2

For example, when 𝑘 = 2, 𝑥1 ⟂ 𝑥2 implies

‖𝑥1 + 𝑥2‖2 = ⟨𝑥1 + 𝑥2, 𝑥1 + 𝑥2⟩ = ⟨𝑥1, 𝑥1⟩ + 2⟨𝑥2, 𝑥1⟩ + ⟨𝑥2, 𝑥2⟩ = ‖𝑥1‖2 + ‖𝑥2‖2

6 Chapter 1. Orthogonal Projections and Their Applications

https://python-intro.quantecon.org/linear_algebra.html
http://www.johnstachurski.net/emet.html
http://www.tomsargent.com/books/TOMchpt.2.pdf

Advanced Quantitative Economics with Python

1.2. Key Definitions 7

Advanced Quantitative Economics with Python

8 Chapter 1. Orthogonal Projections and Their Applications

Advanced Quantitative Economics with Python

1.2. Key Definitions 9

Advanced Quantitative Economics with Python

1.2.1 Linear Independence vs Orthogonality

If 𝑋 ⊂ ℝ𝑛 is an orthogonal set and 0 ∉ 𝑋, then 𝑋 is linearly independent.
Proving this is a nice exercise.
While the converse is not true, a kind of partial converse holds, as we’ll see below.

1.3 The Orthogonal Projection Theorem

What vector within a linear subspace of ℝ𝑛 best approximates a given vector in ℝ𝑛?
The next theorem answers this question.
Theorem (OPT) Given 𝑦 ∈ ℝ𝑛 and linear subspace 𝑆 ⊂ ℝ𝑛, there exists a unique solution to the minimization problem

̂𝑦 ∶= argmin
𝑧∈𝑆

‖𝑦 − 𝑧‖

The minimizer ̂𝑦 is the unique vector in ℝ𝑛 that satisfies
• ̂𝑦 ∈ 𝑆
• 𝑦 − ̂𝑦 ⟂ 𝑆

The vector ̂𝑦 is called the orthogonal projection of 𝑦 onto 𝑆.
The next figure provides some intuition

1.3.1 Proof of Sufficiency

We’ll omit the full proof.
But we will prove sufficiency of the asserted conditions.
To this end, let 𝑦 ∈ ℝ𝑛 and let 𝑆 be a linear subspace of ℝ𝑛.
Let ̂𝑦 be a vector in ℝ𝑛 such that ̂𝑦 ∈ 𝑆 and 𝑦 − ̂𝑦 ⟂ 𝑆.
Let 𝑧 be any other point in 𝑆 and use the fact that 𝑆 is a linear subspace to deduce

‖𝑦 − 𝑧‖2 = ‖(𝑦 − ̂𝑦) + (̂𝑦 − 𝑧)‖2 = ‖𝑦 − ̂𝑦‖2 + ‖ ̂𝑦 − 𝑧‖2

Hence ‖𝑦 − 𝑧‖ ≥ ‖𝑦 − ̂𝑦‖, which completes the proof.

1.3.2 Orthogonal Projection as a Mapping

For a linear space 𝑌 and a fixed linear subspace 𝑆, we have a functional relationship

𝑦 ∈ 𝑌 ↦ its orthogonal projection ̂𝑦 ∈ 𝑆

By the OPT, this is a well-defined mapping or operator from ℝ𝑛 to ℝ𝑛.
In what follows we denote this operator by a matrix 𝑃

• 𝑃𝑦 represents the projection ̂𝑦.
• This is sometimes expressed as ̂𝐸𝑆𝑦 = 𝑃𝑦, where ̂𝐸 denotes a wide-sense expectations operator and the sub-
script 𝑆 indicates that we are projecting 𝑦 onto the linear subspace 𝑆.

10 Chapter 1. Orthogonal Projections and Their Applications

Advanced Quantitative Economics with Python

1.3. The Orthogonal Projection Theorem 11

Advanced Quantitative Economics with Python

12 Chapter 1. Orthogonal Projections and Their Applications

Advanced Quantitative Economics with Python

The operator 𝑃 is called the orthogonal projection mapping onto 𝑆.
It is immediate from the OPT that for any 𝑦 ∈ ℝ𝑛

1. 𝑃𝑦 ∈ 𝑆 and
2. 𝑦 − 𝑃 𝑦 ⟂ 𝑆

From this, we can deduce additional useful properties, such as
1. ‖𝑦‖2 = ‖𝑃𝑦‖2 + ‖𝑦 − 𝑃𝑦‖2 and
2. ‖𝑃𝑦‖ ≤ ‖𝑦‖

For example, to prove 1, observe that 𝑦 = 𝑃𝑦 + 𝑦 − 𝑃𝑦 and apply the Pythagorean law.

Orthogonal Complement

Let 𝑆 ⊂ ℝ𝑛.
The orthogonal complement of 𝑆 is the linear subspace 𝑆⟂ that satisfies 𝑥1 ⟂ 𝑥2 for every 𝑥1 ∈ 𝑆 and 𝑥2 ∈ 𝑆⟂.
Let 𝑌 be a linear space with linear subspace 𝑆 and its orthogonal complement 𝑆⟂.
We write

𝑌 = 𝑆 ⊕ 𝑆⟂

to indicate that for every 𝑦 ∈ 𝑌 there is unique 𝑥1 ∈ 𝑆 and a unique 𝑥2 ∈ 𝑆⟂ such that 𝑦 = 𝑥1 + 𝑥2.

Moreover, 𝑥1 = ̂𝐸𝑆𝑦 and 𝑥2 = 𝑦 − ̂𝐸𝑆𝑦.
This amounts to another version of the OPT:
Theorem. If 𝑆 is a linear subspace of ℝ𝑛, ̂𝐸𝑆𝑦 = 𝑃𝑦 and ̂𝐸𝑆⟂𝑦 = 𝑀𝑦, then

𝑃𝑦 ⟂ 𝑀𝑦 and 𝑦 = 𝑃𝑦 + 𝑀𝑦 for all 𝑦 ∈ ℝ𝑛

The next figure illustrates

1.4 Orthonormal Basis

An orthogonal set of vectors 𝑂 ⊂ ℝ𝑛 is called an orthonormal set if ‖𝑢‖ = 1 for all 𝑢 ∈ 𝑂.
Let 𝑆 be a linear subspace of ℝ𝑛 and let 𝑂 ⊂ 𝑆.
If 𝑂 is orthonormal and span𝑂 = 𝑆, then 𝑂 is called an orthonormal basis of 𝑆.
𝑂 is necessarily a basis of 𝑆 (being independent by orthogonality and the fact that no element is the zero vector).
One example of an orthonormal set is the canonical basis {𝑒1, … , 𝑒𝑛} that forms an orthonormal basis of ℝ𝑛, where 𝑒𝑖
is the 𝑖 th unit vector.
If {𝑢1, … , 𝑢𝑘} is an orthonormal basis of linear subspace 𝑆, then

𝑥 =
𝑘

∑
𝑖=1

⟨𝑥, 𝑢𝑖⟩𝑢𝑖 for all 𝑥 ∈ 𝑆

To see this, observe that since 𝑥 ∈ span{𝑢1, … , 𝑢𝑘}, we can find scalars 𝛼1, … , 𝛼𝑘 that verify

𝑥 =
𝑘

∑
𝑗=1

𝛼𝑗𝑢𝑗 (1.1)

1.4. Orthonormal Basis 13

Advanced Quantitative Economics with Python

14 Chapter 1. Orthogonal Projections and Their Applications

Advanced Quantitative Economics with Python

Taking the inner product with respect to 𝑢𝑖 gives

⟨𝑥, 𝑢𝑖⟩ =
𝑘

∑
𝑗=1

𝛼𝑗⟨𝑢𝑗, 𝑢𝑖⟩ = 𝛼𝑖

Combining this result with (1.1) verifies the claim.

1.4.1 Projection onto an Orthonormal Basis

When a subspace onto which we project is orthonormal, computing the projection simplifies:
Theorem If {𝑢1, … , 𝑢𝑘} is an orthonormal basis for 𝑆, then

𝑃𝑦 =
𝑘

∑
𝑖=1

⟨𝑦, 𝑢𝑖⟩𝑢𝑖, ∀ 𝑦 ∈ ℝ𝑛 (1.2)

Proof: Fix 𝑦 ∈ ℝ𝑛 and let 𝑃𝑦 be defined as in (1.2).
Clearly, 𝑃𝑦 ∈ 𝑆.
We claim that 𝑦 − 𝑃 𝑦 ⟂ 𝑆 also holds.
It sufficies to show that 𝑦 − 𝑃𝑦 ⟂ any basis vector 𝑢𝑖.
This is true because

⟨𝑦 −
𝑘

∑
𝑖=1

⟨𝑦, 𝑢𝑖⟩𝑢𝑖, 𝑢𝑗⟩ = ⟨𝑦, 𝑢𝑗⟩ −
𝑘

∑
𝑖=1

⟨𝑦, 𝑢𝑖⟩⟨𝑢𝑖, 𝑢𝑗⟩ = 0

(Why is this sufficient to establish the claim that 𝑦 − 𝑃𝑦 ⟂ 𝑆?)

1.5 Projection Via Matrix Algebra

Let 𝑆 be a linear subspace of ℝ𝑛 and let 𝑦 ∈ ℝ𝑛.
We want to compute the matrix 𝑃 that verifies

̂𝐸𝑆𝑦 = 𝑃𝑦

Evidently 𝑃𝑦 is a linear function from 𝑦 ∈ ℝ𝑛 to 𝑃𝑦 ∈ ℝ𝑛.
This reference is useful.
Theorem. Let the columns of 𝑛 × 𝑘 matrix 𝑋 form a basis of 𝑆. Then

𝑃 = 𝑋(𝑋′𝑋)−1𝑋′

Proof: Given arbitrary 𝑦 ∈ ℝ𝑛 and 𝑃 = 𝑋(𝑋′𝑋)−1𝑋′, our claim is that
1. 𝑃𝑦 ∈ 𝑆, and
2. 𝑦 − 𝑃 𝑦 ⟂ 𝑆

Claim 1 is true because

𝑃𝑦 = 𝑋(𝑋′𝑋)−1𝑋′𝑦 = 𝑋𝑎 when 𝑎 ∶= (𝑋′𝑋)−1𝑋′𝑦

An expression of the form 𝑋𝑎 is precisely a linear combination of the columns of 𝑋 and hence an element of 𝑆.

1.5. Projection Via Matrix Algebra 15

https://en.wikipedia.org/wiki/Linear_map#Matrices

Advanced Quantitative Economics with Python

Claim 2 is equivalent to the statement

𝑦 − 𝑋(𝑋′𝑋)−1𝑋′𝑦 ⟂ 𝑋𝑏 for all 𝑏 ∈ ℝ𝐾

To verify this, notice that if 𝑏 ∈ ℝ𝐾 , then

(𝑋𝑏)′[𝑦 − 𝑋(𝑋′𝑋)−1𝑋′𝑦] = 𝑏′[𝑋′𝑦 − 𝑋′𝑦] = 0

The proof is now complete.

1.5.1 Starting with the Basis

It is common in applications to start with 𝑛 × 𝑘 matrix 𝑋 with linearly independent columns and let

𝑆 ∶= span𝑋 ∶= span{col1 𝑋, … , col𝑘 𝑋}

Then the columns of 𝑋 form a basis of 𝑆.
From the preceding theorem, 𝑃 = 𝑋(𝑋′𝑋)−1𝑋′𝑦 projects 𝑦 onto 𝑆.
In this context, 𝑃 is often called the projection matrix

• The matrix 𝑀 = 𝐼 − 𝑃 satisfies 𝑀𝑦 = ̂𝐸𝑆⟂𝑦 and is sometimes called the annihilator matrix.

1.5.2 The Orthonormal Case

Suppose that 𝑈 is 𝑛 × 𝑘 with orthonormal columns.
Let 𝑢𝑖 ∶= col𝑈𝑖 for each 𝑖, let 𝑆 ∶= span𝑈 and let 𝑦 ∈ ℝ𝑛.
We know that the projection of 𝑦 onto 𝑆 is

𝑃𝑦 = 𝑈(𝑈 ′𝑈)−1𝑈 ′𝑦

Since 𝑈 has orthonormal columns, we have 𝑈 ′𝑈 = 𝐼 .
Hence

𝑃𝑦 = 𝑈𝑈 ′𝑦 =
𝑘

∑
𝑖=1

⟨𝑢𝑖, 𝑦⟩𝑢𝑖

We have recovered our earlier result about projecting onto the span of an orthonormal basis.

1.5.3 Application: Overdetermined Systems of Equations

Let 𝑦 ∈ ℝ𝑛 and let 𝑋 be 𝑛 × 𝑘 with linearly independent columns.
Given 𝑋 and 𝑦, we seek 𝑏 ∈ ℝ𝑘 that satisfies the system of linear equations 𝑋𝑏 = 𝑦.
If 𝑛 > 𝑘 (more equations than unknowns), then 𝑏 is said to be overdetermined.
Intuitively, we may not be able to find a 𝑏 that satisfies all 𝑛 equations.
The best approach here is to

• Accept that an exact solution may not exist.
• Look instead for an approximate solution.

16 Chapter 1. Orthogonal Projections and Their Applications

Advanced Quantitative Economics with Python

By approximate solution, we mean a 𝑏 ∈ ℝ𝑘 such that 𝑋𝑏 is close to 𝑦.
The next theorem shows that a best approximation is well defined and unique.
The proof uses the OPT.
Theorem The unique minimizer of ‖𝑦 − 𝑋𝑏‖ over 𝑏 ∈ ℝ𝐾 is

̂𝛽 ∶= (𝑋′𝑋)−1𝑋′𝑦

Proof: Note that

𝑋 ̂𝛽 = 𝑋(𝑋′𝑋)−1𝑋′𝑦 = 𝑃𝑦

Since 𝑃𝑦 is the orthogonal projection onto span(𝑋) we have

‖𝑦 − 𝑃𝑦‖ ≤ ‖𝑦 − 𝑧‖ for any 𝑧 ∈ span(𝑋)

Because 𝑋𝑏 ∈ span(𝑋)

‖𝑦 − 𝑋 ̂𝛽‖ ≤ ‖𝑦 − 𝑋𝑏‖ for any 𝑏 ∈ ℝ𝐾

This is what we aimed to show.

1.6 Least Squares Regression

Let’s apply the theory of orthogonal projection to least squares regression.
This approach provides insights about many geometric properties of linear regression.
We treat only some examples.

1.6.1 Squared Risk Measures

Given pairs (𝑥, 𝑦) ∈ ℝ𝐾 × ℝ, consider choosing 𝑓 ∶ ℝ𝐾 → ℝ to minimize the risk

𝑅(𝑓) ∶= 𝔼 [(𝑦 − 𝑓(𝑥))2]

If probabilities and hence 𝔼 are unknown, we cannot solve this problem directly.
However, if a sample is available, we can estimate the risk with the empirical risk:

min
𝑓∈ℱ

1
𝑁

𝑁
∑
𝑛=1

(𝑦𝑛 − 𝑓(𝑥𝑛))2

Minimizing this expression is called empirical risk minimization.
The set ℱ is sometimes called the hypothesis space.
The theory of statistical learning tells us that to prevent overfitting we should take the set ℱ to be relatively simple.
If we let ℱ be the class of linear functions, the problem is

min
𝑏∈ℝ𝐾

𝑁
∑
𝑛=1

(𝑦𝑛 − 𝑏′𝑥𝑛)2

This is the sample linear least squares problem.

1.6. Least Squares Regression 17

Advanced Quantitative Economics with Python

1.6.2 Solution

Define the matrices

𝑦 ∶=
⎛⎜⎜⎜
⎝

𝑦1
𝑦2
⋮

𝑦𝑁

⎞⎟⎟⎟
⎠

, 𝑥𝑛 ∶=
⎛⎜⎜⎜
⎝

𝑥𝑛1
𝑥𝑛2

⋮
𝑥𝑛𝐾

⎞⎟⎟⎟
⎠

= 𝑛-th obs on all regressors

and

𝑋 ∶=
⎛⎜⎜⎜
⎝

𝑥′
1

𝑥′
2
⋮

𝑥′
𝑁

⎞⎟⎟⎟
⎠

∶=∶
⎛⎜⎜⎜
⎝

𝑥11 𝑥12 ⋯ 𝑥1𝐾
𝑥21 𝑥22 ⋯ 𝑥2𝐾

⋮ ⋮ ⋮
𝑥𝑁1 𝑥𝑁2 ⋯ 𝑥𝑁𝐾

⎞⎟⎟⎟
⎠

We assume throughout that 𝑁 > 𝐾 and 𝑋 is full column rank.

If you work through the algebra, you will be able to verify that ‖𝑦 − 𝑋𝑏‖2 = ∑𝑁
𝑛=1(𝑦𝑛 − 𝑏′𝑥𝑛)2.

Since monotone transforms don’t affect minimizers, we have

argmin
𝑏∈ℝ𝐾

𝑁
∑
𝑛=1

(𝑦𝑛 − 𝑏′𝑥𝑛)2 = argmin
𝑏∈ℝ𝐾

‖𝑦 − 𝑋𝑏‖

By our results about overdetermined linear systems of equations, the solution is

̂𝛽 ∶= (𝑋′𝑋)−1𝑋′𝑦

Let 𝑃 and 𝑀 be the projection and annihilator associated with 𝑋:

𝑃 ∶= 𝑋(𝑋′𝑋)−1𝑋′ and 𝑀 ∶= 𝐼 − 𝑃

The vector of fitted values is

̂𝑦 ∶= 𝑋 ̂𝛽 = 𝑃𝑦

The vector of residuals is

�̂� ∶= 𝑦 − ̂𝑦 = 𝑦 − 𝑃𝑦 = 𝑀𝑦

Here are some more standard definitions:
• The total sum of squares is ∶= ‖𝑦‖2.
• The sum of squared residuals is ∶= ‖�̂�‖2.
• The explained sum of squares is ∶= ‖ ̂𝑦‖2.
TSS = ESS + SSR

We can prove this easily using the OPT.
From the OPT we have 𝑦 = ̂𝑦 + �̂� and �̂� ⟂ ̂𝑦.
Applying the Pythagorean law completes the proof.

18 Chapter 1. Orthogonal Projections and Their Applications

Advanced Quantitative Economics with Python

1.7 Orthogonalization and Decomposition

Let’s return to the connection between linear independence and orthogonality touched on above.
A result of much interest is a famous algorithm for constructing orthonormal sets from linearly independent sets.
The next section gives details.

1.7.1 Gram-Schmidt Orthogonalization

Theorem For each linearly independent set {𝑥1, … , 𝑥𝑘} ⊂ ℝ𝑛, there exists an orthonormal set {𝑢1, … , 𝑢𝑘} with

span{𝑥1, … , 𝑥𝑖} = span{𝑢1, … , 𝑢𝑖} for 𝑖 = 1, … , 𝑘

The Gram-Schmidt orthogonalization procedure constructs an orthogonal set {𝑢1, 𝑢2, … , 𝑢𝑛}.
One description of this procedure is as follows:

• For 𝑖 = 1, … , 𝑘, form 𝑆𝑖 ∶= span{𝑥1, … , 𝑥𝑖} and 𝑆⟂
𝑖

• Set 𝑣1 = 𝑥1

• For 𝑖 ≥ 2 set 𝑣𝑖 ∶= ̂𝐸𝑆⟂
𝑖−1

𝑥𝑖 and 𝑢𝑖 ∶= 𝑣𝑖/‖𝑣𝑖‖
The sequence 𝑢1, … , 𝑢𝑘 has the stated properties.
A Gram-Schmidt orthogonalization construction is a key idea behind the Kalman filter described in A First Look at the
Kalman filter.
In some exercises below, you are asked to implement this algorithm and test it using projection.

1.7.2 QR Decomposition

The following result uses the preceding algorithm to produce a useful decomposition.
Theorem If 𝑋 is 𝑛 × 𝑘 with linearly independent columns, then there exists a factorization 𝑋 = 𝑄𝑅 where

• 𝑅 is 𝑘 × 𝑘, upper triangular, and nonsingular
• 𝑄 is 𝑛 × 𝑘 with orthonormal columns

Proof sketch: Let
• 𝑥𝑗 ∶= col𝑗(𝑋)
• {𝑢1, … , 𝑢𝑘} be orthonormal with the same span as {𝑥1, … , 𝑥𝑘} (to be constructed using Gram–Schmidt)
• 𝑄 be formed from cols 𝑢𝑖

Since 𝑥𝑗 ∈ span{𝑢1, … , 𝑢𝑗}, we have

𝑥𝑗 =
𝑗

∑
𝑖=1

⟨𝑢𝑖, 𝑥𝑗⟩𝑢𝑖 for 𝑗 = 1, … , 𝑘

Some rearranging gives 𝑋 = 𝑄𝑅.

1.7. Orthogonalization and Decomposition 19

https://python-intro.quantecon.org/kalman.html
https://python-intro.quantecon.org/kalman.html

Advanced Quantitative Economics with Python

1.7.3 Linear Regression via QR Decomposition

Formatrices𝑋 and 𝑦 that overdetermine 𝛽 in the linear equation system 𝑦 = 𝑋𝛽, we found the least squares approximator
̂𝛽 = (𝑋′𝑋)−1𝑋′𝑦.

Using the QR decomposition 𝑋 = 𝑄𝑅 gives

̂𝛽 = (𝑅′𝑄′𝑄𝑅)−1𝑅′𝑄′𝑦
= (𝑅′𝑅)−1𝑅′𝑄′𝑦
= 𝑅−1(𝑅′)−1𝑅′𝑄′𝑦 = 𝑅−1𝑄′𝑦

Numerical routines would in this case use the alternative form 𝑅 ̂𝛽 = 𝑄′𝑦 and back substitution.

1.8 Exercises

Exercise 1.8.1
Show that, for any linear subspace 𝑆 ⊂ ℝ𝑛, 𝑆 ∩ 𝑆⟂ = {0}.

Solution to Exercise 1.8.1
If 𝑥 ∈ 𝑆 and 𝑥 ∈ 𝑆⟂, then we have in particular that ⟨𝑥, 𝑥⟩ = 0, but then 𝑥 = 0.

Exercise 1.8.2
Let 𝑃 = 𝑋(𝑋′𝑋)−1𝑋′ and let 𝑀 = 𝐼 − 𝑃 . Show that 𝑃 and 𝑀 are both idempotent and symmetric. Can you give
any intuition as to why they should be idempotent?

Solution to Exercise 1.8.2
Symmetry and idempotence of 𝑀 and 𝑃 can be established using standard rules for matrix algebra. The intuition behind
idempotence of𝑀 and 𝑃 is that both are orthogonal projections. After a point is projected into a given subspace, applying
the projection again makes no difference (A point inside the subspace is not shifted by orthogonal projection onto that
space because it is already the closest point in the subspace to itself).

Exercise 1.8.3
Using Gram-Schmidt orthogonalization, produce a linear projection of 𝑦 onto the column space of𝑋 and verify this using
the projection matrix 𝑃 ∶= 𝑋(𝑋′𝑋)−1𝑋′ and also using QR decomposition, where:

𝑦 ∶= ⎛⎜
⎝

1
3

−3
⎞⎟
⎠

,

and

𝑋 ∶= ⎛⎜
⎝

1 0
0 −6
2 2

⎞⎟
⎠

20 Chapter 1. Orthogonal Projections and Their Applications

Advanced Quantitative Economics with Python

Solution to Exercise 1.8.3
Here’s a function that computes the orthonormal vectors using the GS algorithm given in the lecture

def gram_schmidt(X):
"""
Implements Gram-Schmidt orthogonalization.

Parameters

X : an n x k array with linearly independent columns

Returns

U : an n x k array with orthonormal columns

"""

Set up
n, k = X.shape
U = np.empty((n, k))
I = np.eye(n)

The first col of U is just the normalized first col of X
v1 = X[:,0]
U[:, 0] = v1 / np.sqrt(np.sum(v1 * v1))

for i in range(1, k):
Set up
b = X[:, i] # The vector we're going to project
Z = X[:, 0:i] # First i-1 columns of X

Project onto the orthogonal complement of the col span of Z
M = I - Z @ np.linalg.inv(Z.T @ Z) @ Z.T
u = M @ b

Normalize
U[:, i] = u / np.sqrt(np.sum(u * u))

return U

Here are the arrays we’ll work with

y = [1, 3, -3]

X = [[1, 0],
[0, -6],
[2, 2]]

X, y = [np.asarray(z) for z in (X, y)]

First, let’s try projection of 𝑦 onto the column space of 𝑋 using the ordinary matrix expression:

Py1 = X @ np.linalg.inv(X.T @ X) @ X.T @ y
Py1

1.8. Exercises 21

Advanced Quantitative Economics with Python

array([-0.56521739, 3.26086957, -2.2173913])

Now let’s do the same using an orthonormal basis created from our gram_schmidt function

U = gram_schmidt(X)
U

array([[0.4472136 , -0.13187609],
[0. , -0.98907071],
[0.89442719, 0.06593805]])

Py2 = U @ U.T @ y
Py2

array([-0.56521739, 3.26086957, -2.2173913])

This is the same answer. So far so good. Finally, let’s try the same thing but with the basis obtained via QR decomposition:

Q, R = qr(X, mode='economic')
Q

array([[-0.4472136 , -0.13187609],
[-0. , -0.98907071],
[-0.89442719, 0.06593805]])

Py3 = Q @ Q.T @ y
Py3

array([-0.56521739, 3.26086957, -2.2173913])

Again, we obtain the same answer.

22 Chapter 1. Orthogonal Projections and Their Applications

CHAPTER

TWO

CONTINUOUS STATE MARKOV CHAINS

Contents

• Continuous State Markov Chains

– Overview

– The Density Case

– Beyond Densities

– Stability

– Exercises

– Appendix

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

2.1 Overview

In a previous lecture, we learned about finite Markov chains, a relatively elementary class of stochastic dynamic models.
The present lecture extends this analysis to continuous (i.e., uncountable) state Markov chains.
Most stochastic dynamic models studied by economists either fit directly into this class or can be represented as continuous
state Markov chains after minor modifications.
In this lecture, our focus will be on continuous Markov models that

• evolve in discrete-time
• are often nonlinear

The fact that we accommodate nonlinear models here is significant, because linear stochastic models have their own highly
developed toolset, as we’ll see later on.
The question that interests us most is: Given a particular stochastic dynamic model, how will the state of the system evolve
over time?
In particular,

• What happens to the distribution of the state variables?

23

https://python-intro.quantecon.org/finite_markov.html

Advanced Quantitative Economics with Python

• Is there anything we can say about the “average behavior” of these variables?
• Is there a notion of “steady state” or “long-run equilibrium” that’s applicable to the model?

– If so, how can we compute it?
Answering these questions will lead us to revisit many of the topics that occupied us in the finite state case, such as
simulation, distribution dynamics, stability, ergodicity, etc.

Note: For some people, the term “Markov chain” always refers to a process with a finite or discrete state space. We
follow the mainstream mathematical literature (e.g., [MT09]) in using the term to refer to any discrete time Markov
process.

Let’s begin with some imports:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from scipy.stats import lognorm, beta
from quantecon import LAE
from scipy.stats import norm, gaussian_kde

2.2 The Density Case

You are probably aware that some distributions can be represented by densities and some cannot.
(For example, distributions on the real numbers ℝ that put positive probability on individual points have no density rep-
resentation)
We are going to start our analysis by looking at Markov chains where the one-step transition probabilities have density
representations.
The benefit is that the density case offers a very direct parallel to the finite case in terms of notation and intuition.
Once we’ve built some intuition we’ll cover the general case.

2.2.1 Definitions and Basic Properties

In our lecture on finite Markov chains, we studied discrete-time Markov chains that evolve on a finite state space 𝑆.
In this setting, the dynamics of the model are described by a stochastic matrix— a nonnegative square matrix 𝑃 = 𝑃[𝑖, 𝑗]
such that each row 𝑃 [𝑖, ⋅] sums to one.
The interpretation of 𝑃 is that 𝑃 [𝑖, 𝑗] represents the probability of transitioning from state 𝑖 to state 𝑗 in one unit of time.
In symbols,

ℙ{𝑋𝑡+1 = 𝑗 | 𝑋𝑡 = 𝑖} = 𝑃 [𝑖, 𝑗]

Equivalently,
• 𝑃 can be thought of as a family of distributions 𝑃 [𝑖, ⋅], one for each 𝑖 ∈ 𝑆
• 𝑃 [𝑖, ⋅] is the distribution of 𝑋𝑡+1 given 𝑋𝑡 = 𝑖

(As you probably recall, when using NumPy arrays, 𝑃 [𝑖, ⋅] is expressed as P[i,:])
In this section, we’ll allow 𝑆 to be a subset of ℝ, such as

24 Chapter 2. Continuous State Markov Chains

https://python-intro.quantecon.org/finite_markov.html

Advanced Quantitative Economics with Python

• ℝ itself
• the positive reals (0, ∞)
• a bounded interval (𝑎, 𝑏)

The family of discrete distributions 𝑃 [𝑖, ⋅] will be replaced by a family of densities 𝑝(𝑥, ⋅), one for each 𝑥 ∈ 𝑆.
Analogous to the finite state case, 𝑝(𝑥, ⋅) is to be understood as the distribution (density) of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥.
More formally, a stochastic kernel on 𝑆 is a function 𝑝 ∶ 𝑆 × 𝑆 → ℝ with the property that

1. 𝑝(𝑥, 𝑦) ≥ 0 for all 𝑥, 𝑦 ∈ 𝑆
2. ∫ 𝑝(𝑥, 𝑦)𝑑𝑦 = 1 for all 𝑥 ∈ 𝑆

(Integrals are over the whole space unless otherwise specified)
For example, let 𝑆 = ℝ and consider the particular stochastic kernel 𝑝𝑤 defined by

𝑝𝑤(𝑥, 𝑦) ∶= 1√
2𝜋 exp{−(𝑦 − 𝑥)2

2 } (2.1)

What kind of model does 𝑝𝑤 represent?
The answer is, the (normally distributed) random walk

𝑋𝑡+1 = 𝑋𝑡 + 𝜉𝑡+1 where {𝜉𝑡}
IID∼ 𝑁(0, 1) (2.2)

To see this, let’s find the stochastic kernel 𝑝 corresponding to (2.2).
Recall that 𝑝(𝑥, ⋅) represents the distribution of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥.
Letting 𝑋𝑡 = 𝑥 in (2.2) and considering the distribution of 𝑋𝑡+1, we see that 𝑝(𝑥, ⋅) = 𝑁(𝑥, 1).
In other words, 𝑝 is exactly 𝑝𝑤, as defined in (2.1).

2.2.2 Connection to Stochastic Difference Equations

In the previous section, we made the connection between stochastic difference equation (2.2) and stochastic kernel (2.1).
In economics and time-series analysis we meet stochastic difference equations of all different shapes and sizes.
It will be useful for us if we have some systematic methods for converting stochastic difference equations into stochastic
kernels.
To this end, consider the generic (scalar) stochastic difference equation given by

𝑋𝑡+1 = 𝜇(𝑋𝑡) + 𝜎(𝑋𝑡) 𝜉𝑡+1 (2.3)

Here we assume that
• {𝜉𝑡}

IID∼ 𝜙, where 𝜙 is a given density on ℝ
• 𝜇 and 𝜎 are given functions on 𝑆, with 𝜎(𝑥) > 0 for all 𝑥

Example 1: The random walk (2.2) is a special case of (2.3), with 𝜇(𝑥) = 𝑥 and 𝜎(𝑥) = 1.
Example 2: Consider the ARCH model

𝑋𝑡+1 = 𝛼𝑋𝑡 + 𝜎𝑡 𝜉𝑡+1, 𝜎2
𝑡 = 𝛽 + 𝛾𝑋2

𝑡 , 𝛽, 𝛾 > 0

Alternatively, we can write the model as

𝑋𝑡+1 = 𝛼𝑋𝑡 + (𝛽 + 𝛾𝑋2
𝑡)1/2𝜉𝑡+1 (2.4)

2.2. The Density Case 25

https://en.wikipedia.org/wiki/Autoregressive_conditional_heteroskedasticity

Advanced Quantitative Economics with Python

This is a special case of (2.3) with 𝜇(𝑥) = 𝛼𝑥 and 𝜎(𝑥) = (𝛽 + 𝛾𝑥2)1/2.
Example 3: With stochastic production and a constant savings rate, the one-sector neoclassical growth model leads to a
law of motion for capital per worker such as

𝑘𝑡+1 = 𝑠𝐴𝑡+1𝑓(𝑘𝑡) + (1 − 𝛿)𝑘𝑡 (2.5)

Here
• 𝑠 is the rate of savings
• 𝐴𝑡+1 is a production shock

– The 𝑡 + 1 subscript indicates that 𝐴𝑡+1 is not visible at time 𝑡
• 𝛿 is a depreciation rate
• 𝑓 ∶ ℝ+ → ℝ+ is a production function satisfying 𝑓(𝑘) > 0 whenever 𝑘 > 0

(The fixed savings rate can be rationalized as the optimal policy for a particular set of technologies and preferences (see
[LS18], section 3.1.2), although we omit the details here).
Equation (2.5) is a special case of (2.3) with 𝜇(𝑥) = (1 − 𝛿)𝑥 and 𝜎(𝑥) = 𝑠𝑓(𝑥).
Now let’s obtain the stochastic kernel corresponding to the generic model (2.3).
To find it, note first that if 𝑈 is a random variable with density 𝑓𝑈 , and 𝑉 = 𝑎 + 𝑏𝑈 for some constants 𝑎, 𝑏 with 𝑏 > 0,
then the density of 𝑉 is given by

𝑓𝑉 (𝑣) = 1
𝑏 𝑓𝑈 (𝑣 − 𝑎

𝑏) (2.6)

(The proof is below. For a multidimensional version see EDTC, theorem 8.1.3).
Taking (2.6) as given for the moment, we can obtain the stochastic kernel 𝑝 for (2.3) by recalling that 𝑝(𝑥, ⋅) is the
conditional density of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥.
In the present case, this is equivalent to stating that 𝑝(𝑥, ⋅) is the density of 𝑌 ∶= 𝜇(𝑥) + 𝜎(𝑥) 𝜉𝑡+1 when 𝜉𝑡+1 ∼ 𝜙.
Hence, by (2.6),

𝑝(𝑥, 𝑦) = 1
𝜎(𝑥)𝜙 (𝑦 − 𝜇(𝑥)

𝜎(𝑥)) (2.7)

For example, the growth model in (2.5) has stochastic kernel

𝑝(𝑥, 𝑦) = 1
𝑠𝑓(𝑥)𝜙 (𝑦 − (1 − 𝛿)𝑥

𝑠𝑓(𝑥)) (2.8)

where 𝜙 is the density of 𝐴𝑡+1.
(Regarding the state space 𝑆 for this model, a natural choice is (0, ∞) — in which case 𝜎(𝑥) = 𝑠𝑓(𝑥) is strictly positive
for all 𝑠 as required)

2.2.3 Distribution Dynamics

In this section of our lecture on finiteMarkov chains, we asked the following question: If
1. {𝑋𝑡} is a Markov chain with stochastic matrix 𝑃
2. the distribution of 𝑋𝑡 is known to be 𝜓𝑡

26 Chapter 2. Continuous State Markov Chains

http://johnstachurski.net/edtc.html
https://python.quantecon.org/finite_markov.html#marginal-distributions

Advanced Quantitative Economics with Python

then what is the distribution of 𝑋𝑡+1?
Letting 𝜓𝑡+1 denote the distribution of 𝑋𝑡+1, the answer we gave was that

𝜓𝑡+1[𝑗] = ∑
𝑖∈𝑆

𝑃 [𝑖, 𝑗]𝜓𝑡[𝑖]

This intuitive equality states that the probability of being at 𝑗 tomorrow is the probability of visiting 𝑖 today and then going
on to 𝑗, summed over all possible 𝑖.
In the density case, we just replace the sum with an integral and probability mass functions with densities, yielding

𝜓𝑡+1(𝑦) = ∫ 𝑝(𝑥, 𝑦)𝜓𝑡(𝑥) 𝑑𝑥, ∀𝑦 ∈ 𝑆 (2.9)

It is convenient to think of this updating process in terms of an operator.
(An operator is just a function, but the term is usually reserved for a function that sends functions into functions)
Let 𝒟 be the set of all densities on 𝑆, and let 𝑃 be the operator from 𝒟 to itself that takes density 𝜓 and sends it into new
density 𝜓𝑃 , where the latter is defined by

(𝜓𝑃)(𝑦) = ∫ 𝑝(𝑥, 𝑦)𝜓(𝑥)𝑑𝑥 (2.10)

This operator is usually called the Markov operator corresponding to 𝑝

Note: Unlike most operators, we write 𝑃 to the right of its argument, instead of to the left (i.e., 𝜓𝑃 instead of 𝑃𝜓).
This is a common convention, with the intention being to maintain the parallel with the finite case — see here

With this notation, we can write (2.9) more succinctly as 𝜓𝑡+1(𝑦) = (𝜓𝑡𝑃)(𝑦) for all 𝑦, or, dropping the 𝑦 and letting
“=” indicate equality of functions,

𝜓𝑡+1 = 𝜓𝑡𝑃 (2.11)

Equation (2.11) tells us that if we specify a distribution for 𝜓0, then the entire sequence of future distributions can be
obtained by iterating with 𝑃 .
It’s interesting to note that (2.11) is a deterministic difference equation.
Thus, by converting a stochastic difference equation such as (2.3) into a stochastic kernel 𝑝 and hence an operator 𝑃 , we
convert a stochastic difference equation into a deterministic one (albeit in a much higher dimensional space).

Note: Some people might be aware that discrete Markov chains are in fact a special case of the continuous Markov
chains we have just described. The reason is that probability mass functions are densities with respect to the counting
measure.

2.2.4 Computation

To learn about the dynamics of a given process, it’s useful to compute and study the sequences of densities generated by
the model.
One way to do this is to try to implement the iteration described by (2.10) and (2.11) using numerical integration.
However, to produce 𝜓𝑃 from 𝜓 via (2.10), you would need to integrate at every 𝑦, and there is a continuum of such 𝑦.
Another possibility is to discretize the model, but this introduces errors of unknown size.

2.2. The Density Case 27

https://python.quantecon.org/finite_markov.html#marginal-distributions
https://python.quantecon.org/finite_markov.html#marginal-distributions
https://en.wikipedia.org/wiki/Counting_measure
https://en.wikipedia.org/wiki/Counting_measure

Advanced Quantitative Economics with Python

Anicer alternative in the present setting is to combine simulation with an elegant estimator called the look-ahead estimator.
Let’s go over the ideas with reference to the growth model discussed above, the dynamics of which we repeat here for
convenience:

𝑘𝑡+1 = 𝑠𝐴𝑡+1𝑓(𝑘𝑡) + (1 − 𝛿)𝑘𝑡 (2.12)

Our aim is to compute the sequence {𝜓𝑡} associated with this model and fixed initial condition 𝜓0.
To approximate 𝜓𝑡 by simulation, recall that, by definition, 𝜓𝑡 is the density of 𝑘𝑡 given 𝑘0 ∼ 𝜓0.
If we wish to generate observations of this random variable, all we need to do is

1. draw 𝑘0 from the specified initial condition 𝜓0

2. draw the shocks 𝐴1, … , 𝐴𝑡 from their specified density 𝜙
3. compute 𝑘𝑡 iteratively via (2.12)

If we repeat this 𝑛 times, we get 𝑛 independent observations 𝑘1
𝑡 , … , 𝑘𝑛

𝑡 .
With these draws in hand, the next step is to generate some kind of representation of their distribution 𝜓𝑡.
A naive approach would be to use a histogram, or perhaps a smoothed histogram using SciPy’sgaussian_kde function.
However, in the present setting, there is a much better way to do this, based on the look-ahead estimator.
With this estimator, to construct an estimate of 𝜓𝑡, we actually generate 𝑛 observations of 𝑘𝑡−1, rather than 𝑘𝑡.
Now we take these 𝑛 observations 𝑘1

𝑡−1, … , 𝑘𝑛
𝑡−1 and form the estimate

𝜓𝑛
𝑡 (𝑦) = 1

𝑛
𝑛

∑
𝑖=1

𝑝(𝑘𝑖
𝑡−1, 𝑦) (2.13)

where 𝑝 is the growth model stochastic kernel in (2.8).
What is the justification for this slightly surprising estimator?
The idea is that, by the strong law of large numbers,

1
𝑛

𝑛
∑
𝑖=1

𝑝(𝑘𝑖
𝑡−1, 𝑦) → 𝔼𝑝(𝑘𝑖

𝑡−1, 𝑦) = ∫ 𝑝(𝑥, 𝑦)𝜓𝑡−1(𝑥) 𝑑𝑥 = 𝜓𝑡(𝑦)

with probability one as 𝑛 → ∞.
Here the first equality is by the definition of 𝜓𝑡−1, and the second is by (2.9).
We have just shown that our estimator 𝜓𝑛

𝑡 (𝑦) in (2.13) converges almost surely to 𝜓𝑡(𝑦), which is just what we want to
compute.
In fact, much stronger convergence results are true (see, for example, this paper).

2.2.5 Implementation

A class called LAE for estimating densities by this technique can be found in lae.py.
Given our use of the __call__method, an instance of LAE acts as a callable object, which is essentially a function that
can store its own data (see this discussion).
This function returns the right-hand side of (2.13) using

• the data and stochastic kernel that it stores as its instance data
• the value 𝑦 as its argument

28 Chapter 2. Continuous State Markov Chains

https://en.wikipedia.org/wiki/Kernel_density_estimation
https://python-intro.quantecon.org/lln_clt.html#lln-ksl
https://lectures.quantecon.org/_downloads/ECTA6180.pdf
https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/lae.py
https://python-programming.quantecon.org/python_oop.html#call-method

Advanced Quantitative Economics with Python

The function is vectorized, in the sense that if psi is such an instance and y is an array, then the call psi(y) acts
elementwise.
(This is the reason that we reshaped X and y inside the class — to make vectorization work)
Because the implementation is fully vectorized, it is about as efficient as it would be in C or Fortran.

2.2.6 Example

The following code is an example of usage for the stochastic growth model described above

== Define parameters ==
s = 0.2
δ = 0.1
a_σ = 0.4 # A = exp(B) where B ~ N(0, a_σ)
α = 0.4 # We set f(k) = k**α
ψ_0 = beta(5, 5, scale=0.5) # Initial distribution
ϕ = lognorm(a_σ)

def p(x, y):
"""
Stochastic kernel for the growth model with Cobb-Douglas production.
Both x and y must be strictly positive.
"""
d = s * x**α
return ϕ.pdf((y - (1 - δ) * x) / d) / d

n = 10000 # Number of observations at each date t
T = 30 # Compute density of k_t at 1,...,T+1

== Generate matrix s.t. t-th column is n observations of k_t ==
k = np.empty((n, T))
A = ϕ.rvs((n, T))
k[:, 0] = ψ_0.rvs(n) # Draw first column from initial distribution
for t in range(T-1):

k[:, t+1] = s * A[:, t] * k[:, t]**α + (1 - δ) * k[:, t]

== Generate T instances of LAE using this data, one for each date t ==
laes = [LAE(p, k[:, t]) for t in range(T)]

== Plot ==
fig, ax = plt.subplots()
ygrid = np.linspace(0.01, 4.0, 200)
greys = [str(g) for g in np.linspace(0.0, 0.8, T)]
greys.reverse()
for ψ, g in zip(laes, greys):

ax.plot(ygrid, ψ(ygrid), color=g, lw=2, alpha=0.6)
ax.set_xlabel('capital')
ax.set_title(f'Density of k_1 (lighter) to k_T (darker) for $T={T}$')
plt.show()

2.2. The Density Case 29

Advanced Quantitative Economics with Python

The figure shows part of the density sequence {𝜓𝑡}, with each density computed via the look-ahead estimator.
Notice that the sequence of densities shown in the figure seems to be converging — more on this in just a moment.
Another quick comment is that each of these distributions could be interpreted as a cross-sectional distribution (recall
this discussion).

2.3 Beyond Densities

Up until now, we have focused exclusively on continuous state Markov chains where all conditional distributions 𝑝(𝑥, ⋅)
are densities.
As discussed above, not all distributions can be represented as densities.
If the conditional distribution of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥 cannot be represented as a density for some 𝑥 ∈ 𝑆, then we need
a slightly different theory.
The ultimate option is to switch from densities to probability measures, but not all readers will be familiar with measure
theory.
We can, however, construct a fairly general theory using distribution functions.

30 Chapter 2. Continuous State Markov Chains

https://python.quantecon.org/finite_markov.html#example-2-cross-sectional-distributions
https://en.wikipedia.org/wiki/Probability_measure

Advanced Quantitative Economics with Python

2.3.1 Example and Definitions

To illustrate the issues, recall that Hopenhayn and Rogerson [HR93] study a model of firm dynamics where individual
firm productivity follows the exogenous process

𝑋𝑡+1 = 𝑎 + 𝜌𝑋𝑡 + 𝜉𝑡+1, where {𝜉𝑡}
IID∼ 𝑁(0, 𝜎2)

As is, this fits into the density case we treated above.
However, the authors wanted this process to take values in [0, 1], so they added boundaries at the endpoints 0 and 1.
One way to write this is

𝑋𝑡+1 = ℎ(𝑎 + 𝜌𝑋𝑡 + 𝜉𝑡+1) where ℎ(𝑥) ∶= 𝑥 1{0 ≤ 𝑥 ≤ 1} + 1{𝑥 > 1}

If you think about it, you will see that for any given 𝑥 ∈ [0, 1], the conditional distribution of 𝑋𝑡+1 given 𝑋𝑡 = 𝑥 puts
positive probability mass on 0 and 1.
Hence it cannot be represented as a density.
What we can do instead is use cumulative distribution functions (cdfs).
To this end, set

𝐺(𝑥, 𝑦) ∶= ℙ{ℎ(𝑎 + 𝜌𝑥 + 𝜉𝑡+1) ≤ 𝑦} (0 ≤ 𝑥, 𝑦 ≤ 1)

This family of cdfs 𝐺(𝑥, ⋅) plays a role analogous to the stochastic kernel in the density case.
The distribution dynamics in (2.9) are then replaced by

𝐹𝑡+1(𝑦) = ∫ 𝐺(𝑥, 𝑦)𝐹𝑡(𝑑𝑥) (2.14)

Here 𝐹𝑡 and 𝐹𝑡+1 are cdfs representing the distribution of the current state and next period state.
The intuition behind (2.14) is essentially the same as for (2.9).

2.3.2 Computation

If you wish to compute these cdfs, you cannot use the look-ahead estimator as before.
Indeed, you should not use any density estimator, since the objects you are estimating/computing are not densities.
One good option is simulation as before, combined with the empirical distribution function.

2.4 Stability

In our lecture on finite Markov chains, we also studied stationarity, stability and ergodicity.
Here we will cover the same topics for the continuous case.
We will, however, treat only the density case (as in this section), where the stochastic kernel is a family of densities.
The general case is relatively similar — references are given below.

2.4. Stability 31

https://en.wikipedia.org/wiki/Empirical_distribution_function
https://python-intro.quantecon.org/finite_markov.html

Advanced Quantitative Economics with Python

2.4.1 Theoretical Results

Analogous to the finite case, given a stochastic kernel 𝑝 and corresponding Markov operator as defined in (2.10), a density
𝜓∗ on 𝑆 is called stationary for 𝑃 if it is a fixed point of the operator 𝑃 .
In other words,

𝜓∗(𝑦) = ∫ 𝑝(𝑥, 𝑦)𝜓∗(𝑥) 𝑑𝑥, ∀𝑦 ∈ 𝑆 (2.15)

As with the finite case, if 𝜓∗ is stationary for 𝑃 , and the distribution of 𝑋0 is 𝜓∗, then, in view of (2.11), 𝑋𝑡 will have
this same distribution for all 𝑡.
Hence 𝜓∗ is the stochastic equivalent of a steady state.
In the finite case, we learned that at least one stationary distribution exists, although there may be many.
When the state space is infinite, the situation is more complicated.
Even existence can fail very easily.
For example, the random walk model has no stationary density (see, e.g., EDTC, p. 210).
However, there are well-known conditions under which a stationary density 𝜓∗ exists.
With additional conditions, we can also get a unique stationary density (𝜓 ∈ 𝒟 and 𝜓 = 𝜓𝑃 ⟹ 𝜓 = 𝜓∗), and also
global convergence in the sense that

∀ 𝜓 ∈ 𝒟, 𝜓𝑃 𝑡 → 𝜓∗ as 𝑡 → ∞ (2.16)

This combination of existence, uniqueness and global convergence in the sense of (2.16) is often referred to as global
stability.
Under very similar conditions, we get ergodicity, which means that

1
𝑛

𝑛
∑
𝑡=1

ℎ(𝑋𝑡) → ∫ ℎ(𝑥)𝜓∗(𝑥)𝑑𝑥 as 𝑛 → ∞ (2.17)

for any (measurable) function ℎ∶ 𝑆 → ℝ such that the right-hand side is finite.
Note that the convergence in (2.17) does not depend on the distribution (or value) of 𝑋0.
This is actually very important for simulation — it means we can learn about 𝜓∗ (i.e., approximate the right-hand side of
(2.17) via the left-hand side) without requiring any special knowledge about what to do with 𝑋0.
So what are these conditions we require to get global stability and ergodicity?
In essence, it must be the case that

1. Probability mass does not drift off to the “edges” of the state space.
2. Sufficient “mixing” obtains.

For one such set of conditions see theorem 8.2.14 of EDTC.
In addition

• [SLP89] contains a classic (but slightly outdated) treatment of these topics.
• From the mathematical literature, [LM94] and [MT09] give outstanding in-depth treatments.
• Section 8.1.2 of EDTC provides detailed intuition, and section 8.3 gives additional references.
• EDTC, section 11.3.4 provides a specific treatment for the growth model we considered in this lecture.

32 Chapter 2. Continuous State Markov Chains

https://python.quantecon.org/finite_markov.html#stationary-distributions
http://johnstachurski.net/edtc.html
https://en.wikipedia.org/wiki/Measurable_function
http://johnstachurski.net/edtc.html
http://johnstachurski.net/edtc.html
http://johnstachurski.net/edtc.html

Advanced Quantitative Economics with Python

2.4.2 An Example of Stability

As stated above, the growth model treated here is stable under mild conditions on the primitives.
• See EDTC, section 11.3.4 for more details.

We can see this stability in action — in particular, the convergence in (2.16) — by simulating the path of densities from
various initial conditions.
Here is such a figure.

All sequences are converging towards the same limit, regardless of their initial condition.
The details regarding initial conditions and so on are given in this exercise, where you are asked to replicate the figure.

2.4.3 Computing Stationary Densities

In the preceding figure, each sequence of densities is converging towards the unique stationary density 𝜓∗.
Even from this figure, we can get a fair idea what 𝜓∗ looks like, and where its mass is located.
However, there is a much more direct way to estimate the stationary density, and it involves only a slight modification of
the look-ahead estimator.
Let’s say that we have a model of the form (2.3) that is stable and ergodic.
Let 𝑝 be the corresponding stochastic kernel, as given in (2.7).

2.4. Stability 33

http://johnstachurski.net/edtc.html

Advanced Quantitative Economics with Python

To approximate the stationary density 𝜓∗, we can simply generate a long time-series 𝑋0, 𝑋1, … , 𝑋𝑛 and estimate 𝜓∗ via

𝜓∗
𝑛(𝑦) = 1

𝑛
𝑛

∑
𝑡=1

𝑝(𝑋𝑡, 𝑦) (2.18)

This is essentially the same as the look-ahead estimator (2.13), except that now the observations we generate are a single
time-series, rather than a cross-section.
The justification for (2.18) is that, with probability one as 𝑛 → ∞,

1
𝑛

𝑛
∑
𝑡=1

𝑝(𝑋𝑡, 𝑦) → ∫ 𝑝(𝑥, 𝑦)𝜓∗(𝑥) 𝑑𝑥 = 𝜓∗(𝑦)

where the convergence is by (2.17) and the equality on the right is by (2.15).
The right-hand side is exactly what we want to compute.
On top of this asymptotic result, it turns out that the rate of convergence for the look-ahead estimator is very good.
The first exercise helps illustrate this point.

2.5 Exercises

Exercise 2.5.1
Consider the simple threshold autoregressive model

𝑋𝑡+1 = 𝜃|𝑋𝑡| + (1 − 𝜃2)1/2𝜉𝑡+1 where {𝜉𝑡}
IID∼ 𝑁(0, 1) (2.19)

This is one of those rare nonlinear stochastic models where an analytical expression for the stationary density is available.
In particular, provided that |𝜃| < 1, there is a unique stationary density 𝜓∗ given by

𝜓∗(𝑦) = 2 𝜙(𝑦) Φ [𝜃𝑦
(1 − 𝜃2)1/2] (2.20)

Here 𝜙 is the standard normal density and Φ is the standard normal cdf.
As an exercise, compute the look-ahead estimate of 𝜓∗, as defined in (2.18), and compare it with 𝜓∗ in (2.20) to see
whether they are indeed close for large 𝑛.
In doing so, set 𝜃 = 0.8 and 𝑛 = 500.
The next figure shows the result of such a computation
The additional density (black line) is a nonparametric kernel density estimate, added to the solution for illustration.
(You can try to replicate it before looking at the solution if you want to)
As you can see, the look-ahead estimator is a much tighter fit than the kernel density estimator.
If you repeat the simulation you will see that this is consistently the case.

Solution to Exercise 2.5.1
Look-ahead estimation of a TAR stationary density, where the TAR model is

𝑋𝑡+1 = 𝜃|𝑋𝑡| + (1 − 𝜃2)1/2𝜉𝑡+1

34 Chapter 2. Continuous State Markov Chains

https://en.wikipedia.org/wiki/Kernel_density_estimation

Advanced Quantitative Economics with Python

2.5. Exercises 35

Advanced Quantitative Economics with Python

and 𝜉𝑡 ∼ 𝑁(0, 1).
Try running at n = 10, 100, 1000, 10000 to get an idea of the speed of convergence

ϕ = norm()
n = 500
θ = 0.8
== Frequently used constants ==
d = np.sqrt(1 - θ**2)
δ = θ / d

def ψ_star(y):
"True stationary density of the TAR Model"
return 2 * norm.pdf(y) * norm.cdf(δ * y)

def p(x, y):
"Stochastic kernel for the TAR model."
return ϕ.pdf((y - θ * np.abs(x)) / d) / d

Z = ϕ.rvs(n)
X = np.empty(n)
for t in range(n-1):

X[t+1] = θ * np.abs(X[t]) + d * Z[t]
ψ_est = LAE(p, X)
k_est = gaussian_kde(X)

fig, ax = plt.subplots(figsize=(10, 7))
ys = np.linspace(-3, 3, 200)
ax.plot(ys, ψ_star(ys), 'b-', lw=2, alpha=0.6, label='true')
ax.plot(ys, ψ_est(ys), 'g-', lw=2, alpha=0.6, label='look-ahead estimate')
ax.plot(ys, k_est(ys), 'k-', lw=2, alpha=0.6, label='kernel based estimate')
ax.legend(loc='upper left')
plt.show()

36 Chapter 2. Continuous State Markov Chains

Advanced Quantitative Economics with Python

Exercise 2.5.2
Replicate the figure on global convergence shown above.
The densities come from the stochastic growth model treated at the start of the lecture.
Begin with the code found above.
Use the same parameters.
For the four initial distributions, use the shifted beta distributions

ψ_0 = beta(5, 5, scale=0.5, loc=i*2)

Solution to Exercise 2.5.2
Here’s one program that does the job

== Define parameters ==
s = 0.2
δ = 0.1
a_σ = 0.4 # A = exp(B) where B ~ N(0, a_σ)
α = 0.4 # f(k) = k**α

ϕ = lognorm(a_σ)

(continues on next page)

2.5. Exercises 37

Advanced Quantitative Economics with Python

(continued from previous page)

def p(x, y):
"Stochastic kernel, vectorized in x. Both x and y must be positive."
d = s * x**α
return ϕ.pdf((y - (1 - δ) * x) / d) / d

n = 1000 # Number of observations at each date t
T = 40 # Compute density of k_t at 1,...,T

fig, axes = plt.subplots(2, 2, figsize=(11, 8))
axes = axes.flatten()
xmax = 6.5

for i in range(4):
ax = axes[i]
ax.set_xlim(0, xmax)
ψ_0 = beta(5, 5, scale=0.5, loc=i*2) # Initial distribution

== Generate matrix s.t. t-th column is n observations of k_t ==
k = np.empty((n, T))
A = ϕ.rvs((n, T))
k[:, 0] = ψ_0.rvs(n)
for t in range(T-1):

k[:, t+1] = s * A[:,t] * k[:, t]**α + (1 - δ) * k[:, t]

== Generate T instances of lae using this data, one for each t ==
laes = [LAE(p, k[:, t]) for t in range(T)]

ygrid = np.linspace(0.01, xmax, 150)
greys = [str(g) for g in np.linspace(0.0, 0.8, T)]
greys.reverse()
for ψ, g in zip(laes, greys):

ax.plot(ygrid, ψ(ygrid), color=g, lw=2, alpha=0.6)
ax.set_xlabel('capital')

plt.show()

38 Chapter 2. Continuous State Markov Chains

Advanced Quantitative Economics with Python

Exercise 2.5.3
A common way to compare distributions visually is with boxplots.
To illustrate, let’s generate three artificial data sets and compare them with a boxplot.
The three data sets we will use are:

{𝑋1, … , 𝑋𝑛} ∼ 𝐿𝑁(0, 1), {𝑌1, … , 𝑌𝑛} ∼ 𝑁(2, 1), and {𝑍1, … , 𝑍𝑛} ∼ 𝑁(4, 1),

Here is the code and figure:

n = 500
x = np.random.randn(n) # N(0, 1)
x = np.exp(x) # Map x to lognormal
y = np.random.randn(n) + 2.0 # N(2, 1)
z = np.random.randn(n) + 4.0 # N(4, 1)

fig, ax = plt.subplots(figsize=(10, 6.6))
ax.boxplot([x, y, z])
ax.set_xticks((1, 2, 3))
ax.set_ylim(-2, 14)
ax.set_xticklabels(('X', 'Y', 'Z'), fontsize=16)
plt.show()

2.5. Exercises 39

https://en.wikipedia.org/wiki/Box_plot

Advanced Quantitative Economics with Python

Each data set is represented by a box, where the top and bottom of the box are the third and first quartiles of the data,
and the red line in the center is the median.
The boxes give some indication as to

• the location of probability mass for each sample
• whether the distribution is right-skewed (as is the lognormal distribution), etc

Now let’s put these ideas to use in a simulation.
Consider the threshold autoregressive model in (2.19).
We know that the distribution of 𝑋𝑡 will converge to (2.20) whenever |𝜃| < 1.
Let’s observe this convergence from different initial conditions using boxplots.
In particular, the exercise is to generate J boxplot figures, one for each initial condition 𝑋0 in

initial_conditions = np.linspace(8, 0, J)

For each 𝑋0 in this set,
1. Generate 𝑘 time-series of length 𝑛, each starting at 𝑋0 and obeying (2.19).
2. Create a boxplot representing 𝑛 distributions, where the 𝑡-th distribution shows the 𝑘 observations of 𝑋𝑡.

Use 𝜃 = 0.9, 𝑛 = 20, 𝑘 = 5000, 𝐽 = 8

Solution to Exercise 2.5.3
Here’s a possible solution.

40 Chapter 2. Continuous State Markov Chains

Advanced Quantitative Economics with Python

Note the way we use vectorized code to simulate the 𝑘 time series for one boxplot all at once

n = 20
k = 5000
J = 8

θ = 0.9
d = np.sqrt(1 - θ**2)
δ = θ / d

fig, axes = plt.subplots(J, 1, figsize=(10, 4*J))
initial_conditions = np.linspace(8, 0, J)
X = np.empty((k, n))

for j in range(J):

axes[j].set_ylim(-4, 8)
axes[j].set_title(f'time series from t = {initial_conditions[j]}')

Z = np.random.randn(k, n)
X[:, 0] = initial_conditions[j]
for t in range(1, n):

X[:, t] = θ * np.abs(X[:, t-1]) + d * Z[:, t]
axes[j].boxplot(X)

plt.show()

2.5. Exercises 41

Advanced Quantitative Economics with Python

42 Chapter 2. Continuous State Markov Chains

Advanced Quantitative Economics with Python

2.6 Appendix

Here’s the proof of (2.6).
Let 𝐹𝑈 and 𝐹𝑉 be the cumulative distributions of 𝑈 and 𝑉 respectively.
By the definition of 𝑉 , we have 𝐹𝑉 (𝑣) = ℙ{𝑎 + 𝑏𝑈 ≤ 𝑣} = ℙ{𝑈 ≤ (𝑣 − 𝑎)/𝑏}.
In other words, 𝐹𝑉 (𝑣) = 𝐹𝑈((𝑣 − 𝑎)/𝑏).
Differentiating with respect to 𝑣 yields (2.6).

2.6. Appendix 43

Advanced Quantitative Economics with Python

44 Chapter 2. Continuous State Markov Chains

CHAPTER

THREE

REVERSE ENGINEERING A LA MUTH

Contents

• Reverse Engineering a la Muth

– Friedman (1956) and Muth (1960)

– A Process for Which Adaptive Expectations are Optimal

– Some Useful State-Space Math

– Estimates of Unobservables

– Relationship of Unobservables to Observables

– MA and AR Representations

In addition to what’s in Anaconda, this lecture uses the quantecon library.

!pip install --upgrade quantecon

We’ll also need the following imports:

import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np

from quantecon import Kalman
from quantecon import LinearStateSpace
np.set_printoptions(linewidth=120, precision=4, suppress=True)

This lecture uses the Kalman filter to reformulate John F. Muth’s first paper [Mut60] about rational expectations.
Muth used classical prediction methods to reverse engineer a stochastic process that renders optimal Milton Friedman’s
[Fri56] “adaptive expectations” scheme.

45

Advanced Quantitative Economics with Python

3.1 Friedman (1956) and Muth (1960)

Milton Friedman [Fri56] (1956) posited that consumer’s forecast their future disposable income with the adaptive expec-
tations scheme

𝑦∗
𝑡+𝑖,𝑡 = 𝐾

∞
∑
𝑗=0

(1 − 𝐾)𝑗𝑦𝑡−𝑗 (3.1)

where 𝐾 ∈ (0, 1) and 𝑦∗
𝑡+𝑖,𝑡 is a forecast of future 𝑦 over horizon 𝑖.

Milton Friedman justified the exponential smoothing forecasting scheme (3.1) informally, noting that it seemed a plau-
sible way to use past income to forecast future income.
In his first paper about rational expectations, John F. Muth [Mut60] reverse-engineered a univariate stochastic process
{𝑦𝑡}∞

𝑡=−∞ for which Milton Friedman’s adaptive expectations scheme gives linear least forecasts of 𝑦𝑡+𝑗 for any horizon
𝑖.
Muth sought a setting and a sense in which Friedman’s forecasting scheme is optimal.
That is, Muth asked for what optimal forecasting question is Milton Friedman’s adaptive expectation scheme the answer.
Muth (1960) used classical prediction methods based on lag-operators and 𝑧-transforms to find the answer to his question.
Please see lectures Classical Control with Linear Algebra and Classical Filtering and Prediction with Linear Algebra for an
introduction to the classical tools that Muth used.
Rather than using those classical tools, in this lecture we apply the Kalman filter to express the heart of Muth’s analysis
concisely.
The lecture First Look at Kalman Filter describes the Kalman filter.
We’ll use limiting versions of the Kalman filter corresponding to what are called stationary values in that lecture.

3.2 A Process for Which Adaptive Expectations are Optimal

Suppose that an observable 𝑦𝑡 is the sum of an unobserved random walk 𝑥𝑡 and an IID shock 𝜖2,𝑡:

𝑥𝑡+1 = 𝑥𝑡 + 𝜎𝑥𝜖1,𝑡+1
𝑦𝑡 = 𝑥𝑡 + 𝜎𝑦𝜖2,𝑡

(3.2)

where

[𝜖1,𝑡+1
𝜖2,𝑡

] ∼ 𝒩(0, 𝐼)

is an IID process.

Note: A property of the state-space representation (3.2) is that in general neither 𝜖1,𝑡 nor 𝜖2,𝑡 is in the space spanned by
square-summable linear combinations of 𝑦𝑡, 𝑦𝑡−1, ….

In general [𝜖1,𝑡
𝜖2𝑡

] has more information about future 𝑦𝑡+𝑗’s than is contained in 𝑦𝑡, 𝑦𝑡−1, ….

We can use the asymptotic or stationary values of the Kalman gain and the one-step-ahead conditional state covariance
matrix to compute a time-invariant innovations representation

̂𝑥𝑡+1 = ̂𝑥𝑡 + 𝐾𝑎𝑡
𝑦𝑡 = ̂𝑥𝑡 + 𝑎𝑡

(3.3)

46 Chapter 3. Reverse Engineering a la Muth

https://python-intro.quantecon.org/kalman.html

Advanced Quantitative Economics with Python

where ̂𝑥𝑡 = 𝐸[𝑥𝑡|𝑦𝑡−1, 𝑦𝑡−2, …] and 𝑎𝑡 = 𝑦𝑡 − 𝐸[𝑦𝑡|𝑦𝑡−1, 𝑦𝑡−2, …].

Note: A key property about an innovations representation is that 𝑎𝑡 is in the space spanned by square summable linear
combinations of 𝑦𝑡, 𝑦𝑡−1, ….

For more ramifications of this property, see the lectures Shock Non-Invertibility and Recursive Models of Dynamic Linear
Economies.
Later we’ll stack these state-space systems (3.2) and (3.3) to display some classic findings of Muth.
But first, let’s create an instance of the state-space system (3.2) then apply the quantecon Kalman class, then uses it to
construct the associated “innovations representation”

Make some parameter choices
sigx/sigy are state noise std err and measurement noise std err
μ_0, σ_x, σ_y = 10, 1, 5

Create a LinearStateSpace object
A, C, G, H = 1, σ_x, 1, σ_y
ss = LinearStateSpace(A, C, G, H, mu_0=μ_0)

Set prior and initialize the Kalman type
x_hat_0, Σ_0 = 10, 1
kmuth = Kalman(ss, x_hat_0, Σ_0)

Computes stationary values which we need for the innovation
representation
S1, K1 = kmuth.stationary_values()

Extract scalars from nested arrays
S1, K1 = S1.item(), K1.item()

Form innovation representation state-space
Ak, Ck, Gk, Hk = A, K1, G, 1

ssk = LinearStateSpace(Ak, Ck, Gk, Hk, mu_0=x_hat_0)

3.3 Some Useful State-Space Math

Now we want to map the time-invariant innovations representation (3.3) and the original state-space system (3.2) into a
convenient form for deducing the impulse responses from the original shocks to the 𝑥𝑡 and ̂𝑥𝑡.
Putting both of these representations into a single state-space system is yet another application of the insight that “finding
the state is an art”.
We’ll define a state vector and appropriate state-space matrices that allow us to represent both systems in one fell swoop.
Note that

𝑎𝑡 = 𝑥𝑡 + 𝜎𝑦𝜖2,𝑡 − ̂𝑥𝑡

so that

̂𝑥𝑡+1 = ̂𝑥𝑡 + 𝐾(𝑥𝑡 + 𝜎𝑦𝜖2,𝑡 − ̂𝑥𝑡)
= (1 − 𝐾) ̂𝑥𝑡 + 𝐾𝑥𝑡 + 𝐾𝜎𝑦𝜖2,𝑡

3.3. Some Useful State-Space Math 47

Advanced Quantitative Economics with Python

The stacked system

⎡⎢
⎣

𝑥𝑡+1
̂𝑥𝑡+1

𝜖2,𝑡+1

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
𝐾 (1 − 𝐾) 𝐾𝜎𝑦
0 0 0

⎤⎥
⎦

⎡⎢
⎣

𝑥𝑡
̂𝑥𝑡

𝜖2,𝑡

⎤⎥
⎦

+ ⎡⎢
⎣

𝜎𝑥 0
0 0
0 1

⎤⎥
⎦

[𝜖1,𝑡+1
𝜖2,𝑡+1

]

[𝑦𝑡
𝑎𝑡

] = [1 0 𝜎𝑦
1 −1 𝜎𝑦

] ⎡⎢
⎣

𝑥𝑡
̂𝑥𝑡

𝜖2,𝑡

⎤⎥
⎦

is a state-space system that tells us how the shocks [𝜖1,𝑡+1
𝜖2,𝑡+1

] affect states ̂𝑥𝑡+1, 𝑥𝑡, the observable 𝑦𝑡, and the innovation
𝑎𝑡.
With this tool at our disposal, let’s form the composite system and simulate it

Create grand state-space for y_t, a_t as observed vars -- Use
stacking trick above
Af = np.array([[1, 0, 0],

[K1, 1 - K1, K1 * σ_y],
[0, 0, 0]])

Cf = np.array([[σ_x, 0],
[0, K1 * σ_y],
[0, 1]])

Gf = np.array([[1, 0, σ_y],
[1, -1, σ_y]])

μ_true, μ_prior = 10, 10
μ_f = np.array([μ_true, μ_prior, 0]).reshape(3, 1)

Create the state-space
ssf = LinearStateSpace(Af, Cf, Gf, mu_0=μ_f)

Draw observations of y from the state-space model
N = 50
xf, yf = ssf.simulate(N)

print(f"Kalman gain = {K1}")
print(f"Conditional variance = {S1}")

Kalman gain = 0.1809975124224177
Conditional variance = 5.524937810560442

Now that we have simulated our joint system, we have 𝑥𝑡, ̂𝑥𝑡, and 𝑦𝑡.
We can now investigate how these variables are related by plotting some key objects.

3.4 Estimates of Unobservables

First, let’s plot the hidden state 𝑥𝑡 and the filtered version ̂𝑥𝑡 that is linear-least squares projection of 𝑥𝑡 on the history
𝑦𝑡−1, 𝑦𝑡−2, …

fig, ax = plt.subplots()
ax.plot(xf[0, :], label="x_t")
ax.plot(xf[1, :], label="Filtered x_t")

(continues on next page)

48 Chapter 3. Reverse Engineering a la Muth

Advanced Quantitative Economics with Python

(continued from previous page)

ax.legend()
ax.set_xlabel("Time")
ax.set_title(r"x vs \hat{x}")
plt.show()

Note how 𝑥𝑡 and ̂𝑥𝑡 differ.
For Friedman, ̂𝑥𝑡 and not 𝑥𝑡 is the consumer’s idea about her/his permanent income.

3.5 Relationship of Unobservables to Observables

Now let’s plot 𝑥𝑡 and 𝑦𝑡.
Recall that 𝑦𝑡 is just 𝑥𝑡 plus white noise

fig, ax = plt.subplots()
ax.plot(yf[0, :], label="y")
ax.plot(xf[0, :], label="x")
ax.legend()
ax.set_title(r"x and y")
ax.set_xlabel("Time")
plt.show()

3.5. Relationship of Unobservables to Observables 49

Advanced Quantitative Economics with Python

We see above that 𝑦 seems to look like white noise around the values of 𝑥.

3.5.1 Innovations

Recall that we wrote down the innovation representation that depended on 𝑎𝑡. We now plot the innovations {𝑎𝑡}:

fig, ax = plt.subplots()
ax.plot(yf[1, :], label="a")
ax.legend()
ax.set_title(r"Innovation a_t")
ax.set_xlabel("Time")
plt.show()

50 Chapter 3. Reverse Engineering a la Muth

Advanced Quantitative Economics with Python

3.6 MA and AR Representations

Now we shall extract from the Kalman instance kmuth coefficients of
• a fundamental moving average representation that represents 𝑦𝑡 as a one-sided moving sum of current and past 𝑎𝑡s
that are square summable linear combinations of 𝑦𝑡, 𝑦𝑡−1, ….

• a univariate autoregression representation that depicts the coefficients in a linear least square projection of 𝑦𝑡 on the
semi-infinite history 𝑦𝑡−1, 𝑦𝑡−2, ….

Then we’ll plot each of them

Kalman Methods for MA and VAR
coefs_ma = kmuth.stationary_coefficients(5, "ma")
coefs_var = kmuth.stationary_coefficients(5, "var")

Coefficients come in a list of arrays, but we
want to plot them and so need to stack into an array
coefs_ma_array = np.vstack(coefs_ma)
coefs_var_array = np.vstack(coefs_var)

fig, ax = plt.subplots(2)
ax[0].plot(coefs_ma_array, label="MA")
ax[0].legend()
ax[1].plot(coefs_var_array, label="VAR")

(continues on next page)

3.6. MA and AR Representations 51

Advanced Quantitative Economics with Python

(continued from previous page)

ax[1].legend()

plt.show()

The moving average coefficients in the top panel show tell-tale signs of 𝑦𝑡 being a process whose first difference is a
first-order autoregression.
The autoregressive coefficients decline geometrically with decay rate (1 − 𝐾).
These are exactly the target outcomes that Muth (1960) aimed to reverse engineer

print(f'decay parameter 1 - K1 = {1 - K1}')

decay parameter 1 - K1 = 0.8190024875775823

52 Chapter 3. Reverse Engineering a la Muth

CHAPTER

FOUR

DISCRETE STATE DYNAMIC PROGRAMMING

Contents

• Discrete State Dynamic Programming

– Overview

– Discrete DPs

– Solving Discrete DPs

– Example: A Growth Model

– Exercises

– Solutions

– Appendix: Algorithms

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

4.1 Overview

In this lecture we discuss a family of dynamic programming problems with the following features:
1. a discrete state space and discrete choices (actions)
2. an infinite horizon
3. discounted rewards
4. Markov state transitions

We call such problems discrete dynamic programs or discrete DPs.
Discrete DPs are the workhorses in much of modern quantitative economics, including

• monetary economics
• search and labor economics
• household savings and consumption theory
• investment theory

53

Advanced Quantitative Economics with Python

• asset pricing
• industrial organization, etc.

When a given model is not inherently discrete, it is common to replace it with a discretized version in order to use discrete
DP techniques.
This lecture covers

• the theory of dynamic programming in a discrete setting, plus examples and applications
• a powerful set of routines for solving discrete DPs from the QuantEcon code library

Let’s start with some imports:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import quantecon as qe
import scipy.sparse as sparse
from quantecon import compute_fixed_point
from quantecon.markov import DiscreteDP

4.1.1 How to Read this Lecture

We use dynamic programming many applied lectures, such as
• The shortest path lecture
• The McCall search model lecture

The objective of this lecture is to provide a more systematic and theoretical treatment, including algorithms and imple-
mentation while focusing on the discrete case.

4.1.2 Code

Among other things, it offers
• a flexible, well-designed interface
• multiple solution methods, including value function and policy function iteration
• high-speed operations via carefully optimized JIT-compiled functions
• the ability to scale to large problems by minimizing vectorized operators and allowing operations on sparse matrices

JIT compilation relies on Numba, which should work seamlessly if you are using Anaconda as suggested.

4.1.3 References

For background reading on dynamic programming and additional applications, see, for example,
• [LS18]
• [HLL96], section 3.5
• [Put05]
• [SLP89]
• [Rus96]

54 Chapter 4. Discrete State Dynamic Programming

http://quantecon.org/quantecon-py
https://python-intro.quantecon.org/short_path.html
https://python-intro.quantecon.org/mccall_model.html
http://numba.pydata.org/
https://www.anaconda.com/download/
https://python-programming.quantecon.org/getting_started.html

Advanced Quantitative Economics with Python

• [MF02]
• EDTC, chapter 5

4.2 Discrete DPs

Loosely speaking, a discrete DP is a maximization problem with an objective function of the form

𝔼
∞

∑
𝑡=0

𝛽𝑡𝑟(𝑠𝑡, 𝑎𝑡) (4.1)

where
• 𝑠𝑡 is the state variable
• 𝑎𝑡 is the action
• 𝛽 is a discount factor
• 𝑟(𝑠𝑡, 𝑎𝑡) is interpreted as a current reward when the state is 𝑠𝑡 and the action chosen is 𝑎𝑡

Each pair (𝑠𝑡, 𝑎𝑡) pins down transition probabilities 𝑄(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1) for the next period state 𝑠𝑡+1.
Thus, actions influence not only current rewards but also the future time path of the state.
The essence of dynamic programming problems is to trade off current rewards vs favorable positioning of the future state
(modulo randomness).
Examples:

• consuming today vs saving and accumulating assets
• accepting a job offer today vs seeking a better one in the future
• exercising an option now vs waiting

4.2.1 Policies

The most fruitful way to think about solutions to discrete DP problems is to compare policies.
In general, a policy is a randomized map from past actions and states to current action.
In the setting formalized below, it suffices to consider so-called stationary Markov policies, which consider only the current
state.
In particular, a stationary Markov policy is a map 𝜎 from states to actions

• 𝑎𝑡 = 𝜎(𝑠𝑡) indicates that 𝑎𝑡 is the action to be taken in state 𝑠𝑡

It is known that, for any arbitrary policy, there exists a stationary Markov policy that dominates it at least weakly.
• See section 5.5 of [Put05] for discussion and proofs.

In what follows, stationary Markov policies are referred to simply as policies.
The aim is to find an optimal policy, in the sense of one that maximizes (4.1).
Let’s now step through these ideas more carefully.

4.2. Discrete DPs 55

http://johnstachurski.net/edtc.html

Advanced Quantitative Economics with Python

4.2.2 Formal Definition

Formally, a discrete dynamic program consists of the following components:
1. A finite set of states 𝑆 = {0, … , 𝑛 − 1}.
2. A finite set of feasible actions 𝐴(𝑠) for each state 𝑠 ∈ 𝑆, and a corresponding set of feasible state-action pairs.

SA ∶= {(𝑠, 𝑎) ∣ 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠)}

3. A reward function 𝑟 ∶ SA → ℝ.
4. A transition probability function 𝑄∶ SA → Δ(𝑆), where Δ(𝑆) is the set of probability distributions over 𝑆.
5. A discount factor 𝛽 ∈ [0, 1).

We also use the notation 𝐴 ∶= ⋃𝑠∈𝑆 𝐴(𝑠) = {0, … , 𝑚 − 1} and call this set the action space.
A policy is a function 𝜎 ∶ 𝑆 → 𝐴.
A policy is called feasible if it satisfies 𝜎(𝑠) ∈ 𝐴(𝑠) for all 𝑠 ∈ 𝑆.
Denote the set of all feasible policies by Σ.
If a decision-maker uses a policy 𝜎 ∈ Σ, then

• the current reward at time 𝑡 is 𝑟(𝑠𝑡, 𝜎(𝑠𝑡))
• the probability that 𝑠𝑡+1 = 𝑠′ is 𝑄(𝑠𝑡, 𝜎(𝑠𝑡), 𝑠′)

For each 𝜎 ∈ Σ, define
• 𝑟𝜎 by 𝑟𝜎(𝑠) ∶= 𝑟(𝑠, 𝜎(𝑠)))
• 𝑄𝜎 by 𝑄𝜎(𝑠, 𝑠′) ∶= 𝑄(𝑠, 𝜎(𝑠), 𝑠′)

Notice that 𝑄𝜎 is a stochastic matrix on 𝑆.
It gives transition probabilities of the controlled chain when we follow policy 𝜎.
If we think of 𝑟𝜎 as a column vector, then so is 𝑄𝑡

𝜎𝑟𝜎, and the 𝑠-th row of the latter has the interpretation

(𝑄𝑡
𝜎𝑟𝜎)(𝑠) = 𝔼[𝑟(𝑠𝑡, 𝜎(𝑠𝑡)) ∣ 𝑠0 = 𝑠] when {𝑠𝑡} ∼ 𝑄𝜎 (4.2)

Comments
• {𝑠𝑡} ∼ 𝑄𝜎 means that the state is generated by stochastic matrix 𝑄𝜎.
• See this discussion on computing expectations of Markov chains for an explanation of the expression in (4.2).

Notice that we’re not really distinguishing between functions from 𝑆 to ℝ and vectors in ℝ𝑛.
This is natural because they are in one to one correspondence.

4.2.3 Value and Optimality

Let 𝑣𝜎(𝑠) denote the discounted sum of expected reward flows from policy 𝜎 when the initial state is 𝑠.
To calculate this quantity we pass the expectation through the sum in (4.1) and use (4.2) to get

𝑣𝜎(𝑠) =
∞

∑
𝑡=0

𝛽𝑡(𝑄𝑡
𝜎𝑟𝜎)(𝑠) (𝑠 ∈ 𝑆)

This function is called the policy value function for the policy 𝜎.

56 Chapter 4. Discrete State Dynamic Programming

https://python.quantecon.org/finite_markov.html#stochastic-matrices
https://python.quantecon.org/finite_markov.html#multiple-step-transition-probabilities

Advanced Quantitative Economics with Python

The optimal value function, or simply value function, is the function 𝑣∗ ∶ 𝑆 → ℝ defined by
𝑣∗(𝑠) = max

𝜎∈Σ
𝑣𝜎(𝑠) (𝑠 ∈ 𝑆)

(We can use max rather than sup here because the domain is a finite set)
A policy 𝜎 ∈ Σ is called optimal if 𝑣𝜎(𝑠) = 𝑣∗(𝑠) for all 𝑠 ∈ 𝑆.
Given any 𝑤∶ 𝑆 → ℝ, a policy 𝜎 ∈ Σ is called 𝑤-greedy if

𝜎(𝑠) ∈ argmax
𝑎∈𝐴(𝑠)

{𝑟(𝑠, 𝑎) + 𝛽 ∑
𝑠′∈𝑆

𝑤(𝑠′)𝑄(𝑠, 𝑎, 𝑠′)} (𝑠 ∈ 𝑆)

As discussed in detail below, optimal policies are precisely those that are 𝑣∗-greedy.

4.2.4 Two Operators

It is useful to define the following operators:
• The Bellman operator 𝑇 ∶ ℝ𝑆 → ℝ𝑆 is defined by

(𝑇 𝑣)(𝑠) = max
𝑎∈𝐴(𝑠)

{𝑟(𝑠, 𝑎) + 𝛽 ∑
𝑠′∈𝑆

𝑣(𝑠′)𝑄(𝑠, 𝑎, 𝑠′)} (𝑠 ∈ 𝑆)

• For any policy function 𝜎 ∈ Σ, the operator 𝑇𝜎 ∶ ℝ𝑆 → ℝ𝑆 is defined by

(𝑇𝜎𝑣)(𝑠) = 𝑟(𝑠, 𝜎(𝑠)) + 𝛽 ∑
𝑠′∈𝑆

𝑣(𝑠′)𝑄(𝑠, 𝜎(𝑠), 𝑠′) (𝑠 ∈ 𝑆)

This can be written more succinctly in operator notation as

𝑇𝜎𝑣 = 𝑟𝜎 + 𝛽𝑄𝜎𝑣

The two operators are both monotone
• 𝑣 ≤ 𝑤 implies 𝑇 𝑣 ≤ 𝑇 𝑤 pointwise on 𝑆, and similarly for 𝑇𝜎

They are also contraction mappings with modulus 𝛽
• ‖𝑇 𝑣 − 𝑇 𝑤‖ ≤ 𝛽‖𝑣 − 𝑤‖ and similarly for 𝑇𝜎, where ‖⋅‖ is the max norm

For any policy 𝜎, its value 𝑣𝜎 is the unique fixed point of 𝑇𝜎.
For proofs of these results and those in the next section, see, for example, EDTC, chapter 10.

4.2.5 The Bellman Equation and the Principle of Optimality

The main principle of the theory of dynamic programming is that
• the optimal value function 𝑣∗ is a unique solution to the Bellman equation

𝑣(𝑠) = max
𝑎∈𝐴(𝑠)

{𝑟(𝑠, 𝑎) + 𝛽 ∑
𝑠′∈𝑆

𝑣(𝑠′)𝑄(𝑠, 𝑎, 𝑠′)} (𝑠 ∈ 𝑆)

or in other words, 𝑣∗ is the unique fixed point of 𝑇 , and
• 𝜎∗ is an optimal policy function if and only if it is 𝑣∗-greedy

By the definition of greedy policies given above, this means that

𝜎∗(𝑠) ∈ argmax
𝑎∈𝐴(𝑠)

{𝑟(𝑠, 𝑎) + 𝛽 ∑
𝑠′∈𝑆

𝑣∗(𝑠′)𝑄(𝑠, 𝑎, 𝑠′)} (𝑠 ∈ 𝑆)

4.2. Discrete DPs 57

http://johnstachurski.net/edtc.html

Advanced Quantitative Economics with Python

4.3 Solving Discrete DPs

Now that the theory has been set out, let’s turn to solution methods.
The code for solving discrete DPs is available in ddp.py from the QuantEcon.py code library.
It implements the three most important solution methods for discrete dynamic programs, namely

• value function iteration
• policy function iteration
• modified policy function iteration

Let’s briefly review these algorithms and their implementation.

4.3.1 Value Function Iteration

Perhaps the most familiar method for solving all manner of dynamic programs is value function iteration.
This algorithm uses the fact that the Bellman operator 𝑇 is a contraction mapping with fixed point 𝑣∗.
Hence, iterative application of 𝑇 to any initial function 𝑣0 ∶ 𝑆 → ℝ converges to 𝑣∗.
The details of the algorithm can be found in the appendix.

4.3.2 Policy Function Iteration

This routine, also known as Howard’s policy improvement algorithm, exploits more closely the particular structure of a
discrete DP problem.
Each iteration consists of

1. A policy evaluation step that computes the value 𝑣𝜎 of a policy 𝜎 by solving the linear equation 𝑣 = 𝑇𝜎𝑣.
2. A policy improvement step that computes a 𝑣𝜎-greedy policy.

In the current setting, policy iteration computes an exact optimal policy in finitely many iterations.
• See theorem 10.2.6 of EDTC for a proof.

The details of the algorithm can be found in the appendix.

4.3.3 Modified Policy Function Iteration

Modified policy iteration replaces the policy evaluation step in policy iteration with “partial policy evaluation”.
The latter computes an approximation to the value of a policy 𝜎 by iterating 𝑇𝜎 for a specified number of times.
This approach can be useful when the state space is very large and the linear system in the policy evaluation step of policy
iteration is correspondingly difficult to solve.
The details of the algorithm can be found in the appendix.

58 Chapter 4. Discrete State Dynamic Programming

https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/markov/ddp.py
http://quantecon.org/quantecon-py
http://johnstachurski.net/edtc.html

Advanced Quantitative Economics with Python

4.4 Example: A Growth Model

Let’s consider a simple consumption-saving model.
A single household either consumes or stores its own output of a single consumption good.
The household starts each period with current stock 𝑠.
Next, the household chooses a quantity 𝑎 to store and consumes 𝑐 = 𝑠 − 𝑎

• Storage is limited by a global upper bound 𝑀 .
• Flow utility is 𝑢(𝑐) = 𝑐𝛼.

Output is drawn from a discrete uniform distribution on {0, … , 𝐵}.
The next period stock is therefore

𝑠′ = 𝑎 + 𝑈 where 𝑈 ∼ 𝑈[0, … , 𝐵]

The discount factor is 𝛽 ∈ [0, 1).

4.4.1 Discrete DP Representation

We want to represent this model in the format of a discrete dynamic program.
To this end, we take

• the state variable to be the stock 𝑠
• the state space to be 𝑆 = {0, … , 𝑀 + 𝐵}

– hence 𝑛 = 𝑀 + 𝐵 + 1
• the action to be the storage quantity 𝑎
• the set of feasible actions at 𝑠 to be 𝐴(𝑠) = {0, … ,min{𝑠, 𝑀}}

– hence 𝐴 = {0, … , 𝑀} and 𝑚 = 𝑀 + 1
• the reward function to be 𝑟(𝑠, 𝑎) = 𝑢(𝑠 − 𝑎)
• the transition probabilities to be

𝑄(𝑠, 𝑎, 𝑠′) ∶= {
1

𝐵+1 if 𝑎 ≤ 𝑠′ ≤ 𝑎 + 𝐵
0 otherwise

(4.3)

4.4.2 Defining a DiscreteDP Instance

This information will be used to create an instance of DiscreteDP by passing the following information
1. An 𝑛 × 𝑚 reward array 𝑅.
2. An 𝑛 × 𝑚 × 𝑛 transition probability array 𝑄.
3. A discount factor 𝛽.

For 𝑅 we set 𝑅[𝑠, 𝑎] = 𝑢(𝑠 − 𝑎) if 𝑎 ≤ 𝑠 and −∞ otherwise.
For 𝑄 we follow the rule in (4.3).

Note:

4.4. Example: A Growth Model 59

Advanced Quantitative Economics with Python

• The feasibility constraint is embedded into 𝑅 by setting 𝑅[𝑠, 𝑎] = −∞ for 𝑎 ∉ 𝐴(𝑠).
• Probability distributions for (𝑠, 𝑎) with 𝑎 ∉ 𝐴(𝑠) can be arbitrary.

The following code sets up these objects for us

class SimpleOG:

def __init__(self, B=10, M=5, α=0.5, β=0.9):
"""
Set up R, Q and β, the three elements that define an instance of
the DiscreteDP class.
"""

self.B, self.M, self.α, self.β = B, M, α, β
self.n = B + M + 1
self.m = M + 1

self.R = np.empty((self.n, self.m))
self.Q = np.zeros((self.n, self.m, self.n))

self.populate_Q()
self.populate_R()

def u(self, c):
return c**self.α

def populate_R(self):
"""
Populate the R matrix, with R[s, a] = -np.inf for infeasible
state-action pairs.
"""
for s in range(self.n):

for a in range(self.m):
self.R[s, a] = self.u(s - a) if a <= s else -np.inf

def populate_Q(self):
"""
Populate the Q matrix by setting

Q[s, a, s'] = 1 / (1 + B) if a <= s' <= a + B

and zero otherwise.
"""

for a in range(self.m):
self.Q[:, a, a:(a + self.B + 1)] = 1.0 / (self.B + 1)

Let’s run this code and create an instance of SimpleOG.

g = SimpleOG() # Use default parameters

Instances of DiscreteDP are created using the signature DiscreteDP(R, Q, β).
Let’s create an instance using the objects stored in g

60 Chapter 4. Discrete State Dynamic Programming

Advanced Quantitative Economics with Python

ddp = qe.markov.DiscreteDP(g.R, g.Q, g.β)

Now that we have an instance ddp of DiscreteDP we can solve it as follows

results = ddp.solve(method='policy_iteration')

Let’s see what we’ve got here

dir(results)

['max_iter', 'mc', 'method', 'num_iter', 'sigma', 'v']

(In IPython version 4.0 and above you can also type results. and hit the tab key)
The most important attributes are v, the value function, and σ, the optimal policy

results.v

array([19.01740222, 20.01740222, 20.43161578, 20.74945302, 21.04078099,
21.30873018, 21.54479816, 21.76928181, 21.98270358, 22.18824323,
22.3845048 , 22.57807736, 22.76109127, 22.94376708, 23.11533996,
23.27761762])

results.sigma

array([0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 5])

Since we’ve used policy iteration, these results will be exact unless we hit the iteration bound max_iter.
Let’s make sure this didn’t happen

results.max_iter

250

results.num_iter

3

Another interesting object is results.mc, which is the controlled chain defined by𝑄𝜎∗ , where 𝜎∗ is the optimal policy.
In other words, it gives the dynamics of the state when the agent follows the optimal policy.
Since this object is an instance of MarkovChain from QuantEcon.py (see this lecture for more discussion), we can easily
simulate it, compute its stationary distribution and so on.

results.mc.stationary_distributions

array([[0.01732187, 0.04121063, 0.05773956, 0.07426848, 0.08095823,
0.09090909, 0.09090909, 0.09090909, 0.09090909, 0.09090909,

(continues on next page)

4.4. Example: A Growth Model 61

http://quantecon.org/quantecon-py
https://python-intro.quantecon.org/finite_markov.html

Advanced Quantitative Economics with Python

(continued from previous page)

0.09090909, 0.07358722, 0.04969846, 0.03316953, 0.01664061,
0.00995086]])

Here’s the same information in a bar graph

What happens if the agent is more patient?

ddp = qe.markov.DiscreteDP(g.R, g.Q, 0.99) # Increase β to 0.99
results = ddp.solve(method='policy_iteration')
results.mc.stationary_distributions

array([[0.00546913, 0.02321342, 0.03147788, 0.04800681, 0.05627127,
0.09090909, 0.09090909, 0.09090909, 0.09090909, 0.09090909,
0.09090909, 0.08543996, 0.06769567, 0.05943121, 0.04290228,
0.03463782]])

If we look at the bar graph we can see the rightward shift in probability mass

4.4.3 State-Action Pair Formulation

The DiscreteDP class in fact, provides a second interface to set up an instance.
One of the advantages of this alternative set up is that it permits the use of a sparse matrix for Q.
(An example of using sparse matrices is given in the exercises below)
The call signature of the second formulation is DiscreteDP(R, Q, β, s_indices, a_indices) where

• s_indices and a_indices are arrays of equal length L enumerating all feasible state-action pairs
• R is an array of length L giving corresponding rewards
• Q is an L x n transition probability array

62 Chapter 4. Discrete State Dynamic Programming

Advanced Quantitative Economics with Python

Here’s how we could set up these objects for the preceding example

B, M, α, β = 10, 5, 0.5, 0.9
n = B + M + 1
m = M + 1

def u(c):
return c**α

s_indices = []
a_indices = []
Q = []
R = []
b = 1.0 / (B + 1)

for s in range(n):
for a in range(min(M, s) + 1): # All feasible a at this s

s_indices.append(s)
a_indices.append(a)
q = np.zeros(n)
q[a:(a + B + 1)] = b # b on these values, otherwise 0
Q.append(q)
R.append(u(s - a))

ddp = qe.markov.DiscreteDP(R, Q, β, s_indices, a_indices)

For larger problems, you might need to write this code more efficiently by vectorizing or using Numba.

4.4. Example: A Growth Model 63

Advanced Quantitative Economics with Python

4.5 Exercises

In the stochastic optimal growth lecture from our introductory lecture series, we solve a benchmark model that has an
analytical solution.
The exercise is to replicate this solution using DiscreteDP.

4.6 Solutions

4.6.1 Setup

Details of the model can be found in the lecture on optimal growth.
We let 𝑓(𝑘) = 𝑘𝛼 with 𝛼 = 0.65, 𝑢(𝑐) = log 𝑐, and 𝛽 = 0.95

α = 0.65
f = lambda k: k**α
u = np.log
β = 0.95

Here we want to solve a finite state version of the continuous state model above.
We discretize the state space into a grid of size grid_size=500, from 10−6 to grid_max=2

grid_max = 2
grid_size = 500
grid = np.linspace(1e-6, grid_max, grid_size)

We choose the action to be the amount of capital to save for the next period (the state is the capital stock at the beginning
of the period).
Thus the state indices and the action indices are both 0, …, grid_size-1.
Action (indexed by) a is feasible at state (indexed by) s if and only if grid[a] < f([grid[s]) (zero consumption
is not allowed because of the log utility).
Thus the Bellman equation is:

𝑣(𝑘) = max
0<𝑘′<𝑓(𝑘)

𝑢(𝑓(𝑘) − 𝑘′) + 𝛽𝑣(𝑘′),

where 𝑘′ is the capital stock in the next period.
The transition probability array Q will be highly sparse (in fact it is degenerate as the model is deterministic), so we
formulate the problem with state-action pairs, to represent Q in scipy sparse matrix format.
We first construct indices for state-action pairs:

Consumption matrix, with nonpositive consumption included
C = f(grid).reshape(grid_size, 1) - grid.reshape(1, grid_size)

State-action indices
s_indices, a_indices = np.where(C > 0)

Number of state-action pairs
L = len(s_indices)

(continues on next page)

64 Chapter 4. Discrete State Dynamic Programming

https://python-intro.quantecon.org/optgrowth.html
https://python-intro.quantecon.org/optgrowth.html
http://docs.scipy.org/doc/scipy/reference/sparse.html

Advanced Quantitative Economics with Python

(continued from previous page)

print(L)
print(s_indices)
print(a_indices)

118841
[0 1 1 ... 499 499 499]
[0 0 1 ... 389 390 391]

Reward vector R (of length L):

R = u(C[s_indices, a_indices])

(Degenerate) transition probability matrix Q (of shape (L, grid_size)), where we choose the scipy.sparse.lil_matrix
format, while any format will do (internally it will be converted to the csr format):

Q = sparse.lil_matrix((L, grid_size))
Q[np.arange(L), a_indices] = 1

(If you are familiar with the data structure of scipy.sparse.csr_matrix, the following is the most efficient way to create the
Q matrix in the current case)

data = np.ones(L)
indptr = np.arange(L+1)
Q = sparse.csr_matrix((data, a_indices, indptr), shape=(L, grid_size))

Discrete growth model:

ddp = DiscreteDP(R, Q, β, s_indices, a_indices)

Notes
Here we intensively vectorized the operations on arrays to simplify the code.
As noted, however, vectorization is memory consumptive, and it can be prohibitively so for grids with large size.

4.6.2 Solving the Model

Solve the dynamic optimization problem:

res = ddp.solve(method='policy_iteration')
v, σ, num_iter = res.v, res.sigma, res.num_iter
num_iter

10

Note that sigma contains the indices of the optimal capital stocks to save for the next period. The following translates
sigma to the corresponding consumption vector.

Optimal consumption in the discrete version
c = f(grid) - grid[σ]

(continues on next page)

4.6. Solutions 65

http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.lil_matrix.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.csr_matrix.html
https://python-programming.quantecon.org/need_for_speed.html#numba-p-c-vectorization

Advanced Quantitative Economics with Python

(continued from previous page)

Exact solution of the continuous version
ab = α * β
c1 = (np.log(1 - ab) + np.log(ab) * ab / (1 - ab)) / (1 - β)
c2 = α / (1 - ab)

def v_star(k):
return c1 + c2 * np.log(k)

def c_star(k):
return (1 - ab) * k**α

Let us compare the solution of the discrete model with that of the original continuous model

fig, ax = plt.subplots(1, 2, figsize=(14, 4))
ax[0].set_ylim(-40, -32)
ax[0].set_xlim(grid[0], grid[-1])
ax[1].set_xlim(grid[0], grid[-1])

lb0 = 'discrete value function'
ax[0].plot(grid, v, lw=2, alpha=0.6, label=lb0)

lb0 = 'continuous value function'
ax[0].plot(grid, v_star(grid), 'k-', lw=1.5, alpha=0.8, label=lb0)
ax[0].legend(loc='upper left')

lb1 = 'discrete optimal consumption'
ax[1].plot(grid, c, 'b-', lw=2, alpha=0.6, label=lb1)

lb1 = 'continuous optimal consumption'
ax[1].plot(grid, c_star(grid), 'k-', lw=1.5, alpha=0.8, label=lb1)
ax[1].legend(loc='upper left')
plt.show()

The outcomes appear very close to those of the continuous version.
Except for the “boundary” point, the value functions are very close:

np.abs(v - v_star(grid)).max()

121.49819147053378

66 Chapter 4. Discrete State Dynamic Programming

Advanced Quantitative Economics with Python

np.abs(v - v_star(grid))[1:].max()

0.012681735127500815

The optimal consumption functions are close as well:

np.abs(c - c_star(grid)).max()

0.003826523100010082

In fact, the optimal consumption obtained in the discrete version is not really monotone, but the decrements are quite
small:

diff = np.diff(c)
(diff >= 0).all()

False

dec_ind = np.where(diff < 0)[0]
len(dec_ind)

174

np.abs(diff[dec_ind]).max()

0.001961853339766839

The value function is monotone:

(np.diff(v) > 0).all()

True

4.6.3 Comparison of the Solution Methods

Let us solve the problem with the other two methods.

Value Iteration

ddp.epsilon = 1e-4
ddp.max_iter = 500
res1 = ddp.solve(method='value_iteration')
res1.num_iter

294

4.6. Solutions 67

Advanced Quantitative Economics with Python

np.array_equal(σ, res1.sigma)

True

Modified Policy Iteration

res2 = ddp.solve(method='modified_policy_iteration')
res2.num_iter

16

np.array_equal(σ, res2.sigma)

True

Speed Comparison

%timeit ddp.solve(method='value_iteration')
%timeit ddp.solve(method='policy_iteration')
%timeit ddp.solve(method='modified_policy_iteration')

88.6 ms ± 193 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

9.27 ms ± 16 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

10.6 ms ± 96.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

As is often the case, policy iteration and modified policy iteration are much faster than value iteration.

4.6.4 Replication of the Figures

Using DiscreteDP we replicate the figures shown in the lecture.

Convergence of Value Iteration

Let us first visualize the convergence of the value iteration algorithm as in the lecture, where we use ddp.
bellman_operator implemented as a method of DiscreteDP

w = 5 * np.log(grid) - 25 # Initial condition
n = 35
fig, ax = plt.subplots(figsize=(8,5))
ax.set_ylim(-40, -20)
ax.set_xlim(np.min(grid), np.max(grid))
lb = 'initial condition'

(continues on next page)

68 Chapter 4. Discrete State Dynamic Programming

Advanced Quantitative Economics with Python

(continued from previous page)

ax.plot(grid, w, color=plt.cm.jet(0), lw=2, alpha=0.6, label=lb)
for i in range(n):

w = ddp.bellman_operator(w)
ax.plot(grid, w, color=plt.cm.jet(i / n), lw=2, alpha=0.6)

lb = 'true value function'
ax.plot(grid, v_star(grid), 'k-', lw=2, alpha=0.8, label=lb)
ax.legend(loc='upper left')

plt.show()

We next plot the consumption policies along with the value iteration

w = 5 * u(grid) - 25 # Initial condition

fig, ax = plt.subplots(3, 1, figsize=(8, 10))
true_c = c_star(grid)

for i, n in enumerate((2, 4, 6)):
ax[i].set_ylim(0, 1)
ax[i].set_xlim(0, 2)
ax[i].set_yticks((0, 1))
ax[i].set_xticks((0, 2))

w = 5 * u(grid) - 25 # Initial condition
compute_fixed_point(ddp.bellman_operator, w, max_iter=n, print_skip=1)
σ = ddp.compute_greedy(w) # Policy indices
c_policy = f(grid) - grid[σ]

ax[i].plot(grid, c_policy, 'b-', lw=2, alpha=0.8,
label='approximate optimal consumption policy')

(continues on next page)

4.6. Solutions 69

Advanced Quantitative Economics with Python

(continued from previous page)

ax[i].plot(grid, true_c, 'k-', lw=2, alpha=0.8,
label='true optimal consumption policy')

ax[i].legend(loc='upper left')
ax[i].set_title(f'{n} value function iterations')

plt.show()

Iteration Distance Elapsed (seconds)

1 5.518e+00 5.486e-04
2 4.070e+00 9.146e-04
Iteration Distance Elapsed (seconds)

1 5.518e+00 3.645e-04
2 4.070e+00 7.091e-04
3 3.866e+00 1.059e-03
4 3.673e+00 1.394e-03
Iteration Distance Elapsed (seconds)

1 5.518e+00 5.984e-04
2 4.070e+00 1.060e-03
3 3.866e+00 1.404e-03
4 3.673e+00 1.741e-03
5 3.489e+00 2.074e-03
6 3.315e+00 2.408e-03

/usr/share/miniconda3/envs/quantecon/lib/python3.11/site-packages/quantecon/_
↪compute_fp.py:152: RuntimeWarning: max_iter attained before convergence in␣
↪compute_fixed_point
warnings.warn(_non_convergence_msg, RuntimeWarning)

70 Chapter 4. Discrete State Dynamic Programming

Advanced Quantitative Economics with Python

4.6. Solutions 71

Advanced Quantitative Economics with Python

Dynamics of the Capital Stock

Finally, let us work on Exercise 2, where we plot the trajectories of the capital stock for three different discount factors,
0.9, 0.94, and 0.98, with initial condition 𝑘0 = 0.1.

discount_factors = (0.9, 0.94, 0.98)
k_init = 0.1

Search for the index corresponding to k_init
k_init_ind = np.searchsorted(grid, k_init)

sample_size = 25

fig, ax = plt.subplots(figsize=(8,5))
ax.set_xlabel("time")
ax.set_ylabel("capital")
ax.set_ylim(0.10, 0.30)

Create a new instance, not to modify the one used above
ddp0 = DiscreteDP(R, Q, β, s_indices, a_indices)

for beta in discount_factors:
ddp0.beta = beta
res0 = ddp0.solve()
k_path_ind = res0.mc.simulate(init=k_init_ind, ts_length=sample_size)
k_path = grid[k_path_ind]
ax.plot(k_path, 'o-', lw=2, alpha=0.75, label=f'$\\beta = {beta}$')

ax.legend(loc='lower right')
plt.show()

72 Chapter 4. Discrete State Dynamic Programming

https://python.quantecon.org/optgrowth.html#exercises

Advanced Quantitative Economics with Python

4.7 Appendix: Algorithms

This appendix covers the details of the solution algorithms implemented for DiscreteDP.
We will make use of the following notions of approximate optimality:

• For 𝜀 > 0, 𝑣 is called an 𝜀-approximation of 𝑣∗ if ‖𝑣 − 𝑣∗‖ < 𝜀.
• A policy 𝜎 ∈ Σ is called 𝜀-optimal if 𝑣𝜎 is an 𝜀-approximation of 𝑣∗.

4.7.1 Value Iteration

The DiscreteDP value iteration method implements value function iteration as follows
1. Choose any 𝑣0 ∈ ℝ𝑛, and specify 𝜀 > 0; set 𝑖 = 0.
2. Compute 𝑣𝑖+1 = 𝑇 𝑣𝑖.
3. If ‖𝑣𝑖+1 − 𝑣𝑖‖ < [(1 − 𝛽)/(2𝛽)]𝜀, then go to step 4; otherwise, set 𝑖 = 𝑖 + 1 and go to step 2.
4. Compute a 𝑣𝑖+1-greedy policy 𝜎, and return 𝑣𝑖+1 and 𝜎.

Given 𝜀 > 0, the value iteration algorithm
• terminates in a finite number of iterations
• returns an 𝜀/2-approximation of the optimal value function and an 𝜀-optimal policy function (unless iter_max
is reached)

(While not explicit, in the actual implementation each algorithm is terminated if the number of iterations reaches
iter_max)

4.7.2 Policy Iteration

The DiscreteDP policy iteration method runs as follows
1. Choose any 𝑣0 ∈ ℝ𝑛 and compute a 𝑣0-greedy policy 𝜎0; set 𝑖 = 0.
2. Compute the value 𝑣𝜎𝑖 by solving the equation 𝑣 = 𝑇𝜎𝑖𝑣.
3. Compute a 𝑣𝜎𝑖 -greedy policy 𝜎𝑖+1; let 𝜎𝑖+1 = 𝜎𝑖 if possible.
4. If 𝜎𝑖+1 = 𝜎𝑖, then return 𝑣𝜎𝑖 and 𝜎𝑖+1; otherwise, set 𝑖 = 𝑖 + 1 and go to step 2.

The policy iteration algorithm terminates in a finite number of iterations.
It returns an optimal value function and an optimal policy function (unless iter_max is reached).

4.7.3 Modified Policy Iteration

The DiscreteDP modified policy iteration method runs as follows:
1. Choose any 𝑣0 ∈ ℝ𝑛, and specify 𝜀 > 0 and 𝑘 ≥ 0; set 𝑖 = 0.
2. Compute a 𝑣𝑖-greedy policy 𝜎𝑖+1; let 𝜎𝑖+1 = 𝜎𝑖 if possible (for 𝑖 ≥ 1).
3. Compute 𝑢 = 𝑇 𝑣𝑖 (= 𝑇𝜎𝑖+1𝑣𝑖). If span(𝑢 − 𝑣𝑖) < [(1 − 𝛽)/𝛽]𝜀, then go to step 5; otherwise go to step 4.

• Span is defined by span(𝑧) = max(𝑧) − min(𝑧).
4. Compute 𝑣𝑖+1 = (𝑇𝜎𝑖+1)𝑘𝑢 (= (𝑇𝜎𝑖+1)𝑘+1𝑣𝑖); set 𝑖 = 𝑖 + 1 and go to step 2.

4.7. Appendix: Algorithms 73

Advanced Quantitative Economics with Python

5. Return 𝑣 = 𝑢 + [𝛽/(1 − 𝛽)][(min(𝑢 − 𝑣𝑖) + max(𝑢 − 𝑣𝑖))/2]1 and 𝜎𝑖+1.
Given 𝜀 > 0, provided that 𝑣0 is such that 𝑇 𝑣0 ≥ 𝑣0, the modified policy iteration algorithm terminates in a finite number
of iterations.
It returns an 𝜀/2-approximation of the optimal value function and an 𝜀-optimal policy function (unless iter_max is
reached).
See also the documentation for DiscreteDP.

74 Chapter 4. Discrete State Dynamic Programming

Part II

LQ Control

75

CHAPTER

FIVE

INFORMATION AND CONSUMPTION SMOOTHING

Contents

• Information and Consumption Smoothing

– Overview

– Two Representations of One Nonfinancial Income Process

– Application of Kalman filter

– News Shocks and Less Informative Shocks

– Representation of 𝜖𝑡 Shock in Terms of Future 𝑦𝑡

– Representation in Terms of 𝑎𝑡 Shocks

– Permanent Income Consumption-Smoothing Model

– State Space Representations

– Computations

– Simulating Income Process and Two Associated Shock Processes

– Calculating Innovations in Another Way

– Another Invertibility Issue

In addition to what’s in Anaconda, this lecture employs the following libraries:

!pip install --upgrade quantecon

5.1 Overview

In the linear-quadratic permanent income of consumption smoothing model described in this quantecon lecture, a scalar
parameter 𝛽 ∈ (0, 1) plays two roles:

• it is a discount factor that the consumer applies to future utilities from consumption
• it is the reciprocal of the gross interest rate on risk-free one-period loans

That 𝛽 plays these two roles is essential in delivering the outcome that, regardless of the stochastic process that describes
his non-financial income, the consumer chooses to make consumption follow a random walk (see [Hal78]).
In this lecture, we assign a third role to 𝛽:

77

https://python-intro.quantecon.org/perm_income_cons.html

Advanced Quantitative Economics with Python

• it describes a first-order moving average process for the growth in non-financial income

5.1.1 Same non-financial incomes, different information

We study two consumers who have exactly the same nonfinancial income process and who both conform to the linear-
quadratic permanent income of consumption smoothing model described here.
The two consumers have different information about their future nonfinancial incomes.
A better informed consumer each period receives news in the form of a shock that simultaneously affects both today’s
nonfinancial income and the present value of future nonfinancial incomes in a particular way.
A less informed consumer each period receives a shock that equals the part of today’s nonfinancial income that could not
be forecast from past values of nonfinancial income.
Even though they receive exactly the same nonfinancial incomes each period, our two consumers behave differently be-
cause they have different information about their future nonfinancial incomes.
The second consumer receives less information about future nonfinancial incomes in a sense that we shall make precise.
This difference in their information sets manifests itself in their responding differently to what they regard as time 𝑡
information shocks.
Thus, although at each date they receive exactly the same histories of nonfinancial income, our two consumers receive
different shocks or news about their future nonfinancial incomes.
We use the different behaviors of our consumers as a way to learn about

• operating characteristics of a linear-quadratic permanent income model
• how the Kalman filter introduced in this lecture and/or another representation of the theory of optimal forecasting
introduced in this lecture embody lessons that can be applied to the news and noise literature

• ways of representing and computing optimal decision rules in the linear-quadratic permanent income model
• aRicardian equivalence outcome that describes effects on optimal consumption of a tax cut at time 𝑡 accompanied
by a foreseen permanent increases in taxes that is just sufficient to cover the interest payments used to service the
risk-free government bonds that are issued to finance the tax cut

• a simple application of alternative ways to factor a covariance generating function along lines described in this
lecture

This lecture can be regarded as an introduction to invertibility issues that take center stage in the analysis of fiscal
foresight by Eric Leeper, Todd Walker, and Susan Yang [LWY13], as well as in chapter 4 of [SHR91].

5.2 Two Representations of One Nonfinancial Income Process

We study consequences of endowing a consumer with one of two alternative representations for the change in the con-
sumer’s nonfinancial income 𝑦𝑡+1 − 𝑦𝑡.
For both types of consumer, a parameter 𝛽 ∈ (0, 1) plays three roles.
It appears

• as a discount factor applied to future expected one-period utilities,
• as the reciprocal of a gross interest rate on one-period loans, and
• as a parameter in a first-order moving average that equals the increment in a consumer’s non-financial income

78 Chapter 5. Information and Consumption Smoothing

https://python-intro.quantecon.org/perm_income_cons.html
https://python-intro.quantecon.org/kalman.html

Advanced Quantitative Economics with Python

The first representation, which we shall sometimes refer to as themore informative representation, is

𝑦𝑡+1 − 𝑦𝑡 = 𝜖𝑡+1 − 𝛽−1𝜖𝑡 (5.1)

where {𝜖𝑡} is an i.i.d. normally distributed scalar process with means of zero and contemporaneous variances 𝜎2
𝜖 .

This representation of the process is used by a consumer who at time 𝑡 knows both 𝑦𝑡 and the shock 𝜖𝑡 and can use both
of them to forecast future 𝑦𝑡+𝑗’s.
As we’ll see below, representation (5.1) has the peculiar property that a positive shock 𝜖𝑡+1 leaves the discounted present
value of the consumer’s financial income at time 𝑡 + 1 unaltered.
The second representation of the same {𝑦𝑡} process is

𝑦𝑡+1 − 𝑦𝑡 = 𝑎𝑡+1 − 𝛽𝑎𝑡 (5.2)

where {𝑎𝑡} is another i.i.d. normally distributed scalar process, with means of zero and now variances 𝜎2
𝑎 > 𝜎2

𝜖 .
The i.i.d. shock variances are related by

𝜎2
𝑎 = 𝛽−2𝜎2

𝜖 > 𝜎2
𝜖

so that the variance of the innovation exceeds the variance of the original shock by a multiplicative factor 𝛽−2.
Representation (5.2) is the innovations representation of equation (5.1) associated with Kalman filtering theory.
To see how this works, note that equating representations (5.1) and (5.2) for 𝑦𝑡+1 −𝑦𝑡 implies 𝜖𝑡+1 −𝛽−1𝜖𝑡 = 𝑎𝑡+1 −𝛽𝑎𝑡,
which in turn implies

𝑎𝑡+1 = 𝛽𝑎𝑡 + 𝜖𝑡+1 − 𝛽−1𝜖𝑡.

Solving this difference equation backwards for 𝑎𝑡+1 gives, after a few lines of algebra,

𝑎𝑡+1 = 𝜖𝑡+1 + (𝛽 − 𝛽−1)
∞

∑
𝑗=0

𝛽𝑗𝜖𝑡−𝑗 (5.3)

which we can also write as

𝑎𝑡+1 =
∞

∑
𝑗=0

ℎ𝑗𝜖𝑡+1−𝑗 ≡ ℎ(𝐿)𝜖𝑡+1

where 𝐿 is the one-period lag operator, ℎ(𝐿) = ∑∞
𝑗=0 ℎ𝑗𝐿𝑗, 𝐼 is the identity operator, and

ℎ(𝐿) = 𝐼 − 𝛽−1𝐿
𝐼 − 𝛽𝐿

Let 𝑔𝑗 ≡ 𝐸𝑧𝑡𝑧𝑡−𝑗 be the 𝑗th autocovariance of the {𝑦𝑡 − 𝑦𝑡−1} process.
Using calculations in the quantecon lecture, where 𝑧 ∈ 𝐶 is a complex variable, the covariance generating function
𝑔(𝑧) = ∑∞

𝑗=−∞ 𝑔𝑗𝑧𝑗 of the {𝑦𝑡 − 𝑦𝑡−1} process equals

𝑔(𝑧) = 𝜎2
𝜖 ℎ(𝑧)ℎ(𝑧−1) = 𝛽−2𝜎2

𝜖 > 𝜎2
𝜖 ,

which confirms that {𝑎𝑡} is a serially uncorrelated process with variance

𝜎2
𝑎 = 𝛽−1𝜎2

𝜖 .

To verify these claims, just notice that 𝑔(𝑧) = 𝛽−2𝜎2
𝜖 implies that

• 𝑔0 = 𝛽−2𝜎2
𝜖 , and

5.2. Two Representations of One Nonfinancial Income Process 79

Advanced Quantitative Economics with Python

• 𝑔𝑗 = 0 for 𝑗 ≠ 0.
Alternatively, if you are uncomfortable with covariance generating functions, note that we can directly calculate 𝜎2

𝑎 from
formula (5.3) according to

𝜎2
𝑎 = 𝜎2

𝜖 + [1 + (𝛽 − 𝛽−1)2
∞

∑
𝑗=0

𝛽2𝑗] = 𝛽−1𝜎2
𝜖 .

5.3 Application of Kalman filter

We can also use the the Kalman filter to obtain representation (5.2) from representation (5.1).
Thus, from equations associated with theKalman filter, it can be verified that the steady-state Kalman gain 𝐾 = 𝛽2 and
the steady state conditional covariance

Σ = 𝐸[(𝜖𝑡 − ̂𝜖𝑡)2|𝑦𝑡−1, 𝑦𝑡−2, …] = (1 − 𝛽2)𝜎2
𝜖

In a little more detail, let 𝑧𝑡 = 𝑦𝑡 − 𝑦𝑡−1 and form the state-space representation

𝜖𝑡+1 = 0𝜖𝑡 + 𝜖𝑡+1
𝑧𝑡+1 = −𝛽−1𝜖𝑡 + 𝜖𝑡+1

and assume that 𝜎𝜖 = 1 for convenience
Let’s compute the steady-state Kalman filter for this system.
Let 𝐾 be the steady-state gain and 𝑎𝑡+1 the one-step ahead innovation.
The steady-state innovations representation is

̂𝜖𝑡+1 = 0 ̂𝜖𝑡 + 𝐾𝑎𝑡+1
𝑧𝑡+1 = −𝛽𝑎𝑡 + 𝑎𝑡+1

By applying formulas for the steady-state Kalman filter, by hand it is possible to verify that𝐾 = 𝛽2, 𝜎2
𝑎 = 𝛽−2𝜎2

𝜖 = 𝛽−2,
and Σ = (1 − 𝛽2)𝜎2

𝜖 .
Alternatively, we can obtain these formulas via the classical filtering theory described in this lecture.

5.4 News Shocks and Less Informative Shocks

Representation (5.1) is cast in terms of a news shock 𝜖𝑡+1 that represents a shock to nonfinancial income coming from
taxes, transfers, and other random sources of income changes known to a well-informed person who perhaps has all sorts
of information about the income process.
Representation (5.2) for the same income process is driven by shocks 𝑎𝑡 that contain less information than the news shock
𝜖𝑡.
Representation (5.2) is called the innovations representation for the {𝑦𝑡 − 𝑦𝑡−1} process.
It is cast in terms of what time series statisticians call the innovation or fundamental shock that emerges from applying the
theory of optimally predicting nonfinancial income based solely on the information in past levels of growth in nonfinancial
income.
Fundamental for the 𝑦𝑡 process means that the shock 𝑎𝑡 can be expressed as a square-summable linear combination of
𝑦𝑡, 𝑦𝑡−1, ….

80 Chapter 5. Information and Consumption Smoothing

Advanced Quantitative Economics with Python

The shock 𝜖𝑡 is not fundamental because it has more information about the future of the {𝑦𝑡 − 𝑦𝑡−1} process than is
contained in 𝑎𝑡.
Representation (5.3) reveals the important fact that the original shock 𝜖𝑡 contains more information about future 𝑦’s than
is contained in the semi-infinite history 𝑦𝑡 = [𝑦𝑡, 𝑦𝑡−1, …].
Staring at representation (5.3) for 𝑎𝑡+1 shows that it consists both of new news 𝜖𝑡+1 as well as a long moving average
(𝛽 − 𝛽−1) ∑∞

𝑗=0 𝛽𝑗𝜖𝑡−𝑗 of old news.

Themore information representation (5.1) asserts that a shock 𝜖𝑡 results in an impulse response to nonfinancial income
of 𝜖𝑡 times the sequence

1, 1 − 𝛽−1, 1 − 𝛽−1, …

so that a shock that increases nonfinancial income 𝑦𝑡 by 𝜖𝑡 at time 𝑡 is followed by a change in future 𝑦 of 𝜖𝑡 times
1 − 𝛽−1 < 0 in all subsequent periods.
Because 1 − 𝛽−1 < 0, this means that a positive shock of 𝜖𝑡 today raises income at time 𝑡 by 𝜖𝑡 and then permanently
decreases all future incomes by (𝛽−1 − 1)𝜖𝑡.
This pattern precisely describes the following mental experiment:

• The consumer receives a government transfer of 𝜖𝑡 at time 𝑡.
• The government finances the transfer by issuing a one-period bond on which it pays a gross one-period risk-free
interest rate equal to 𝛽−1.

• In each future period, the government rolls over the one-period bond and so continues to borrow 𝜖𝑡 forever.
• The government imposes a lump-sum tax on the consumer in order to pay just the current interest on the original
bond and its rolled over successors.

• Thus, in periods 𝑡 + 1, 𝑡 + 2, …, the government levies a lump-sum tax on the consumer of 𝛽−1 − 1 that is just
enough to pay the interest on the bond.

The present value of the impulse response or moving average coefficients equals 𝑑𝜖(𝐿) = 0
1−𝛽 = 0, a fact that we’ll see

again below.
Representation (5.2), i.e., the innovations representation, asserts that a shock 𝑎𝑡 results in an impulse response to nonfi-
nancial income of 𝑎𝑡 times

1, 1 − 𝛽, 1 − 𝛽, …

so that a shock that increases income 𝑦𝑡 by 𝑎𝑡 at time 𝑡 can be expected to be followed by an increase in 𝑦𝑡+𝑗 of 𝑎𝑡 times
1 − 𝛽 > 0 in all future periods 𝑗 = 1, 2, ….

The present value of the impulse response or moving average coefficients for representation (5.2) is 𝑑𝑎(𝛽) = 1−𝛽2

1−𝛽 =
(1 + 𝛽), another fact that will be important below.

5.5 Representation of 𝜖𝑡 Shock in Terms of Future 𝑦𝑡

Notice that reprentation (5.1), namely, 𝑦𝑡+1 − 𝑦𝑡 = −𝛽−1𝜖𝑡 + 𝜖𝑡+1 implies the linear difference equation

𝜖𝑡 = 𝛽𝜖𝑡+1 − 𝛽(𝑦𝑡+1 − 𝑦𝑡).

Solving forward we obtain

𝜖𝑡 = 𝛽(𝑦𝑡 − (1 − 𝛽)
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗+1)

5.5. Representation of 𝜖𝑡 Shock in Terms of Future 𝑦𝑡 81

Advanced Quantitative Economics with Python

This equation shows that 𝜖𝑡 equals 𝛽 times the one-step-backwards error in optimally backcasting 𝑦𝑡 based on the semi-
infinite future 𝑦𝑡

+ ≡ [𝑦𝑡+1, 𝑦𝑡+2, …] via the optimal backcasting formula

𝐸[𝑦𝑡|𝑦𝑡
+] = (1 − 𝛽)

∞
∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗+1

Thus, 𝜖𝑡 exactly reveals the gap between 𝑦𝑡 and 𝐸[𝑦𝑡|𝑦𝑡
+].

5.6 Representation in Terms of 𝑎𝑡 Shocks

Next notice that representation (5.2), namely, 𝑦𝑡+1 − 𝑦𝑡 = −𝛽𝑎𝑡 + 𝑎𝑡+1 implies the linear difference equation

𝑎𝑡+1 = 𝛽𝑎𝑡 + (𝑦𝑡+1 − 𝑦𝑡)

Solving this equation backward establishes that the one-step-prediction error 𝑎𝑡+1 is

𝑎𝑡+1 = 𝑦𝑡+1 − (1 − 𝛽)
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡−𝑗.

Here the information set is 𝑦𝑡 = [𝑦𝑡, 𝑦𝑡−1, …] and a one step-ahead optimal prediction is

𝐸[𝑦𝑡+1|𝑦𝑡] = (1 − 𝛽)
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡−𝑗

5.7 Permanent Income Consumption-Smoothing Model

When we computed optimal consumption-saving policies for our two representations (5.1) and (5.2) by using formulas
obtained with the difference equation approach described in quantecon lecture, we obtained:
for a consumer having the information assumed in the news representation (5.1):

𝑐𝑡+1 − 𝑐𝑡 = 0
𝑏𝑡+1 − 𝑏𝑡 = −𝛽−1𝜖𝑡

for a consumer having the more limited information associated with the innovations representation (5.2):

𝑐𝑡+1 − 𝑐𝑡 = (1 − 𝛽2)𝑎𝑡+1
𝑏𝑡+1 − 𝑏𝑡 = −𝛽𝑎𝑡

These formulas agree with outcomes from Python programs below that deploy state-space representations and dynamic
programming.
Evidently, although they receive exactly the same histories of nonfinancial incomethe two consumers behave differently.
The better informed consumer who has the information sets associated with representation (5.1) responds to each shock
𝜖𝑡+1 by leaving his consumption unaltered and saving all of 𝜖𝑡+1 in anticipation of the permanently increased taxes that he
will bear in order to service the permanent interest payments on the risk-free bonds that the government has presumably
issued to pay for the one-time addition 𝜖𝑡+1 to his time 𝑡 + 1 nonfinancial income.
The less well informed consumer who has information sets associated with representation (5.2) responds to a shock 𝑎𝑡+1
by increasing his consumption by what he perceives to be the permanent part of the increase in consumption and by
increasing his saving by what he perceives to be the temporary part.
The behavior of the better informed consumer sharply illustrates the behavior predicted in a classic Ricardian equivalence
experiment.

82 Chapter 5. Information and Consumption Smoothing

https://python-intro.quantecon.org/perm_income_cons.html

Advanced Quantitative Economics with Python

5.8 State Space Representations

We now cast our representations (5.1) and (5.2), respectively, in terms of the following two state space systems:

[𝑦𝑡+1
𝜖𝑡+1

] = [1 −𝛽−1

0 0] [𝑦𝑡
𝜖𝑡

] + [𝜎𝜖
𝜎𝜖

] 𝑣𝑡+1

𝑦𝑡 = [1 0] [𝑦𝑡
𝜖𝑡

]
(5.4)

and

[𝑦𝑡+1
𝑎𝑡+1

] = [1 −𝛽
0 0] [𝑦𝑡

𝑎𝑡
] + [𝜎𝑎

𝜎𝑎
] 𝑢𝑡+1

𝑦𝑡 = [1 0] [𝑦𝑡
𝑎𝑡

]
(5.5)

where {𝑣𝑡} and {𝑢𝑡} are both i.i.d. sequences of univariate standardized normal random variables.
These two alternative income processes are ready to be used in the framework presented in the section “Comparison with
the Difference Equation Approach” in thid quantecon lecture.
All the code that we shall use below is presented in that lecture.

5.9 Computations

We shall use Python to form two state-space representations (5.4) and (5.5).
We set the following parameter values 𝜎𝜖 = 1, 𝜎𝑎 = 𝛽−1𝜎𝜖 = 𝛽−1 where 𝛽 is the same value as the discount factor in
the household’s problem in the LQ savings problem in the lecture.
For these two representations, we use the code in this lecture to

• compute optimal decision rules for 𝑐𝑡, 𝑏𝑡 for the two types of consumers associated with our two representations
of nonfinancial income

• use the value function objects 𝑃 , 𝑑 returned by the code to compute optimal values for the two representations
when evaluated at the initial condition

𝑥0 = [10
0]

for each representation.
• create instances of the LinearStateSpace class for the two representations of the {𝑦𝑡} process and use them to obtain
impulse response functions of 𝑐𝑡 and 𝑏𝑡 to the respective shocks 𝜖𝑡 and 𝑎𝑡 for the two representations.

• run simulations of {𝑦𝑡, 𝑐𝑡, 𝑏𝑡} of length 𝑇 under both of the representations
We formulae the problem:

min
∞

∑
𝑡=0

𝛽𝑡 (𝑐𝑡 − 𝛾)2

subject to a sequence of constraints

𝑐𝑡 + 𝑏𝑡 = 1
1 + 𝑟𝑏𝑡+1 + 𝑦𝑡, 𝑡 ≥ 0

where 𝑦𝑡 follows one of the representations defined above.

5.8. State Space Representations 83

https://python-intro.quantecon.org/perm_income_cons.html
https://python-intro.quantecon.org/perm_income_cons.html
https://python-intro.quantecon.org/perm_income_cons.html
https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/lss.py

Advanced Quantitative Economics with Python

Define the control as 𝑢𝑡 ≡ 𝑐𝑡 − 𝛾.
(For simplicity we can assume 𝛾 = 0 below because 𝛾 has no effect on the impulse response functions that interest us.)
The state transition equations under our two representations for the nonfinancial income process {𝑦𝑡} can be written as

⎡⎢
⎣

𝑦𝑡+1
𝜖𝑡+1
𝑏𝑡+1

⎤⎥
⎦

= ⎡⎢
⎣

1 −𝛽−1 0
0 0 0

− (1 + 𝑟) 0 1 + 𝑟
⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝐴1

⎡⎢
⎣

𝑦𝑡
𝜖𝑡
𝑏𝑡

⎤⎥
⎦

+ ⎡⎢
⎣

0
0

1 + 𝑟
⎤⎥
⎦⏟⏟⏟⏟⏟

≡𝐵1

[𝑐𝑡] + ⎡⎢
⎣

𝜎𝜖
𝜎𝜖
0

⎤⎥
⎦⏟

≡𝐶1

𝜈𝑡+1,

and

⎡⎢
⎣

𝑦𝑡+1
𝑎𝑡+1
𝑏𝑡+1

⎤⎥
⎦

= ⎡⎢
⎣

1 −𝛽 0
0 0 0

− (1 + 𝑟) 0 1 + 𝑟
⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝐴2

⎡⎢
⎣

𝑦𝑡
𝑎𝑡
𝑏𝑡

⎤⎥
⎦

+ ⎡⎢
⎣

0
0

1 + 𝑟
⎤⎥
⎦⏟⏟⏟⏟⏟

≡𝐵2

[𝑐𝑡] + ⎡⎢
⎣

𝜎𝑎
𝜎𝑎
0

⎤⎥
⎦⏟

≡𝐶2

𝑢𝑡+1.

As usual, we start by importing packages.

import numpy as np
import quantecon as qe
import matplotlib.pyplot as plt
%matplotlib inline

Set parameters
β, σϵ = 0.95, 1
σa = σϵ / β

R = 1 / β

Payoff matrices are the same for two representations
RLQ = np.array([[0, 0, 0],

[0, 0, 0],
[0, 0, 1e-12]]) # put penalty on debt

QLQ = np.array([1.])

More informative representation state transition matrices
ALQ1 = np.array([[1, -R, 0],

[0, 0, 0],
[-R, 0, R]])

BLQ1 = np.array([[0, 0, R]]).T
CLQ1 = np.array([[σϵ, σϵ, 0]]).T

Construct and solve the LQ problem
LQ1 = qe.LQ(QLQ, RLQ, ALQ1, BLQ1, C=CLQ1, beta=β)
P1, F1, d1 = LQ1.stationary_values()

The optimal decision rule for c
-F1

array([[1. , -1. , -0.05]])

84 Chapter 5. Information and Consumption Smoothing

Advanced Quantitative Economics with Python

Evidently, optimal consumption and debt decision rules for the consumer having news representation (5.1) are

𝑐∗
𝑡 = 𝑦𝑡 − 𝜖𝑡 − (1 − 𝛽) 𝑏𝑡,

𝑏∗
𝑡+1 = 𝛽−1𝑐∗

𝑡 + 𝛽−1𝑏𝑡 − 𝛽−1𝑦𝑡
= 𝛽−1𝑦𝑡 − 𝛽−1𝜖𝑡 − (𝛽−1 − 1) 𝑏𝑡 + 𝛽−1𝑏𝑡 − 𝛽−1𝑦𝑡
= 𝑏𝑡 − 𝛽−1𝜖𝑡.

Innovations representation
ALQ2 = np.array([[1, -β, 0],

[0, 0, 0],
[-R, 0, R]])

BLQ2 = np.array([[0, 0, R]]).T
CLQ2 = np.array([[σa, σa, 0]]).T

LQ2 = qe.LQ(QLQ, RLQ, ALQ2, BLQ2, C=CLQ2, beta=β)
P2, F2, d2 = LQ2.stationary_values()

-F2

array([[1. , -0.9025, -0.05]])

For a consumer having access only to the information associated with the innovations representation (5.2), the optimal
decision rules are

𝑐∗
𝑡 = 𝑦𝑡 − 𝛽2𝑎𝑡 − (1 − 𝛽) 𝑏𝑡,

𝑏∗
𝑡+1 = 𝛽−1𝑐∗

𝑡 + 𝛽−1𝑏𝑡 − 𝛽−1𝑦𝑡
= 𝛽−1𝑦𝑡 − 𝛽𝑎𝑡 − (𝛽−1 − 1) 𝑏𝑡 + 𝛽−1𝑏𝑡 − 𝛽−1𝑦𝑡
= 𝑏𝑡 − 𝛽𝑎𝑡.

Now we construct two Linear State Space models that emerge from using optimal policies of the form 𝑢𝑡 = −𝐹𝑥𝑡.
Take the more informative original representation (5.1) as an example:

⎡⎢
⎣

𝑦𝑡+1
𝜖𝑡+1
𝑏𝑡+1

⎤⎥
⎦

= (𝐴1 − 𝐵1𝐹1) ⎡⎢
⎣

𝑦𝑡
𝜖𝑡
𝑏𝑡

⎤⎥
⎦

+ 𝐶1𝜈𝑡+1

[𝑐𝑡
𝑏𝑡

] = [−𝐹1
𝑆𝑏

] ⎡⎢
⎣

𝑦𝑡
𝜖𝑡
𝑏𝑡

⎤⎥
⎦

To have the Linear State Space model be of an innovations representation form (5.2), we can simply replace the corre-
sponding matrices.

Construct two Linear State Space models
Sb = np.array([0, 0, 1])

ABF1 = ALQ1 - BLQ1 @ F1
G1 = np.vstack([-F1, Sb])
LSS1 = qe.LinearStateSpace(ABF1, CLQ1, G1)

ABF2 = ALQ2 - BLQ2 @ F2
G2 = np.vstack([-F2, Sb])
LSS2 = qe.LinearStateSpace(ABF2, CLQ2, G2)

5.9. Computations 85

Advanced Quantitative Economics with Python

The following code computes impulse response functions of 𝑐𝑡 and 𝑏𝑡.

J = 5 # Number of coefficients that we want

x_res1, y_res1 = LSS1.impulse_response(j=J)
b_res1 = np.array([x_res1[i][2, 0] for i in range(J)])
c_res1 = np.array([y_res1[i][0, 0] for i in range(J)])

x_res2, y_res2 = LSS2.impulse_response(j=J)
b_res2 = np.array([x_res2[i][2, 0] for i in range(J)])
c_res2 = np.array([y_res2[i][0, 0] for i in range(J)])

c_res1 / σϵ, b_res1 / σϵ

(array([1.99998906e-11, 1.89473923e-11, 1.78947621e-11, 1.68421319e-11,
1.57895017e-11]),

array([0. , -1.05263158, -1.05263158, -1.05263158, -1.05263158]))

plt.title("more informative representation")
plt.plot(range(J), c_res1 / σϵ, label="c impulse response function")
plt.plot(range(J), b_res1 / σϵ, label="b impulse response function")
plt.legend()

<matplotlib.legend.Legend at 0x7f0941b2aa10>

The above two impulse response functions show that when the consumer has the information assumed in the more infor-

86 Chapter 5. Information and Consumption Smoothing

Advanced Quantitative Economics with Python

mative representation (5.1), his response to receiving a positive shock of 𝜖𝑡 is to leave his consumption unchanged and to
save the entire amount of his extra income and then forever roll over the extra bonds that he holds.
To see this notice, that starting from next period on, his debt permanently decreases by 𝛽−1

c_res2 / σa, b_res2 / σa

(array([0.0975, 0.0975, 0.0975, 0.0975, 0.0975]),
array([0. , -0.95, -0.95, -0.95, -0.95]))

plt.title("innovations representation")
plt.plot(range(J), c_res2 / σa, label="c impulse response function")
plt.plot(range(J), b_res2 / σa, label="b impulse response function")
plt.plot([0, J-1], [0, 0], '--', color='k')
plt.legend()

<matplotlib.legend.Legend at 0x7f0941a9f710>

The above impulse responses show that when the consumer has only the information that is assumed to be available
under the innovations representation (5.2) for {𝑦𝑡 − 𝑦𝑡−1}, he responds to a positive 𝑎𝑡 by permanently increasing his
consumption.
He accomplishes this by consuming a fraction (1 − 𝛽2) of the increment 𝑎𝑡 to his nonfinancial income and saving the
rest, thereby lowering 𝑏𝑡+1 in order to finance the permanent increment in his consumption.
The preceding computations confirm what we had derived earlier using paper and pencil.
Now let’s simulate some paths of consumption and debt for our two types of consumers while always presenting both

5.9. Computations 87

Advanced Quantitative Economics with Python

types with the same {𝑦𝑡} path.

Set time length for simulation
T = 100

x1, y1 = LSS1.simulate(ts_length=T)
plt.plot(range(T), y1[0, :], label="c")
plt.plot(range(T), x1[2, :], label="b")
plt.plot(range(T), x1[0, :], label="y")
plt.title("more informative representation")
plt.legend()

<matplotlib.legend.Legend at 0x7f0941464550>

x2, y2 = LSS2.simulate(ts_length=T)
plt.plot(range(T), y2[0, :], label="c")
plt.plot(range(T), x2[2, :], label="b")
plt.plot(range(T), x2[0, :], label="y")
plt.title("innovations representation")
plt.legend()

<matplotlib.legend.Legend at 0x7f09418585d0>

88 Chapter 5. Information and Consumption Smoothing

Advanced Quantitative Economics with Python

5.10 Simulating Income Process and Two Associated Shock Pro-
cesses

We now form a single {𝑦𝑡}𝑇
𝑡=0 realization that we will use to simulate decisions associated with our two types of consumer.

We accomplish this in the following steps.
1. We form a {𝑦𝑡, 𝜖𝑡} realization by drawing a long simulation of {𝜖𝑡}𝑇

𝑡=0, where 𝑇 is a big integer, 𝜖𝑡 = 𝜎𝜖𝑣𝑡, 𝑣𝑡 is
a standard normal scalar, 𝑦0 = 100, and

𝑦𝑡+1 − 𝑦𝑡 = −𝛽−1𝜖𝑡 + 𝜖𝑡+1.

2. We take the {𝑦𝑡} realization generated in step 1 and form an innovation process {𝑎𝑡} from the formulas

𝑎0 = 0

𝑎𝑡 =
𝑡−1
∑
𝑗=0

𝛽𝑗(𝑦𝑡−𝑗 − 𝑦𝑡−𝑗−1) + 𝛽𝑡𝑎0, 𝑡 ≥ 1

3. We throw away the first 𝑆 observations and form a sample {𝑦𝑡, 𝜖𝑡, 𝑎𝑡}𝑇
𝑆+1 as the realization that we’ll use in the

following steps.
4. We use the step 3 realization to evaluate and simulate the decision rules for 𝑐𝑡, 𝑏𝑡 that Python has computed for

us above.
The above steps implement the experiment of comparing decisions made by two consumers having identical incomes at
each date but at each date having different information about their future incomes.

5.10. Simulating Income Process and Two Associated Shock Processes 89

Advanced Quantitative Economics with Python

5.11 Calculating Innovations in Another Way

Here we use formula (5.3) above to compute 𝑎𝑡+1 as a function of the history 𝜖𝑡+1, 𝜖𝑡, 𝜖𝑡−1, …
Thus, we compute

𝑎𝑡+1 = 𝛽𝑎𝑡 + 𝜖𝑡+1 − 𝛽−1𝜖𝑡
= 𝛽 (𝛽𝑎𝑡−1 + 𝜖𝑡 − 𝛽−1𝜖𝑡−1) + 𝜖𝑡+1 − 𝛽−1𝜖𝑡
= 𝛽2𝑎𝑡−1 + 𝛽 (𝜖𝑡 − 𝛽−1𝜖𝑡−1) + 𝜖𝑡+1 − 𝛽−1𝜖𝑡
= ⋮ ⋮

= 𝛽𝑡+1𝑎0 +
𝑡

∑
𝑗=0

𝛽𝑗 (𝜖𝑡+1−𝑗 − 𝛽−1𝜖𝑡−𝑗)

= 𝛽𝑡+1𝑎0 + 𝜖𝑡+1 + (𝛽 − 𝛽−1)
𝑡−1
∑
𝑗=0

𝛽𝑗𝜖𝑡−𝑗 − 𝛽𝑡−1𝜖0.

We can verify that we recover the same {𝑎𝑡} sequence computed earlier.

5.12 Another Invertibility Issue

This quantecon lecture contains another example of a shock-invertibility issue that is endemic to the LQ permanent income
or consumption smoothing model.
The technical issue discussed there is ultimately the source of the shock-invertibility issues discussed by Eric Leeper,
Todd Walker, and Susan Yang [LWY13] in their analysis of fiscal foresight.

90 Chapter 5. Information and Consumption Smoothing

CHAPTER

SIX

CONSUMPTION SMOOTHING WITH COMPLETE AND INCOMPLETE
MARKETS

Contents

• Consumption Smoothing with Complete and Incomplete Markets

– Overview

– Background

– Linear State Space Version of Complete Markets Model

– Model 1 (Complete Markets)

– Model 2 (One-Period Risk-Free Debt Only)

In addition to what’s in Anaconda, this lecture uses the library:

!pip install --upgrade quantecon

6.1 Overview

This lecture describes two types of consumption-smoothing models.
• one is in the complete markets tradition of Kenneth Arrow
• the other is in the incomplete markets tradition of Hall [Hal78]

Complete markets allow a consumer to buy and sell claims contingent on all possible states of the world.
Incomplete markets allow a consumer to buy and sell a limited set of securities, often only a single risk-free security.
Hall [Hal78] worked in an incomplete markets tradition by assuming that the only asset that can be traded is a risk-free
one-period bond.
Hall assumed an exogenous stochastic process of nonfinancial income and an exogenous and time-invariant gross interest
rate on one-period risk-free debt that equals 𝛽−1, where 𝛽 ∈ (0, 1) is also a consumer’s intertemporal discount factor.
This is equivalent to saying that it costs 𝛽 of time 𝑡 consumption to buy one unit of consumption at time 𝑡 + 1 for sure.
So 𝛽 is the price of a one-period risk-free claim to consumption next period.
We preserve Hall’s assumption about the interest rate when we describe an incomplete markets version of our model.

91

https://en.wikipedia.org/wiki/Kenneth_Arrow

Advanced Quantitative Economics with Python

In addition, we extend Hall’s assumption about the risk-free interest rate to an appropriate counterpart when we create
another model in which there are markets in a complete array of one-period Arrow state-contingent securities.
We’ll consider two closely related alternative assumptions about the consumer’s exogenous nonfinancial income process:

• that it is generated by a finite 𝑁 state Markov chain (setting 𝑁 = 2 most of the time in this lecture)
• that it is described by a linear state space model with a continuous state vector in ℝ𝑛 driven by a Gaussian vector
IID shock process

We’ll spend most of this lecture studying the finite-state Markov specification, but will begin by studying the linear state
space specification because it is so closely linked to earlier lectures.
Let’s start with some imports:

import numpy as np
import quantecon as qe
import matplotlib.pyplot as plt
%matplotlib inline
import scipy.linalg as la

6.1.1 Relationship to Other Lectures

This lecture can be viewed as a followup to Optimal Savings II: LQ Techniques
This lecture is also a prologomenon to a lecture on tax-smoothing Tax Smoothing with Complete and Incomplete Markets

6.2 Background

Outcomes in consumption-smoothing models emerge from two sources:
• a consumer who wants to maximize an intertemporal objective function that expresses its preference for paths of
consumption that are smooth in the sense of varying as little as possible both across time and across realizedMarkov
states

• opportunities that allow the consumer to transform an erratic nonfinancial income process into a smoother con-
sumption process by buying and selling one or more financial securities

In the complete markets version, each period the consumer can buy or sell a complete set of one-period ahead state-
contingent securities whose payoffs depend on next period’s realization of the Markov state.

• In the two-state Markov chain case, two such securities are traded each period.
• In an 𝑁 state Markov state version, 𝑁 such securities are traded each period.
• In a continuous state Markov state version, a continuum of such securities is traded each period.

These state-contingent securities are commonly called Arrow securities, after Kenneth Arrow.
In the incomplete markets version, the consumer can buy and sell only one security each period, a risk-free one-period
bond with gross one-period return 𝛽−1.

92 Chapter 6. Consumption Smoothing with Complete and Incomplete Markets

https://python-intro.quantecon.org/perm_income_cons.html
https://en.wikipedia.org/wiki/Kenneth_Arrow

Advanced Quantitative Economics with Python

6.3 Linear State Space Version of Complete Markets Model

We’ll study a complete markets model adapted to a setting with a continuous Markov state like that in the first lecture on
the permanent income model.
In that model

• a consumer can trade only a single risk-free one-period bond bearing gross one-period risk-free interest rate equal
to 𝛽−1.

• a consumer’s exogenous nonfinancial income is governed by a linear state space model driven by Gaussian shocks,
the kind of model studied in an earlier lecture about linear state space models.

Let’s write down a complete markets counterpart of that model.
Suppose that nonfinancial income is governed by the state space system

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝑆𝑦𝑥𝑡

where 𝑥𝑡 is an 𝑛 × 1 vector and 𝑤𝑡+1 ∼ 𝑁(0, 𝐼) is IID over time.
We want a natural counterpart of the Hall assumption that the one-period risk-free gross interest rate is 𝛽−1.
We make the good guess that prices of one-period ahead Arrow securities are described by the pricing kernel

𝑞𝑡+1(𝑥𝑡+1 | 𝑥𝑡) = 𝛽𝜙(𝑥𝑡+1 | 𝐴𝑥𝑡, 𝐶𝐶′) (6.1)

where 𝜙(⋅ | 𝜇, Σ) is a multivariate Gaussian distribution with mean vector 𝜇 and covariance matrix Σ.
With the pricing kernel 𝑞𝑡+1(𝑥𝑡+1 | 𝑥𝑡) in hand, we can price claims to consumption at time 𝑡 + 1 consumption that pay
off when 𝑥𝑡+1 ∈ 𝑆 at time 𝑡 + 1:

∫
𝑆

𝑞𝑡+1(𝑥𝑡+1 | 𝑥𝑡)𝑑𝑥𝑡+1

where 𝑆 is a subset of ℝ𝑛.
The price∫𝑆 𝑞𝑡+1(𝑥𝑡+1 | 𝑥𝑡)𝑑𝑥𝑡+1 of such a claim depends on state 𝑥𝑡 because the prices of the 𝑥𝑡+1-contingent securities
depend on 𝑥𝑡 through the pricing kernel 𝑞(𝑥𝑡+1 | 𝑥𝑡).
Let 𝑏(𝑥𝑡+1) be a vector of state-contingent debt due at 𝑡 + 1 as a function of the 𝑡 + 1 state 𝑥𝑡+1.
Using the pricing kernel assumed in (6.1), the value at 𝑡 of 𝑏(𝑥𝑡+1) is evidently

𝛽 ∫ 𝑏(𝑥𝑡+1)𝜙(𝑥𝑡+1 | 𝐴𝑥𝑡, 𝐶𝐶′)𝑑𝑥𝑡+1 = 𝛽𝔼𝑡𝑏𝑡+1

In our complete markets setting, the consumer faces a sequence of budget constraints

𝑐𝑡 + 𝑏𝑡 = 𝑦𝑡 + 𝛽𝔼𝑡𝑏𝑡+1, 𝑡 ≥ 0

Please note that

𝛽𝐸𝑡𝑏𝑡+1 = 𝛽 ∫ 𝜙𝑡+1(𝑥𝑡+1|𝐴𝑥𝑡, 𝐶𝐶′)𝑏𝑡+1(𝑥𝑡+1)𝑑𝑥𝑡+1

or

𝛽𝐸𝑡𝑏𝑡+1 = ∫ 𝑞𝑡+1(𝑥𝑡+1|𝑥𝑡)𝑏𝑡+1(𝑥𝑡+1)𝑑𝑥𝑡+1

6.3. Linear State Space Version of Complete Markets Model 93

https://python-intro.quantecon.org/perm_income.html
https://python-intro.quantecon.org/perm_income.html
https://python-intro.quantecon.org/linear_models.html

Advanced Quantitative Economics with Python

which verifies that 𝛽𝐸𝑡𝑏𝑡+1 is the value of time 𝑡 + 1 state-contingent claims on time 𝑡 + 1 consumption issued by the
consumer at time 𝑡
We can solve the time 𝑡 budget constraint forward to obtain

𝑏𝑡 = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗(𝑦𝑡+𝑗 − 𝑐𝑡+𝑗)

The consumer cares about the expected value of
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡), 0 < 𝛽 < 1

In the incomplete markets version of the model, we assumed that 𝑢(𝑐𝑡) = −(𝑐𝑡 − 𝛾)2, so that the above utility functional
became

−
∞

∑
𝑡=0

𝛽𝑡(𝑐𝑡 − 𝛾)2, 0 < 𝛽 < 1

But in the complete markets version, it is tractable to assume a more general utility function that satisfies 𝑢′ > 0 and
𝑢″ < 0.
First-order conditions for the consumer’s problem with complete markets and our assumption about Arrow securities
prices are

𝑢′(𝑐𝑡+1) = 𝑢′(𝑐𝑡) for all 𝑡 ≥ 0

which implies 𝑐𝑡 = ̄𝑐 for some ̄𝑐.
So it follows that

𝑏𝑡 = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗(𝑦𝑡+𝑗 − ̄𝑐)

or

𝑏𝑡 = 𝑆𝑦(𝐼 − 𝛽𝐴)−1𝑥𝑡 − 1
1 − 𝛽 ̄𝑐 (6.2)

where ̄𝑐 satisfies

�̄�0 = 𝑆𝑦(𝐼 − 𝛽𝐴)−1𝑥0 − 1
1 − 𝛽 ̄𝑐 (6.3)

where �̄�0 is an initial level of the consumer’s debt due at time 𝑡 = 0, specified as a parameter of the problem.
Thus, in the complete markets version of the consumption-smoothing model, 𝑐𝑡 = ̄𝑐, ∀𝑡 ≥ 0 is determined by (6.3) and
the consumer’s debt is the fixed function of the state 𝑥𝑡 described by (6.2).
Please recall that in the LQ permanent income model studied in permanent income model, the state is 𝑥𝑡, 𝑏𝑡, where 𝑏𝑡 is
a complicated function of past state vectors 𝑥𝑡−𝑗.
Notice that in contrast to that incomplete markets model, at time 𝑡 the state vector is 𝑥𝑡 alone in our complete markets
model.
Here’s an example that shows how in this setting the availability of insurance against fluctuating nonfinancial income
allows the consumer completely to smooth consumption across time and across states of the world

94 Chapter 6. Consumption Smoothing with Complete and Incomplete Markets

https://python-intro.quantecon.org/perm_income.html

Advanced Quantitative Economics with Python

def complete_ss(β, b0, x0, A, C, S_y, T=12):
"""
Computes the path of consumption and debt for the previously described
complete markets model where exogenous income follows a linear
state space
"""
Create a linear state space for simulation purposes
This adds "b" as a state to the linear state space system
so that setting the seed places shocks in same place for
both the complete and incomplete markets economy
Atilde = np.vstack([np.hstack([A, np.zeros((A.shape[0], 1))]),
np.zeros((1, A.shape[1] + 1))])
Ctilde = np.vstack([C, np.zeros((1, 1))])
S_ytilde = np.hstack([S_y, np.zeros((1, 1))])

lss = qe.LinearStateSpace(A, C, S_y, mu_0=x0)

Add extra state to initial condition
x0 = np.hstack([x0, np.zeros(1)])

Compute the (I - β * A)^{-1}
rm = la.inv(np.eye(A.shape[0]) - β * A)

Constant level of consumption
cbar = (1 - β) * (S_y @ rm @ x0 - b0)
c_hist = np.full(T, cbar)

Debt
x_hist, y_hist = lss.simulate(T)
b_hist = np.squeeze(S_y @ rm @ x_hist - cbar / (1 - β))

return c_hist, b_hist, np.squeeze(y_hist), x_hist

Define parameters
N_simul = 80
α, ρ1, ρ2 = 10.0, 0.9, 0.0
σ = 1.0

A = np.array([[1., 0., 0.],
[α, ρ1, ρ2],
[0., 1., 0.]])

C = np.array([[0.], [σ], [0.]])
S_y = np.array([[1, 1.0, 0.]])
β, b0 = 0.95, -10.0
x0 = np.array([1.0, α / (1 - ρ1), α / (1 - ρ1)])

Do simulation for complete markets
s = np.random.randint(0, 10000)
np.random.seed(s) # Seeds get set the same for both economies
out = complete_ss(β, b0, x0, A, C, S_y, 80)
c_hist_com, b_hist_com, y_hist_com, x_hist_com = out

fig, ax = plt.subplots(1, 2, figsize=(14, 4))

Consumption plots

(continues on next page)

6.3. Linear State Space Version of Complete Markets Model 95

Advanced Quantitative Economics with Python

(continued from previous page)

ax[0].set_title('Consumption and income')
ax[0].plot(np.arange(N_simul), c_hist_com, label='consumption')
ax[0].plot(np.arange(N_simul), y_hist_com, label='income', alpha=.6, linestyle='--')
ax[0].legend()
ax[0].set_xlabel('Periods')
ax[0].set_ylim([80, 120])

Debt plots
ax[1].set_title('Debt and income')
ax[1].plot(np.arange(N_simul), b_hist_com, label='debt')
ax[1].plot(np.arange(N_simul), y_hist_com, label='Income', alpha=.6, linestyle='--')
ax[1].legend()
ax[1].axhline(0, color='k')
ax[1].set_xlabel('Periods')

plt.show()

6.3.1 Interpretation of Graph

In the above graph, please note that:
• nonfinancial income fluctuates in a stationary manner.
• consumption is completely constant.
• the consumer’s debt fluctuates in a stationary manner; in fact, in this case, because nonfinancial income is a first-
order autoregressive process, the consumer’s debt is an exact affine function (meaning linear plus a constant) of the
consumer’s nonfinancial income.

6.3.2 Incomplete Markets Version

The incomplete markets version of the model with nonfinancial income being governed by a linear state space system is
described in permanent income model.
In that incomplete markerts setting, consumption follows a random walk and the consumer’s debt follows a process with
a unit root.

96 Chapter 6. Consumption Smoothing with Complete and Incomplete Markets

https://python-intro.quantecon.org/perm_income_cons.html

Advanced Quantitative Economics with Python

6.3.3 Finite State Markov Income Process

We now turn to a finite-stateMarkov version of themodel in which the consumer’s nonfinancial income is an exact function
of a Markov state that takes one of 𝑁 values.
We’ll start with a setting in which in each version of our consumption-smoothing model, nonfinancial income is governed
by a two-state Markov chain (it’s easy to generalize this to an 𝑁 state Markov chain).
In particular, the state 𝑠𝑡 ∈ {1, 2} follows a Markov chain with transition probability matrix

𝑃𝑖𝑗 = ℙ{𝑠𝑡+1 = 𝑗 | 𝑠𝑡 = 𝑖}

where ℙ means conditional probability
Nonfinancial income {𝑦𝑡} obeys

𝑦𝑡 = { ̄𝑦1 if 𝑠𝑡 = 1
̄𝑦2 if 𝑠𝑡 = 2

A consumer wishes to maximize

𝔼 [
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡)] where 𝑢(𝑐𝑡) = −(𝑐𝑡 − 𝛾)2 and 0 < 𝛽 < 1 (6.4)

Here 𝛾 > 0 is a bliss level of consumption

6.3.4 Market Structure

Our complete and incomplete markets models differ in how thoroughly the market structure allows a consumer to transfer
resources across time and Markov states, there being more transfer opportunities in the complete markets setting than in
the incomplete markets setting.
Watch how these differences in opportunities affect

• how smooth consumption is across time and Markov states
• how the consumer chooses to make his levels of indebtedness behave over time and across Markov states

6.4 Model 1 (Complete Markets)

At each date 𝑡 ≥ 0, the consumer trades a full array of one-period ahead Arrow securities.
We assume that prices of these securities are exogenous to the consumer.
Exogenous means that they are unaffected by the consumer’s decisions.
In Markov state 𝑠𝑡 at time 𝑡, one unit of consumption in state 𝑠𝑡+1 at time 𝑡 + 1 costs 𝑞(𝑠𝑡+1 | 𝑠𝑡) units of the time 𝑡
consumption good.
The prices 𝑞(𝑠𝑡+1 | 𝑠𝑡) are given and can be organized into a matrix 𝑄 with 𝑄𝑖𝑗 = 𝑞(𝑗|𝑖)
At time 𝑡 = 0, the consumer starts with an inherited level of debt due at time 0 of 𝑏0 units of time 0 consumption goods.
The consumer’s budget constraint at 𝑡 ≥ 0 in Markov state 𝑠𝑡 is

𝑐𝑡 + 𝑏𝑡 ≤ 𝑦(𝑠𝑡) + ∑
𝑗

𝑞(𝑗 | 𝑠𝑡) 𝑏𝑡+1(𝑗 | 𝑠𝑡) (6.5)

6.4. Model 1 (Complete Markets) 97

Advanced Quantitative Economics with Python

where 𝑏𝑡 is the consumer’s one-period debt that falls due at time 𝑡 and 𝑏𝑡+1(𝑗 | 𝑠𝑡) are the consumer’s time 𝑡 sales of the
time 𝑡 + 1 consumption good in Markov state 𝑗.
Thus

• 𝑞(𝑗 | 𝑠𝑡)𝑏𝑡+1(𝑗 | 𝑠𝑡) is a source of time 𝑡 financial income for the consumer in Markov state 𝑠𝑡

• 𝑏𝑡 ≡ 𝑏𝑡(𝑗 | 𝑠𝑡−1) is a source of time 𝑡 expenditures for the consumer when 𝑠𝑡 = 𝑗
Remark: We are ignoring an important technicality here, namely, that the consumer’s choice of 𝑏𝑡+1(𝑗| 𝑠𝑡) must respect
so-called natural debt limits that assure that it is feasible for the consumer to repay debts due even if he consumers zero
forevermore. We shall discuss such debt limits in another lecture.
A natural analog of Hall’s assumption that the one-period risk-free gross interest rate is 𝛽−1 is

𝑞(𝑗 | 𝑖) = 𝛽𝑃𝑖𝑗 (6.6)

To understand how this is a natural analogue, observe that in state 𝑖 it costs∑𝑗 𝑞(𝑗 | 𝑖) to purchase one unit of consumption
next period for sure, i.e., meaning no matter what Markov state 𝑗 occurs at 𝑡 + 1.
Hence the implied price of a risk-free claim on one unit of consumption next period is

∑
𝑗

𝑞(𝑗 | 𝑖) = ∑
𝑗

𝛽𝑃𝑖𝑗 = 𝛽

This confirms the sense in which (6.6) is a natural counterpart to Hall’s assumption that the risk-free one-period gross
interest rate is 𝑅 = 𝛽−1.
It is timely please to recall that the gross one-period risk-free interest rate is the reciprocal of the price at time 𝑡 of a
risk-free claim on one unit of consumption tomorrow.
First-order necessary conditions for maximizing the consumer’s expected utility subject to the sequence of budget con-
straints (6.5) are

𝛽 𝑢′(𝑐𝑡+1)
𝑢′(𝑐𝑡)

ℙ{𝑠𝑡+1 | 𝑠𝑡} = 𝑞(𝑠𝑡+1 | 𝑠𝑡)

for all 𝑠𝑡, 𝑠𝑡+1 or, under our assumption (6.6) about Arrow security prices,

𝑐𝑡+1 = 𝑐𝑡 (6.7)

Thus, our consumer sets 𝑐𝑡 = ̄𝑐 for all 𝑡 ≥ 0 for some value ̄𝑐 that it is our job now to determine along with values for
𝑏𝑡+1(𝑗|𝑠𝑡 = 𝑖) for 𝑖 = 1, 2 and 𝑗 = 1, 2.
We’ll use a guess and verify method to determine these objects
Guess: We’ll make the plausible guess that

𝑏𝑡+1(𝑠𝑡+1 = 𝑗 | 𝑠𝑡 = 𝑖) = 𝑏(𝑗), 𝑖 = 1, 2; 𝑗 = 1, 2 (6.8)

so that the amount borrowed today depends only on tomorrow’s Markov state. (Why is this is a plausible guess?)
To determine ̄𝑐, we shall deduce implications of the consumer’s budget constraints in each Markov state today and our
guess (6.8) about the consumer’s debt level choices.
For 𝑡 ≥ 1, these imply

̄𝑐 + 𝑏(1) = 𝑦(1) + 𝑞(1 | 1)𝑏(1) + 𝑞(2 | 1)𝑏(2)
̄𝑐 + 𝑏(2) = 𝑦(2) + 𝑞(1 | 2)𝑏(1) + 𝑞(2 | 2)𝑏(2) (6.9)

or

[𝑏(1)
𝑏(2)] + [̄𝑐

̄𝑐] = [𝑦(1)
𝑦(2)] + 𝛽 [𝑃11 𝑃12

𝑃21 𝑃22
] [𝑏(1)

𝑏(2)]

98 Chapter 6. Consumption Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

These are 2 equations in the 3 unknowns ̄𝑐, 𝑏(1), 𝑏(2)
To get a third equation, we assume that at time 𝑡 = 0, 𝑏0 is debt due; and we assume that at time 𝑡 = 0, the Markov state
𝑠0 = 1
(We could instead have assumed that at time 𝑡 = 0 the Markov state 𝑠0 = 2, which would affect our answer as we shall
see)
Since we have assumed that 𝑠0 = 1, the budget constraint at time 𝑡 = 0 is

̄𝑐 + 𝑏0 = 𝑦(1) + 𝑞(1 | 1)𝑏(1) + 𝑞(2 | 1)𝑏(2) (6.10)

where 𝑏0 is the (exogenous) debt the consumer is assumed to bring into period 0
If we substitute (6.10) into the first equation of (6.9) and rearrange, we discover that

𝑏(1) = 𝑏0 (6.11)

We can then use the second equation of (6.9) to deduce the restriction

𝑦(1) − 𝑦(2) + [𝑞(1 | 1) − 𝑞(1 | 2) − 1]𝑏0 + [𝑞(2 | 1) + 1 − 𝑞(2 | 2)]𝑏(2) = 0, (6.12)

an equation that we can solve for the unknown 𝑏(2).
Knowing 𝑏(1) and 𝑏(2), we can solve equation (6.10) for the constant level of consumption ̄𝑐.

6.4.1 Key Outcomes

The preceding calculations indicate that in the complete markets version of our model, we obtain the following striking
results:

• The consumer chooses to make consumption perfectly constant across time and across Markov states.
• State-contingent debt purchases 𝑏𝑡+1(𝑠𝑡+1 = 𝑗|𝑠𝑡 = 𝑖) depend only on 𝑗
• If the initial Markov state is 𝑠0 = 𝑗 and initial consumer debt is 𝑏0, then debt in Markov state 𝑗 satisfies 𝑏(𝑗) = 𝑏0

To summarize what we have achieved up to now, we have computed the constant level of consumption ̄𝑐 and indicated
how that level depends on the underlying specifications of preferences, Arrow securities prices, the stochastic process of
exogenous nonfinancial income, and the initial debt level 𝑏0

• The consumer’s debt neither accumulates, nor decumulates, nor drifts – instead, the debt level each period is an
exact function of the Markov state, so in the two-state Markov case, it switches between two values.

• We have verified guess (6.8).
• When the state 𝑠𝑡 returns to the initial state 𝑠0, debt returns to the initial debt level.
• Debt levels in all other states depend on virtually all remaining parameters of the model.

6.4.2 Code

Here’s some code that, among other things, contains a function called consumption_complete().
This function computes {𝑏(𝑖)}𝑁

𝑖=1, ̄𝑐 as outcomes given a set of parameters for the general case with 𝑁 Markov states
under the assumption of complete markets

6.4. Model 1 (Complete Markets) 99

Advanced Quantitative Economics with Python

class ConsumptionProblem:
"""
The data for a consumption problem, including some default values.
"""

def __init__(self,
β=.96,
y=[2, 1.5],
b0=3,
P=[[.8, .2],

[.4, .6]],
init=0):

"""
Parameters

β : discount factor
y : list containing the two income levels
b0 : debt in period 0 (= initial state debt level)
P : 2x2 transition matrix
init : index of initial state s0
"""
self.β = β
self.y = np.asarray(y)
self.b0 = b0
self.P = np.asarray(P)
self.init = init

def simulate(self, N_simul=80, random_state=1):
"""
Parameters

N_simul : number of periods for simulation
random_state : random state for simulating Markov chain
"""
For the simulation define a quantecon MC class
mc = qe.MarkovChain(self.P)
s_path = mc.simulate(N_simul, init=self.init, random_state=random_state)

return s_path

def consumption_complete(cp):
"""
Computes endogenous values for the complete market case.

Parameters

cp : instance of ConsumptionProblem

Returns

c_bar : constant consumption
b : optimal debt in each state

(continues on next page)

100 Chapter 6. Consumption Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

associated with the price system

Q = β * P
"""
β, P, y, b0, init = cp.β, cp.P, cp.y, cp.b0, cp.init # Unpack

Q = β * P # assumed price system

construct matrices of augmented equation system
n = P.shape[0] + 1

y_aug = np.empty((n, 1))
y_aug[0, 0] = y[init] - b0
y_aug[1:, 0] = y

Q_aug = np.zeros((n, n))
Q_aug[0, 1:] = Q[init, :]
Q_aug[1:, 1:] = Q

A = np.zeros((n, n))
A[:, 0] = 1
A[1:, 1:] = np.eye(n-1)

x = np.linalg.inv(A - Q_aug) @ y_aug

c_bar = x[0, 0]
b = x[1:, 0]

return c_bar, b

def consumption_incomplete(cp, s_path):
"""
Computes endogenous values for the incomplete market case.

Parameters

cp : instance of ConsumptionProblem
s_path : the path of states
"""
β, P, y, b0 = cp.β, cp.P, cp.y, cp.b0 # Unpack

N_simul = len(s_path)

Useful variables
n = len(y)
y.shape = (n, 1)
v = np.linalg.inv(np.eye(n) - β * P) @ y

Store consumption and debt path
b_path, c_path = np.ones(N_simul+1), np.ones(N_simul)
b_path[0] = b0

Optimal decisions from (12) and (13)

(continues on next page)

6.4. Model 1 (Complete Markets) 101

Advanced Quantitative Economics with Python

(continued from previous page)

db = ((1 - β) * v - y) / β

for i, s in enumerate(s_path):
c_path[i] = (1 - β) * (v - np.full((n, 1), b_path[i]))[s, 0]
b_path[i + 1] = b_path[i] + db[s, 0]

return c_path, b_path[:-1], y[s_path]

Let’s test by checking that ̄𝑐 and 𝑏2 satisfy the budget constraint

cp = ConsumptionProblem()
c_bar, b = consumption_complete(cp)
np.isclose(c_bar + b[1] - cp.y[1] - (cp.β * cp.P)[1, :] @ b, 0)

True

Below, we’ll take the outcomes produced by this code – in particular the implied consumption and debt paths – and
compare them with outcomes from an incomplete markets model in the spirit of Hall [Hal78]

6.5 Model 2 (One-Period Risk-Free Debt Only)

This is a version of the original model of Hall (1978) in which the consumer’s ability to substitute intertemporally is
constrained by his ability to buy or sell only one security, a risk-free one-period bond bearing a constant gross interest
rate that equals 𝛽−1.
Given an initial debt 𝑏0 at time 0, the consumer faces a sequence of budget constraints

𝑐𝑡 + 𝑏𝑡 = 𝑦𝑡 + 𝛽𝑏𝑡+1, 𝑡 ≥ 0

where 𝛽 is the price at time 𝑡 of a risk-free claim on one unit of time consumption at time 𝑡 + 1.
First-order conditions for the consumer’s problem are

∑
𝑗

𝑢′(𝑐𝑡+1,𝑗)𝑃𝑖𝑗 = 𝑢′(𝑐𝑡,𝑖)

For our assumed quadratic utility function this implies

∑
𝑗

𝑐𝑡+1,𝑗𝑃𝑖𝑗 = 𝑐𝑡,𝑖 (6.13)

which for our finite-state Markov setting is Hall’s (1978) conclusion that consumption follows a random walk.
As we saw in our first lecture on the permanent income model, this leads to

𝑏𝑡 = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 − (1 − 𝛽)−1𝑐𝑡 (6.14)

and

𝑐𝑡 = (1 − 𝛽) [𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 − 𝑏𝑡] (6.15)

Equation (6.15) expresses 𝑐𝑡 as a net interest rate factor 1−𝛽 times the sum of the expected present value of nonfinancial
income 𝔼𝑡 ∑∞

𝑗=0 𝛽𝑗𝑦𝑡+𝑗 and financial wealth −𝑏𝑡.

102 Chapter 6. Consumption Smoothing with Complete and Incomplete Markets

https://python-intro.quantecon.org/perm_income.html

Advanced Quantitative Economics with Python

Substituting (6.15) into the one-period budget constraint and rearranging leads to

𝑏𝑡+1 − 𝑏𝑡 = 𝛽−1 [(1 − 𝛽)𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗 − 𝑦𝑡] (6.16)

Now let’s calculate the key term 𝔼𝑡 ∑∞
𝑗=0 𝛽𝑗𝑦𝑡+𝑗 in our finite Markov chain setting.

Define the expected discounted present value of non-financial income

𝑣𝑡 ∶= 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑦𝑡+𝑗

which in the spirit of dynamic programming we can write as a Bellman equation

𝑣𝑡 ∶= 𝑦𝑡 + 𝛽𝔼𝑡𝑣𝑡+1

In our two-state Markov chain setting, 𝑣𝑡 = 𝑣(1) when 𝑠𝑡 = 1 and 𝑣𝑡 = 𝑣(2) when 𝑠𝑡 = 2.
Therefore, we can write our Bellman equation as

𝑣(1) = 𝑦(1) + 𝛽𝑃11𝑣(1) + 𝛽𝑃12𝑣(2)
𝑣(2) = 𝑦(2) + 𝛽𝑃21𝑣(1) + 𝛽𝑃22𝑣(2)

or

⃗𝑣 = ⃗𝑦 + 𝛽𝑃 ⃗𝑣

where ⃗𝑣 = [𝑣(1)
𝑣(2)] and ⃗𝑦 = [𝑦(1)

𝑦(2)].

We can also write the last expression as

⃗𝑣 = (𝐼 − 𝛽𝑃)−1 ⃗𝑦

In our finite Markov chain setting, from expression (6.15), consumption at date 𝑡 when debt is 𝑏𝑡 and the Markov state
today is 𝑠𝑡 = 𝑖 is evidently

𝑐(𝑏𝑡, 𝑖) = (1 − 𝛽) ([(𝐼 − 𝛽𝑃)−1 ⃗𝑦]𝑖 − 𝑏𝑡) (6.17)

and the increment to debt is

𝑏𝑡+1 − 𝑏𝑡 = 𝛽−1[(1 − 𝛽)𝑣(𝑖) − 𝑦(𝑖)] (6.18)

6.5.1 Summary of Outcomes

In contrast to outcomes in the complete markets model, in the incomplete markets model
• consumption drifts over time as a random walk; the level of consumption at time 𝑡 depends on the level of debt that
the consumer brings into the period as well as the expected discounted present value of nonfinancial income at 𝑡.

• the consumer’s debt drifts upward over time in response to low realizations of nonfinancial income and drifts down-
ward over time in response to high realizations of nonfinancial income.

• the drift over time in the consumer’s debt and the dependence of current consumption on today’s debt level account
for the drift over time in consumption.

6.5. Model 2 (One-Period Risk-Free Debt Only) 103

Advanced Quantitative Economics with Python

6.5.2 The Incomplete Markets Model

The code above also contains a function called consumption_incomplete() that uses (6.17) and (6.18) to
• simulate paths of 𝑦𝑡, 𝑐𝑡, 𝑏𝑡+1

• plot these against values of ̄𝑐, 𝑏(𝑠1), 𝑏(𝑠2) found in a corresponding complete markets economy
Let’s try this, using the same parameters in both complete and incomplete markets economies

cp = ConsumptionProblem()
s_path = cp.simulate()
N_simul = len(s_path)

c_bar, debt_complete = consumption_complete(cp)

c_path, debt_path, y_path = consumption_incomplete(cp, s_path)

fig, ax = plt.subplots(1, 2, figsize=(14, 4))

ax[0].set_title('Consumption paths')
ax[0].plot(np.arange(N_simul), c_path, label='incomplete market')
ax[0].plot(np.arange(N_simul), np.full(N_simul, c_bar),

label='complete market')
ax[0].plot(np.arange(N_simul), y_path, label='income', alpha=.6, ls='--')
ax[0].legend()
ax[0].set_xlabel('Periods')

ax[1].set_title('Debt paths')
ax[1].plot(np.arange(N_simul), debt_path, label='incomplete market')
ax[1].plot(np.arange(N_simul), debt_complete[s_path],

label='complete market')
ax[1].plot(np.arange(N_simul), y_path, label='income', alpha=.6, ls='--')
ax[1].legend()
ax[1].axhline(0, color='k', ls='--')
ax[1].set_xlabel('Periods')

plt.show()

In the graph on the left, for the same sample path of nonfinancial income 𝑦𝑡, notice that
• consumption is constant when there are complete markets, but takes a random walk in the incomplete markets
version of the model.

104 Chapter 6. Consumption Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

• the consumer’s debt oscillates between two values that are functions of the Markov state in the complete markets
model, while the consumer’s debt drifts in a “unit root” fashion in the incomplete markets economy.

6.5.3 A sequel

In tax smoothing with complete and incomplete markets, we reinterpret the mathematics and Python code presented in this
lecture in order to construct tax-smoothing models in the incomplete markets tradition of Barro [Bar79] as well as in the
complete markets tradition of Lucas and Stokey [LS83].

6.5. Model 2 (One-Period Risk-Free Debt Only) 105

Advanced Quantitative Economics with Python

106 Chapter 6. Consumption Smoothing with Complete and Incomplete Markets

CHAPTER

SEVEN

TAX SMOOTHING WITH COMPLETE AND INCOMPLETE MARKETS

Contents

• Tax Smoothing with Complete and Incomplete Markets

– Overview

– Tax Smoothing with Complete Markets

– Returns on State-Contingent Debt

– More Finite Markov Chain Tax-Smoothing Examples

In addition to what’s in Anaconda, this lecture uses the library:

!pip install --upgrade quantecon

7.1 Overview

This lecture describes tax-smoothing models that are counterparts to consumption-smoothing models in Consumption
Smoothing with Complete and Incomplete Markets.

• one is in the complete markets tradition of Lucas and Stokey [LS83].
• the other is in the incomplete markets tradition of Barro [Bar79].

Complete markets allow a government to buy or sell claims contingent on all possible Markov states.
Incomplete markets allow a government to buy or sell only a limited set of securities, often only a single risk-free security.
Barro [Bar79] worked in an incomplete markets tradition by assuming that the only asset that can be traded is a risk-free
one period bond.
In his consumption-smoothing model, Hall [Hal78] had assumed an exogenous stochastic process of nonfinancial income
and an exogenous gross interest rate on one period risk-free debt that equals 𝛽−1, where 𝛽 ∈ (0, 1) is also a consumer’s
intertemporal discount factor.
Barro [Bar79] made an analogous assumption about the risk-free interest rate in a tax-smoothing model that turns out to
have the same mathematical structure as Hall’s consumption-smoothing model.
To get Barro’s model from Hall’s, all we have to do is to rename variables.
We maintain Hall’s and Barro’s assumption about the interest rate when we describe an incomplete markets version of
our model.

107

Advanced Quantitative Economics with Python

In addition, we extend their assumption about the interest rate to an appropriate counterpart to create a “complete markets”
model in the style of Lucas and Stokey [LS83].

7.1.1 Isomorphism between Consumption and Tax Smoothing

For each version of a consumption-smoothing model, a tax-smoothing counterpart can be obtained simply by relabeling
• consumption as tax collections
• a consumer’s one-period utility function as a government’s one-period loss function from collecting taxes that impose
deadweight welfare losses

• a consumer’s nonfinancial income as a government’s purchases
• a consumer’s debt as a government’s assets

Thus, we can convert the consumption-smoothingmodels in lectureConsumption Smoothing with Complete and Incomplete
Markets into tax-smoothing models by setting 𝑐𝑡 = 𝑇𝑡, 𝑦𝑡 = 𝐺𝑡, and −𝑏𝑡 = 𝑎𝑡, where 𝑇𝑡 is total tax collections, {𝐺𝑡} is
an exogenous government expenditures process, and 𝑎𝑡 is the government’s holdings of one-period risk-free bonds coming
maturing at the due at the beginning of time 𝑡.
For elaborations on this theme, please see Optimal Savings II: LQ Techniques and later parts of this lecture.
We’ll spend most of this lecture studying acquire finite-state Markov specification, but will also treat the linear state space
specification.

Link to History

For those who love history, President Thomas Jefferson’s Secretary of Treasury Albert Gallatin (1807) [Gal37] seems to
have prescribed policies that come from Barro’s model [Bar79]
Let’s start with some standard imports:

import numpy as np
import quantecon as qe
import matplotlib.pyplot as plt
%matplotlib inline

To exploit the isomorphism between consumption-smoothing and tax-smoothing models, we simply use code from Con-
sumption Smoothing with Complete and Incomplete Markets

7.1.2 Code

Among other things, this code contains a function called consumption_complete().
This function computes {𝑏(𝑖)}𝑁

𝑖=1, ̄𝑐 as outcomes given a set of parameters for the general case with 𝑁 Markov states
under the assumption of complete markets

class ConsumptionProblem:
"""
The data for a consumption problem, including some default values.
"""

def __init__(self,
β=.96,
y=[2, 1.5],

(continues on next page)

108 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

https://python-intro.quantecon.org/perm_income_cons.html

Advanced Quantitative Economics with Python

(continued from previous page)

b0=3,
P=[[.8, .2],

[.4, .6]],
init=0):

"""
Parameters

β : discount factor
y : list containing the two income levels
b0 : debt in period 0 (= initial state debt level)
P : 2x2 transition matrix
init : index of initial state s0
"""
self.β = β
self.y = np.asarray(y)
self.b0 = b0
self.P = np.asarray(P)
self.init = init

def simulate(self, N_simul=80, random_state=1):
"""
Parameters

N_simul : number of periods for simulation
random_state : random state for simulating Markov chain
"""
For the simulation define a quantecon MC class
mc = qe.MarkovChain(self.P)
s_path = mc.simulate(N_simul, init=self.init, random_state=random_state)

return s_path

def consumption_complete(cp):
"""
Computes endogenous values for the complete market case.

Parameters

cp : instance of ConsumptionProblem

Returns

c_bar : constant consumption
b : optimal debt in each state

associated with the price system

Q = β * P
"""
β, P, y, b0, init = cp.β, cp.P, cp.y, cp.b0, cp.init # Unpack

(continues on next page)

7.1. Overview 109

Advanced Quantitative Economics with Python

(continued from previous page)

Q = β * P # assumed price system

construct matrices of augmented equation system
n = P.shape[0] + 1

y_aug = np.empty((n, 1))
y_aug[0, 0] = y[init] - b0
y_aug[1:, 0] = y

Q_aug = np.zeros((n, n))
Q_aug[0, 1:] = Q[init, :]
Q_aug[1:, 1:] = Q

A = np.zeros((n, n))
A[:, 0] = 1
A[1:, 1:] = np.eye(n-1)

x = np.linalg.inv(A - Q_aug) @ y_aug

c_bar = x[0, 0]
b = x[1:, 0]

return c_bar, b

def consumption_incomplete(cp, s_path):
"""
Computes endogenous values for the incomplete market case.

Parameters

cp : instance of ConsumptionProblem
s_path : the path of states
"""
β, P, y, b0 = cp.β, cp.P, cp.y, cp.b0 # Unpack

N_simul = len(s_path)

Useful variables
n = len(y)
y.shape = (n, 1)
v = np.linalg.inv(np.eye(n) - β * P) @ y

Store consumption and debt path
b_path, c_path = np.ones(N_simul+1), np.ones(N_simul)
b_path[0] = b0

Optimal decisions from (12) and (13)
db = ((1 - β) * v - y) / β

for i, s in enumerate(s_path):
c_path[i] = (1 - β) * (v - np.full((n, 1), b_path[i]))[s, 0]
b_path[i + 1] = b_path[i] + db[s, 0]

return c_path, b_path[:-1], y[s_path]

110 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

7.1.3 Revisiting the consumption-smoothing model

The code above also contains a function called consumption_incomplete() that uses (6.17) and (6.18) to
• simulate paths of 𝑦𝑡, 𝑐𝑡, 𝑏𝑡+1

• plot these against values of ̄𝑐, 𝑏(𝑠1), 𝑏(𝑠2) found in a corresponding complete markets economy
Let’s try this, using the same parameters in both complete and incomplete markets economies

cp = ConsumptionProblem()
s_path = cp.simulate()
N_simul = len(s_path)

c_bar, debt_complete = consumption_complete(cp)

c_path, debt_path, y_path = consumption_incomplete(cp, s_path)

fig, ax = plt.subplots(1, 2, figsize=(14, 4))

ax[0].set_title('Consumption paths')
ax[0].plot(np.arange(N_simul), c_path, label='incomplete market')
ax[0].plot(np.arange(N_simul), np.full(N_simul, c_bar), label='complete market')
ax[0].plot(np.arange(N_simul), y_path, label='income', alpha=.6, ls='--')
ax[0].legend()
ax[0].set_xlabel('Periods')

ax[1].set_title('Debt paths')
ax[1].plot(np.arange(N_simul), debt_path, label='incomplete market')
ax[1].plot(np.arange(N_simul), debt_complete[s_path], label='complete market')
ax[1].plot(np.arange(N_simul), y_path, label='income', alpha=.6, ls='--')
ax[1].legend()
ax[1].axhline(0, color='k', ls='--')
ax[1].set_xlabel('Periods')

plt.show()

In the graph on the left, for the same sample path of nonfinancial income 𝑦𝑡, notice that
• consumption is constant when there are complete markets.
• consumption takes a random walk in the incomplete markets version of the model.
• the consumer’s debt oscillates between two values that are functions of the Markov state in the complete markets
model.

7.1. Overview 111

Advanced Quantitative Economics with Python

• the consumer’s debt drifts because it contains a unit root in the incomplete markets economy.

Relabeling variables to create tax-smoothing models

As indicated above, we relabel variables to acquire tax-smoothing interpretations of the complete markets and incomplete
markets consumption-smoothing models.

fig, ax = plt.subplots(1, 2, figsize=(14, 4))

ax[0].set_title('Tax collection paths')
ax[0].plot(np.arange(N_simul), c_path, label='incomplete market')
ax[0].plot(np.arange(N_simul), np.full(N_simul, c_bar), label='complete market')
ax[0].plot(np.arange(N_simul), y_path, label='govt expenditures', alpha=.6, ls='--')
ax[0].legend()
ax[0].set_xlabel('Periods')
ax[0].set_ylim([1.4, 2.1])

ax[1].set_title('Government assets paths')
ax[1].plot(np.arange(N_simul), debt_path, label='incomplete market')
ax[1].plot(np.arange(N_simul), debt_complete[s_path], label='complete market')
ax[1].plot(np.arange(N_simul), y_path, label='govt expenditures', ls='--')
ax[1].legend()
ax[1].axhline(0, color='k', ls='--')
ax[1].set_xlabel('Periods')

plt.show()

7.2 Tax Smoothing with Complete Markets

It is instructive to focus on a simple tax-smoothing example with complete markets.
This example illustrates how, in a completemarketsmodel like that of Lucas and Stokey [LS83], the government purchases
insurance from the private sector.
Payouts from the insurance it had purchased allows the government to avoid raising taxes when emergencies make gov-
ernment expenditures surge.
We assume that government expenditures take one of two values 𝐺1 < 𝐺2, where Markov state 1 means “peace” and
Markov state 2 means “war”.

112 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

The government budget constraint in Markov state 𝑖 is

𝑇𝑖 + 𝑏𝑖 = 𝐺𝑖 + ∑
𝑗

𝑄𝑖𝑗𝑏𝑗

where

𝑄𝑖𝑗 = 𝛽𝑃𝑖𝑗

is the price today of one unit of goods in Markov state 𝑗 tomorrow when the Markov state is 𝑖 today.
𝑏𝑖 is the government’s level of assets when it arrives in Markov state 𝑖.
That is, 𝑏𝑖 equals one-period state-contingent claims owed to the government that fall due at time 𝑡 when the Markov state
is 𝑖.
Thus, if 𝑏𝑖 < 0, it means the government is owed 𝑏𝑖 or owes −𝑏𝑖 when the economy arrives in Markov state 𝑖 at time 𝑡.
In our examples below, this happens when in a previous war-time period the government has sold an Arrow securities
paying off −𝑏𝑖 in peacetime Markov state 𝑖
It can be enlightening to express the government’s budget constraint in Markov state 𝑖 as

𝑇𝑖 = 𝐺𝑖 + (∑
𝑗

𝑄𝑖𝑗𝑏𝑗 − 𝑏𝑖)

in which the term (∑𝑗 𝑄𝑖𝑗𝑏𝑗 − 𝑏𝑖) equals the net amount that the government spends to purchase one-period Arrow
securities that will pay off next period in Markov states 𝑗 = 1, … , 𝑁 after it has received payments 𝑏𝑖 this period.

7.3 Returns on State-Contingent Debt

Notice that ∑𝑁
𝑗′=1 𝑄𝑖𝑗′𝑏(𝑗′) is the amount that the government spends in Markov state 𝑖 at time 𝑡 to purchase one-period

state-contingent claims that will pay off in Markov state 𝑗′ at time 𝑡 + 1.
Then the ex post one-period gross return on the portfolio of government assets held from state 𝑖 at time 𝑡 to state 𝑗 at time
𝑡 + 1 is

𝑅(𝑗|𝑖) = 𝑏(𝑗)
∑𝑁

𝑗′=1 𝑄𝑖𝑗′𝑏(𝑗′)

The cumulative return earned from putting 1 unit of time 𝑡 goods into the government portfolio of state-contingent
securities at time 𝑡 and then rolling over the proceeds into the government portfolio each period thereafter is

𝑅𝑇 (𝑠𝑡+𝑇 , 𝑠𝑡+𝑇 −1, … , 𝑠𝑡) ≡ 𝑅(𝑠𝑡+1|𝑠𝑡)𝑅(𝑠𝑡+2|𝑠𝑡+1) ⋯ 𝑅(𝑠𝑡+𝑇 |𝑠𝑡+𝑇 −1)

Here is some code that computes one-period and cumulative returns on the government portfolio in the finite-stateMarkov
version of our complete markets model.
Convention: In this code, when 𝑃𝑖𝑗 = 0, we arbitrarily set 𝑅(𝑗|𝑖) to be 0.

def ex_post_gross_return(b, cp):
"""
calculate the ex post one-period gross return on the portfolio
of government assets, given b and Q.
"""
Q = cp.β * cp.P

(continues on next page)

7.3. Returns on State-Contingent Debt 113

Advanced Quantitative Economics with Python

(continued from previous page)

values = Q @ b

n = len(b)
R = np.zeros((n, n))

for i in range(n):
ind = cp.P[i, :] != 0
R[i, ind] = b[ind] / values[i]

return R

def cumulative_return(s_path, R):
"""
compute cumulative return from holding 1 unit market portfolio
of government bonds, given some simulated state path.
"""
T = len(s_path)

RT_path = np.empty(T)
RT_path[0] = 1
RT_path[1:] = np.cumprod([R[s_path[t], s_path[t+1]] for t in range(T-1)])

return RT_path

7.3.1 An Example of Tax Smoothing

We’ll study a tax-smoothing model with two Markov states.
In Markov state 1, there is peace and government expenditures are low.
In Markov state 2, there is war and government expenditures are high.
We’ll compute optimal policies in both complete and incomplete markets settings.
Then we’ll feed in a particular assumed path of Markov states and study outcomes.

• We’ll assume that the initial Markov state is state 1, which means we start from a state of peace.
• The government then experiences 3 time periods of war and come back to peace again.
• The history of Markov states is therefore {𝑝𝑒𝑎𝑐𝑒, 𝑤𝑎𝑟, 𝑤𝑎𝑟, 𝑤𝑎𝑟, 𝑝𝑒𝑎𝑐𝑒}.

In addition, as indicated above, to simplify our example, we’ll set the government’s initial asset level to 1, so that 𝑏1 = 1.
Here’s code that itinitializes government assets to be unity in an initial peace time Markov state.

Parameters
β = .96

change notation y to g in the tax-smoothing example
g = [1, 2]
b0 = 1
P = np.array([[.8, .2],

[.4, .6]])

cp = ConsumptionProblem(β, g, b0, P)

(continues on next page)

114 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

Q = β * P

change notation c_bar to T_bar in the tax-smoothing example
T_bar, b = consumption_complete(cp)
R = ex_post_gross_return(b, cp)
s_path = [0, 1, 1, 1, 0]
RT_path = cumulative_return(s_path, R)

print(f"P \n {P}")
print(f"Q \n {Q}")
print(f"Govt expenditures in peace and war = {g}")
print(f"Constant tax collections = {T_bar}")
print(f"Govt debts in two states = {-b}")

msg = """
Now let's check the government's budget constraint in peace and war.
Our assumptions imply that the government always purchases 0 units of the
Arrow peace security.
"""
print(msg)

AS1 = Q[0, :] @ b
spending on Arrow security
since the spending on Arrow peace security is not 0 anymore after we change b0 to 1
print(f"Spending on Arrow security in peace = {AS1}")
AS2 = Q[1, :] @ b
print(f"Spending on Arrow security in war = {AS2}")

print("")
tax collections minus debt levels
print("Government tax collections minus debt levels in peace and war")
TB1 = T_bar + b[0]
print(f"T+b in peace = {TB1}")
TB2 = T_bar + b[1]
print(f"T+b in war = {TB2}")

print("")
print("Total government spending in peace and war")
G1 = g[0] + AS1
G2 = g[1] + AS2
print(f"Peace = {G1}")
print(f"War = {G2}")

print("")
print("Let's see ex-post and ex-ante returns on Arrow securities")

Π = np.reciprocal(Q)
exret = Π
print(f"Ex-post returns to purchase of Arrow securities = \n {exret}")
exant = Π * P
print(f"Ex-ante returns to purchase of Arrow securities \n {exant}")

print("")
print("The Ex-post one-period gross return on the portfolio of government assets")
print(R)

(continues on next page)

7.3. Returns on State-Contingent Debt 115

Advanced Quantitative Economics with Python

(continued from previous page)

print("")
print("The cumulative return earned from holding 1 unit market portfolio of␣

↪government bonds")
print(RT_path[-1])

P
[[0.8 0.2]
[0.4 0.6]]

Q
[[0.768 0.192]
[0.384 0.576]]

Govt expenditures in peace and war = [1, 2]
Constant tax collections = 1.2716883116883118
Govt debts in two states = [-1. -2.62337662]

Now let's check the government's budget constraint in peace and war.
Our assumptions imply that the government always purchases 0 units of the
Arrow peace security.

Spending on Arrow security in peace = 1.2716883116883118
Spending on Arrow security in war = 1.895064935064935

Government tax collections minus debt levels in peace and war
T+b in peace = 2.2716883116883118
T+b in war = 3.895064935064935

Total government spending in peace and war
Peace = 2.2716883116883118
War = 3.895064935064935

Let's see ex-post and ex-ante returns on Arrow securities
Ex-post returns to purchase of Arrow securities =
[[1.30208333 5.20833333]
[2.60416667 1.73611111]]

Ex-ante returns to purchase of Arrow securities
[[1.04166667 1.04166667]
[1.04166667 1.04166667]]

The Ex-post one-period gross return on the portfolio of government assets
[[0.78635621 2.0629085]
[0.5276864 1.38432018]]

The cumulative return earned from holding 1 unit market portfolio of government␣
↪bonds

2.0860704239993675

116 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

7.3.2 Explanation

In this example, the government always purchase 1 units of the Arrow security that pays off in peace time (Markov state
1).
And it purchases a higher amount of the security that pays off in war time (Markov state 2).
Thus, this is an example in which

• during peacetime, the government purchases insurance against the possibility that war breaks out next period
• during wartime, the government purchases insurance against the possibility that war continues another period
• so long as peace continues, the ex post return on insurance against war is low
• when war breaks out or continues, the ex post return on insurance against war is high
• given the history of states that we assumed, the value of one unit of the portfolio of government assets eventually
doubles in the end because of high returns during wartime.

We recommend plugging the quantities computed above into the government budget constraints in the two Markov states
and staring.

Exercise 7.3.1
Try changing the Markov transition matrix so that

𝑃 = [1 0
.2 .8]

Also, start the system in Markov state 2 (war) with initial government assets −10, so that the government starts the war
in debt and 𝑏2 = −10.

7.4 More Finite Markov Chain Tax-Smoothing Examples

To interpret some episodes in the fiscal history of the United States, we find it interesting to study a few more examples.
We compute examples in an 𝑁 state Markov setting under both complete and incomplete markets.
These examples differ in how Markov states are jumping between peace and war.
To wrap procedures for solving models, relabeling graphs so that we record government debt rather than government
assets, and displaying results, we construct a Python class.

class TaxSmoothingExample:
"""
construct a tax-smoothing example, by relabeling consumption problem class.
"""
def __init__(self, g, P, b0, states, β=.96,

init=0, s_path=None, N_simul=80, random_state=1):

self.states = states # state names

if the path of states is not specified
if s_path is None:

self.cp = ConsumptionProblem(β, g, b0, P, init=init)
self.s_path = self.cp.simulate(N_simul=N_simul, random_state=random_state)

(continues on next page)

7.4. More Finite Markov Chain Tax-Smoothing Examples 117

Advanced Quantitative Economics with Python

(continued from previous page)

if the path of states is specified
else:

self.cp = ConsumptionProblem(β, g, b0, P, init=s_path[0])
self.s_path = s_path

solve for complete market case
self.T_bar, self.b = consumption_complete(self.cp)
self.debt_value = - (β * P @ self.b).T

solve for incomplete market case
self.T_path, self.asset_path, self.g_path = \

consumption_incomplete(self.cp, self.s_path)

calculate returns on state-contingent debt
self.R = ex_post_gross_return(self.b, self.cp)
self.RT_path = cumulative_return(self.s_path, self.R)

def display(self):

plot graphs
N = len(self.T_path)

plt.figure()
plt.title('Tax collection paths')
plt.plot(np.arange(N), self.T_path, label='incomplete market')
plt.plot(np.arange(N), np.full(N, self.T_bar), label='complete market')
plt.plot(np.arange(N), self.g_path, label='govt expenditures', alpha=.6, ls='-

↪-')
plt.legend()
plt.xlabel('Periods')
plt.show()

plt.title('Government debt paths')
plt.plot(np.arange(N), -self.asset_path, label='incomplete market')
plt.plot(np.arange(N), -self.b[self.s_path], label='complete market')
plt.plot(np.arange(N), self.g_path, label='govt expenditures', ls='--')
plt.plot(np.arange(N), self.debt_value[self.s_path], label="value of debts␣

↪today")
plt.legend()
plt.axhline(0, color='k', ls='--')
plt.xlabel('Periods')
plt.show()

fig, ax = plt.subplots()
ax.set_title('Cumulative return path (complete markets)')
line1 = ax.plot(np.arange(N), self.RT_path)[0]
c1 = line1.get_color()
ax.set_xlabel('Periods')
ax.set_ylabel('Cumulative return', color=c1)

ax_ = ax.twinx()
ax_._get_lines.prop_cycler = ax._get_lines.prop_cycler
line2 = ax_.plot(np.arange(N), self.g_path, ls='--')[0]
c2 = line2.get_color()
ax_.set_ylabel('Government expenditures', color=c2)

(continues on next page)

118 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

plt.show()

plot detailed information
Q = self.cp.β * self.cp.P

print(f"P \n {self.cp.P}")
print(f"Q \n {Q}")
print(f"Govt expenditures in {', '.join(self.states)} = {self.cp.y.flatten()}

↪")
print(f"Constant tax collections = {self.T_bar}")
print(f"Govt debt in {len(self.states)} states = {-self.b}")

print("")
print(f"Government tax collections minus debt levels in {', '.join(self.

↪states)}")
for i in range(len(self.states)):

TB = self.T_bar + self.b[i]
print(f" T+b in {self.states[i]} = {TB}")

print("")
print(f"Total government spending in {', '.join(self.states)}")
for i in range(len(self.states)):

G = self.cp.y[i, 0] + Q[i, :] @ self.b
print(f" {self.states[i]} = {G}")

print("")
print("Let's see ex-post and ex-ante returns on Arrow securities \n")

print(f"Ex-post returns to purchase of Arrow securities:")
for i in range(len(self.states)):

for j in range(len(self.states)):
if Q[i, j] != 0.:

print(f" π({self.states[j]}|{self.states[i]}) = {1/Q[i, j]}")

print("")
exant = 1 / self.cp.β
print(f"Ex-ante returns to purchase of Arrow securities = {exant}")

print("")
print("The Ex-post one-period gross return on the portfolio of government␣

↪assets")
print(self.R)

print("")
print("The cumulative return earned from holding 1 unit market portfolio of␣

↪government bonds")
print(self.RT_path[-1])

7.4. More Finite Markov Chain Tax-Smoothing Examples 119

Advanced Quantitative Economics with Python

7.4.1 Parameters

γ = .1
λ = .1
ϕ = .1
θ = .1
ψ = .1
g_L = .5
g_M = .8
g_H = 1.2
β = .96

7.4.2 Example 1

This example is designed to produce some stylized versions of tax, debt, and deficit paths followed by the United States
during and after the Civil War and also during and after World War I.
We set the Markov chain to have three states

𝑃 = ⎡⎢
⎣

1 − 𝜆 𝜆 0
0 1 − 𝜙 𝜙
0 0 1

⎤⎥
⎦

where the government expenditure vector 𝑔 = [𝑔𝐿 𝑔𝐻 𝑔𝑀] where 𝑔𝐿 < 𝑔𝑀 < 𝑔𝐻 .
We set 𝑏0 = 1 and assume that the initial Markov state is state 1 so that the system starts off in peace.
These parameters have government expenditure beginning at a low level, surging during the war, then decreasing after
the war to a level that exceeds its prewar level.
(This type of pattern occurred in the US Civil War and World War I experiences.)

g_ex1 = [g_L, g_H, g_M]
P_ex1 = np.array([[1-λ, λ, 0],

[0, 1-ϕ, ϕ],
[0, 0, 1]])

b0_ex1 = 1
states_ex1 = ['peace', 'war', 'postwar']

ts_ex1 = TaxSmoothingExample(g_ex1, P_ex1, b0_ex1, states_ex1, random_state=1)
ts_ex1.display()

120 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

7.4. More Finite Markov Chain Tax-Smoothing Examples 121

Advanced Quantitative Economics with Python

122 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

P
[[0.9 0.1 0.]
[0. 0.9 0.1]
[0. 0. 1.]]

Q
[[0.864 0.096 0.]
[0. 0.864 0.096]
[0. 0. 0.96]]

Govt expenditures in peace, war, postwar = [0.5 1.2 0.8]
Constant tax collections = 0.7548096885813149
Govt debt in 3 states = [-1. -4.07093426 -1.12975779]

Government tax collections minus debt levels in peace, war, postwar
T+b in peace = 1.754809688581315
T+b in war = 4.825743944636679
T+b in postwar = 1.8845674740484442

Total government spending in peace, war, postwar
peace = 1.754809688581315
war = 4.825743944636679
postwar = 1.8845674740484442

Let's see ex-post and ex-ante returns on Arrow securities

Ex-post returns to purchase of Arrow securities:
π(peace|peace) = 1.1574074074074074
π(war|peace) = 10.416666666666666

(continues on next page)

7.4. More Finite Markov Chain Tax-Smoothing Examples 123

Advanced Quantitative Economics with Python

(continued from previous page)

π(war|war) = 1.1574074074074074
π(postwar|war) = 10.416666666666666
π(postwar|postwar) = 1.0416666666666667

Ex-ante returns to purchase of Arrow securities = 1.0416666666666667

The Ex-post one-period gross return on the portfolio of government assets
[[0.7969336 3.24426428 0.]
[0. 1.12278592 0.31159337]
[0. 0. 1.04166667]]

The cumulative return earned from holding 1 unit market portfolio of government␣
↪bonds

0.17908622141460231

The following shows the use of the wrapper class when a specific state path is given
s_path = [0, 0, 1, 1, 2]
ts_s_path = TaxSmoothingExample(g_ex1, P_ex1, b0_ex1, states_ex1, s_path=s_path)
ts_s_path.display()

124 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

7.4. More Finite Markov Chain Tax-Smoothing Examples 125

Advanced Quantitative Economics with Python

P
[[0.9 0.1 0.]
[0. 0.9 0.1]
[0. 0. 1.]]

Q
[[0.864 0.096 0.]
[0. 0.864 0.096]
[0. 0. 0.96]]

Govt expenditures in peace, war, postwar = [0.5 1.2 0.8]
Constant tax collections = 0.7548096885813149
Govt debt in 3 states = [-1. -4.07093426 -1.12975779]

Government tax collections minus debt levels in peace, war, postwar
T+b in peace = 1.754809688581315
T+b in war = 4.825743944636679
T+b in postwar = 1.8845674740484442

Total government spending in peace, war, postwar
peace = 1.754809688581315
war = 4.825743944636679
postwar = 1.8845674740484442

Let's see ex-post and ex-ante returns on Arrow securities

Ex-post returns to purchase of Arrow securities:
π(peace|peace) = 1.1574074074074074
π(war|peace) = 10.416666666666666

(continues on next page)

126 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

π(war|war) = 1.1574074074074074
π(postwar|war) = 10.416666666666666
π(postwar|postwar) = 1.0416666666666667

Ex-ante returns to purchase of Arrow securities = 1.0416666666666667

The Ex-post one-period gross return on the portfolio of government assets
[[0.7969336 3.24426428 0.]
[0. 1.12278592 0.31159337]
[0. 0. 1.04166667]]

The cumulative return earned from holding 1 unit market portfolio of government␣
↪bonds

0.9045311615620277

7.4.3 Example 2

This example captures a peace followed by a war, eventually followed by a permanent peace .
Here we set

𝑃 = ⎡⎢
⎣

1 0 0
0 1 − 𝛾 𝛾
𝜙 0 1 − 𝜙

⎤⎥
⎦

where the government expenditure vector 𝑔 = [𝑔𝐿 𝑔𝐿 𝑔𝐻] and where 𝑔𝐿 < 𝑔𝐻 .
We assume 𝑏0 = 1 and that the initial Markov state is state 2 so that the system starts off in a temporary peace.

g_ex2 = [g_L, g_L, g_H]
P_ex2 = np.array([[1, 0, 0],

[0, 1-γ, γ],
[ϕ, 0, 1-ϕ]])

b0_ex2 = 1
states_ex2 = ['peace', 'temporary peace', 'war']

ts_ex2 = TaxSmoothingExample(g_ex2, P_ex2, b0_ex2, states_ex2, init=1, random_state=1)
ts_ex2.display()

7.4. More Finite Markov Chain Tax-Smoothing Examples 127

Advanced Quantitative Economics with Python

128 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

7.4. More Finite Markov Chain Tax-Smoothing Examples 129

Advanced Quantitative Economics with Python

P
[[1. 0. 0.]
[0. 0.9 0.1]
[0.1 0. 0.9]]

Q
[[0.96 0. 0.]
[0. 0.864 0.096]
[0.096 0. 0.864]]

Govt expenditures in peace, temporary peace, war = [0.5 0.5 1.2]
Constant tax collections = 0.6053287197231834
Govt debt in 3 states = [2.63321799 -1. -2.51384083]

Government tax collections minus debt levels in peace, temporary peace, war
T+b in peace = -2.0278892733564
T+b in temporary peace = 1.6053287197231834
T+b in war = 3.1191695501730106

Total government spending in peace, temporary peace, war
peace = -2.0278892733564
temporary peace = 1.6053287197231834
war = 3.1191695501730106

Let's see ex-post and ex-ante returns on Arrow securities

Ex-post returns to purchase of Arrow securities:
π(peace|peace) = 1.0416666666666667
π(temporary peace|temporary peace) = 1.1574074074074074

(continues on next page)

130 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

π(war|temporary peace) = 10.416666666666666
π(peace|war) = 10.416666666666666
π(war|war) = 1.1574074074074074

Ex-ante returns to purchase of Arrow securities = 1.0416666666666667

The Ex-post one-period gross return on the portfolio of government assets
[[1.04166667 0. 0.]
[0. 0.90470824 2.27429251]
[-1.37206116 0. 1.30985865]]

The cumulative return earned from holding 1 unit market portfolio of government␣
↪bonds

-9.368991732594216

7.4.4 Example 3

This example features a situation in which one of the states is a war state with no hope of peace next period, while another
state is a war state with a positive probability of peace next period.
The Markov chain is:

𝑃 =
⎡
⎢⎢
⎣

1 − 𝜆 𝜆 0 0
0 1 − 𝜙 𝜙 0
0 0 1 − 𝜓 𝜓
𝜃 0 0 1 − 𝜃

⎤
⎥⎥
⎦

with government expenditure levels for the four states being [𝑔𝐿 𝑔𝐿 𝑔𝐻 𝑔𝐻] where 𝑔𝐿 < 𝑔𝐻 .
We start with 𝑏0 = 1 and 𝑠0 = 1.

g_ex3 = [g_L, g_L, g_H, g_H]
P_ex3 = np.array([[1-λ, λ, 0, 0],

[0, 1-ϕ, ϕ, 0],
[0, 0, 1-ψ, ψ],
[θ, 0, 0, 1-θ]])

b0_ex3 = 1
states_ex3 = ['peace1', 'peace2', 'war1', 'war2']

ts_ex3 = TaxSmoothingExample(g_ex3, P_ex3, b0_ex3, states_ex3, random_state=1)
ts_ex3.display()

7.4. More Finite Markov Chain Tax-Smoothing Examples 131

Advanced Quantitative Economics with Python

132 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

7.4. More Finite Markov Chain Tax-Smoothing Examples 133

Advanced Quantitative Economics with Python

P
[[0.9 0.1 0. 0.]
[0. 0.9 0.1 0.]
[0. 0. 0.9 0.1]
[0.1 0. 0. 0.9]]

Q
[[0.864 0.096 0. 0.]
[0. 0.864 0.096 0.]
[0. 0. 0.864 0.096]
[0.096 0. 0. 0.864]]

Govt expenditures in peace1, peace2, war1, war2 = [0.5 0.5 1.2 1.2]
Constant tax collections = 0.6927944572748268
Govt debt in 4 states = [-1. -3.42494226 -6.86027714 -4.43533487]

Government tax collections minus debt levels in peace1, peace2, war1, war2
T+b in peace1 = 1.6927944572748268
T+b in peace2 = 4.117736720554273
T+b in war1 = 7.553071593533488
T+b in war2 = 5.128129330254041

Total government spending in peace1, peace2, war1, war2
peace1 = 1.6927944572748268
peace2 = 4.117736720554273
war1 = 7.553071593533487
war2 = 5.128129330254041

Let's see ex-post and ex-ante returns on Arrow securities

(continues on next page)

134 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

Ex-post returns to purchase of Arrow securities:
π(peace1|peace1) = 1.1574074074074074
π(peace2|peace1) = 10.416666666666666
π(peace2|peace2) = 1.1574074074074074
π(war1|peace2) = 10.416666666666666
π(war1|war1) = 1.1574074074074074
π(war2|war1) = 10.416666666666666
π(peace1|war2) = 10.416666666666666
π(war2|war2) = 1.1574074074074074

Ex-ante returns to purchase of Arrow securities = 1.0416666666666667

The Ex-post one-period gross return on the portfolio of government assets
[[0.83836741 2.87135998 0. 0.]
[0. 0.94670854 1.89628977 0.]
[0. 0. 1.07983627 0.69814023]
[0.2545741 0. 0. 1.1291214]]

The cumulative return earned from holding 1 unit market portfolio of government␣
↪bonds

0.02371440178864222

7.4.5 Example 4

Here the Markov chain is:

𝑃 =
⎡
⎢
⎢
⎢
⎣

1 − 𝜆 𝜆 0 0 0
0 1 − 𝜙 𝜙 0 0
0 0 1 − 𝜓 𝜓 0
0 0 0 1 − 𝜃 𝜃
0 0 0 0 1

⎤
⎥
⎥
⎥
⎦

with government expenditure levels for the five states being [𝑔𝐿 𝑔𝐿 𝑔𝐻 𝑔𝐻 𝑔𝐿] where 𝑔𝐿 < 𝑔𝐻 .
We ssume that 𝑏0 = 1 and 𝑠0 = 1.

g_ex4 = [g_L, g_L, g_H, g_H, g_L]
P_ex4 = np.array([[1-λ, λ, 0, 0, 0],

[0, 1-ϕ, ϕ, 0, 0],
[0, 0, 1-ψ, ψ, 0],
[0, 0, 0, 1-θ, θ],
[0, 0, 0, 0, 1]])

b0_ex4 = 1
states_ex4 = ['peace1', 'peace2', 'war1', 'war2', 'permanent peace']

ts_ex4 = TaxSmoothingExample(g_ex4, P_ex4, b0_ex4, states_ex4, random_state=1)
ts_ex4.display()

7.4. More Finite Markov Chain Tax-Smoothing Examples 135

Advanced Quantitative Economics with Python

136 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

7.4. More Finite Markov Chain Tax-Smoothing Examples 137

Advanced Quantitative Economics with Python

P
[[0.9 0.1 0. 0. 0.]
[0. 0.9 0.1 0. 0.]
[0. 0. 0.9 0.1 0.]
[0. 0. 0. 0.9 0.1]
[0. 0. 0. 0. 1.]]

Q
[[0.864 0.096 0. 0. 0.]
[0. 0.864 0.096 0. 0.]
[0. 0. 0.864 0.096 0.]
[0. 0. 0. 0.864 0.096]
[0. 0. 0. 0. 0.96]]

Govt expenditures in peace1, peace2, war1, war2, permanent peace = [0.5 0.5 1.2 1.
↪2 0.5]

Constant tax collections = 0.6349979047185738
Govt debt in 5 states = [-1. -2.82289484 -5.4053292 -1.77211121 3.

↪37494762]

Government tax collections minus debt levels in peace1, peace2, war1, war2,␣
↪permanent peace
T+b in peace1 = 1.6349979047185736
T+b in peace2 = 3.4578927455370505
T+b in war1 = 6.040327103363229
T+b in war2 = 2.4071091102836433
T+b in permanent peace = -2.7399497132457697

Total government spending in peace1, peace2, war1, war2, permanent peace

(continues on next page)

138 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

peace1 = 1.6349979047185736
peace2 = 3.457892745537051
war1 = 6.040327103363228
war2 = 2.407109110283643
permanent peace = -2.7399497132457697

Let's see ex-post and ex-ante returns on Arrow securities

Ex-post returns to purchase of Arrow securities:
π(peace1|peace1) = 1.1574074074074074
π(peace2|peace1) = 10.416666666666666
π(peace2|peace2) = 1.1574074074074074
π(war1|peace2) = 10.416666666666666
π(war1|war1) = 1.1574074074074074
π(war2|war1) = 10.416666666666666
π(war2|war2) = 1.1574074074074074
π(permanent peace|war2) = 10.416666666666666
π(permanent peace|permanent peace) = 1.0416666666666667

Ex-ante returns to purchase of Arrow securities = 1.0416666666666667

The Ex-post one-period gross return on the portfolio of government assets
[[0.8810589 2.48713661 0. 0. 0.]
[0. 0.95436011 1.82742569 0. 0.]
[0. 0. 1.11672808 0.36611394 0.]
[0. 0. 0. 1.46806216 -2.79589276]
[0. 0. 0. 0. 1.04166667]]

The cumulative return earned from holding 1 unit market portfolio of government␣
↪bonds

-11.132109773063616

7.4.6 Example 5

The example captures a case when the system follows a deterministic path from peace to war, and back to peace again.
Since there is no randomness, the outcomes in complete markets setting should be the same as in incomplete markets
setting.
The Markov chain is:

𝑃 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

with government expenditure levels for the seven states being [𝑔𝐿 𝑔𝐿 𝑔𝐻 𝑔𝐻 𝑔𝐻 𝑔𝐻 𝑔𝐿] where 𝑔𝐿 < 𝑔𝐻 .
Assume 𝑏0 = 1 and 𝑠0 = 1.

g_ex5 = [g_L, g_L, g_H, g_H, g_H, g_H, g_L]
P_ex5 = np.array([[0, 1, 0, 0, 0, 0, 0],

(continues on next page)

7.4. More Finite Markov Chain Tax-Smoothing Examples 139

Advanced Quantitative Economics with Python

(continued from previous page)

[0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 1]])

b0_ex5 = 1
states_ex5 = ['peace1', 'peace2', 'war1', 'war2', 'war3', 'permanent peace']

ts_ex5 = TaxSmoothingExample(g_ex5, P_ex5, b0_ex5, states_ex5, N_simul=7, random_
↪state=1)

ts_ex5.display()

140 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

7.4. More Finite Markov Chain Tax-Smoothing Examples 141

Advanced Quantitative Economics with Python

P
[[0 1 0 0 0 0 0]
[0 0 1 0 0 0 0]
[0 0 0 1 0 0 0]
[0 0 0 0 1 0 0]
[0 0 0 0 0 1 0]
[0 0 0 0 0 0 1]
[0 0 0 0 0 0 1]]

Q
[[0. 0.96 0. 0. 0. 0. 0.]
[0. 0. 0.96 0. 0. 0. 0.]
[0. 0. 0. 0.96 0. 0. 0.]
[0. 0. 0. 0. 0.96 0. 0.]
[0. 0. 0. 0. 0. 0.96 0.]
[0. 0. 0. 0. 0. 0. 0.96]
[0. 0. 0. 0. 0. 0. 0.96]]

Govt expenditures in peace1, peace2, war1, war2, war3, permanent peace = [0.5 0.5␣
↪1.2 1.2 1.2 1.2 0.5]

Constant tax collections = 0.5571895472128001
Govt debt in 6 states = [-1. -1.10123911 -1.20669652 -0.58738132 0.

↪05773868 0.72973868
1.42973868]

Government tax collections minus debt levels in peace1, peace2, war1, war2, war3,␣
↪permanent peace
T+b in peace1 = 1.5571895472128001
T+b in peace2 = 1.6584286588928001

(continues on next page)

142 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

T+b in war1 = 1.7638860668928005
T+b in war2 = 1.1445708668928003
T+b in war3 = 0.4994508668928004
T+b in permanent peace = -0.17254913310719955

Total government spending in peace1, peace2, war1, war2, war3, permanent peace
peace1 = 1.5571895472128
peace2 = 1.6584286588928003
war1 = 1.7638860668928
war2 = 1.1445708668928003
war3 = 0.49945086689280027
permanent peace = -0.17254913310719933

Let's see ex-post and ex-ante returns on Arrow securities

Ex-post returns to purchase of Arrow securities:
π(peace2|peace1) = 1.0416666666666667
π(war1|peace2) = 1.0416666666666667
π(war2|war1) = 1.0416666666666667
π(war3|war2) = 1.0416666666666667
π(permanent peace|war3) = 1.0416666666666667

Ex-ante returns to purchase of Arrow securities = 1.0416666666666667

The Ex-post one-period gross return on the portfolio of government assets
[[0. 1.04166667 0. 0. 0. 0.
0.]

[0. 0. 1.04166667 0. 0. 0.
0.]

[0. 0. 0. 1.04166667 0. 0.
0.]

[0. 0. 0. 0. 1.04166667 0.
0.]

[0. 0. 0. 0. 0. 1.04166667
0.]

[0. 0. 0. 0. 0. 0.
1.04166667]

[0. 0. 0. 0. 0. 0.
1.04166667]]

The cumulative return earned from holding 1 unit market portfolio of government␣
↪bonds

1.2775343959060068

7.4.7 Continuous-State Gaussian Model

To construct a tax-smoothing version of the complete markets consumption-smoothing model with a continuous state
space that we presented in the lecture consumption smoothing with complete and incomplete markets, we simply relabel
variables.
Thus, a government faces a sequence of budget constraints

𝑇𝑡 + 𝑏𝑡 = 𝑔𝑡 + 𝛽𝔼𝑡𝑏𝑡+1, 𝑡 ≥ 0

7.4. More Finite Markov Chain Tax-Smoothing Examples 143

Advanced Quantitative Economics with Python

where 𝑇𝑡 is tax revenues, 𝑏𝑡 are receipts at 𝑡 from contingent claims that the government had purchased at time 𝑡 − 1, and

𝛽𝔼𝑡𝑏𝑡+1 ≡ ∫ 𝑞𝑡+1(𝑥𝑡+1|𝑥𝑡)𝑏𝑡+1(𝑥𝑡+1)𝑑𝑥𝑡+1

is the value of time 𝑡 + 1 state-contingent claims purchased by the government at time 𝑡.
As above with the consumption-smoothing model, we can solve the time 𝑡 budget constraint forward to obtain

𝑏𝑡 = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗(𝑔𝑡+𝑗 − 𝑇𝑡+𝑗)

which can be rearranged to become

𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑔𝑡+𝑗 = 𝑏𝑡 + 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑇𝑡+𝑗

which states that the present value of government purchases equals the value of government assets at 𝑡 plus the present
value of tax receipts.
With these relabelings, examples presented in consumption smoothing with complete and incomplete markets can be inter-
preted as tax-smoothing models.
Returns: In the continuous state version of our incomplete markets model, the ex post one-period gross rate of return
on the government portfolio equals

𝑅(𝑥𝑡+1|𝑥𝑡) = 𝑏(𝑥𝑡+1)
𝛽𝐸𝑏(𝑥𝑡+1)|𝑥𝑡

Related Lectures

Throughout this lecture, we have taken one-period interest rates and Arrow security prices as exogenous objects deter-
mined outside the model and specified them in ways designed to align our models closely with the consumption smoothing
model of Barro [Bar79].
Other lectures make these objects endogenous and describe how a government optimallymanipulates prices of government
debt, albeit indirectly via effects distorting taxes have on equilibrium prices and allocations.
In optimal taxation in an LQ economy and recursive optimal taxation, we study complete-markets models in which the
government recognizes that it can manipulate Arrow securities prices.
Linear-quadratic versions of the Lucas-Stokey tax-smoothing model are described inOptimal Taxation in an LQ Economy.
That lecture is a warm-up for the non-linear-quadratic model of tax smoothing described in Optimal Taxation with State-
Contingent Debt.
In both Optimal Taxation in an LQ Economy and Optimal Taxation with State-Contingent Debt, the government recognizes
that its decisions affect prices.
In optimal taxation with incomplete markets, we study an incomplete-markets model in which the government also ma-
nipulates prices of government debt.

144 Chapter 7. Tax Smoothing with Complete and Incomplete Markets

CHAPTER

EIGHT

MARKOV JUMP LINEAR QUADRATIC DYNAMIC PROGRAMMING

Contents

• Markov Jump Linear Quadratic Dynamic Programming

– Overview

– Review of useful LQ dynamic programming formulas

– Linked Riccati equations for Markov LQ dynamic programming

– Applications

– Example 1

– Example 2

– More examples

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

8.1 Overview

This lecture describesMarkov jump linear quadratic dynamic programming, an extension of the method described
in the first LQ control lecture.
Markov jump linear quadratic dynamic programming is described and analyzed in [DVGC99] and the references cited
there.
The method has been applied to problems in macroeconomics and monetary economics by [SW+08] and [SW09].
The periodic models of seasonality described in chapter 14 of [HS13] are a special case of Markov jump linear quadratic
problems.
Markov jump linear quadratic dynamic programming combines advantages of

• the computational simplicity of linear quadratic dynamic programming, with
• the ability of finite state Markov chains to represent interesting patterns of random variation.

The idea is to replace the constant matrices that define a linear quadratic dynamic programming problem with 𝑁 sets
of matrices that are fixed functions of the state of an 𝑁 state Markov chain.
The state of the Markov chain together with the continuous 𝑛 × 1 state vector 𝑥𝑡 form the state of the system.

145

https://python-intro.quantecon.org/lqcontrol.html

Advanced Quantitative Economics with Python

For the class of infinite horizon problems being studied in this lecture, we obtain 𝑁 interrelated matrix Riccati equations
that determine 𝑁 optimal value functions and 𝑁 linear decision rules.
One of these value functions and one of these decision rules apply in each of the 𝑁 Markov states.
That is, when the Markov state is in state 𝑗, the value function and the decision rule for state 𝑗 prevails.

8.2 Review of useful LQ dynamic programming formulas

To begin, it is handy to have the following reminder in mind.
A linear quadratic dynamic programming problem consists of a scalar discount factor 𝛽 ∈ (0, 1), an 𝑛 × 1 state
vector 𝑥𝑡, an initial condition for 𝑥0, a 𝑘 × 1 control vector 𝑢𝑡, a 𝑝 × 1 random shock vector 𝑤𝑡+1 and the following two
triples of matrices:

• A triple of matrices (𝑅, 𝑄, 𝑊) defining a loss function
𝑟(𝑥𝑡, 𝑢𝑡) = 𝑥′

𝑡𝑅𝑥𝑡 + 𝑢′
𝑡𝑄𝑢𝑡 + 2𝑢′

𝑡𝑊𝑥𝑡

• a triple of matrices (𝐴, 𝐵, 𝐶) defining a state-transition law
𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1

The problem is

−𝑥′
0𝑃𝑥0 − 𝜌 = min

{𝑢𝑡}∞
𝑡=0

𝐸
∞

∑
𝑡=0

𝛽𝑡𝑟(𝑥𝑡, 𝑢𝑡)

subject to the transition law for the state.
The optimal decision rule has the form

𝑢𝑡 = −𝐹𝑥𝑡

and the optimal value function is of the form

− (𝑥′
𝑡𝑃𝑥𝑡 + 𝜌)

where 𝑃 solves the algebraic matrix Riccati equation

𝑃 = 𝑅 + 𝛽𝐴′𝑃𝐴 − (𝛽𝐵′𝑃𝐴 + 𝑊)′(𝑄 + 𝛽𝐵𝑃𝐵)−1(𝛽𝐵𝑃𝐴 + 𝑊)

and the constant 𝜌 satisfies

𝜌 = 𝛽 (𝜌 + trace(𝑃𝐶𝐶′))

and the matrix 𝐹 in the decision rule for 𝑢𝑡 satisfies

𝐹 = (𝑄 + 𝛽𝐵′𝑃𝐵)−1(𝛽(𝐵′𝑃𝐴) + 𝑊)

With the preceding formulas in mind, we are ready to approach Markov Jump linear quadratic dynamic programming.

146 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

8.3 Linked Riccati equations for Markov LQ dynamic programming

The key idea is to make the matrices 𝐴, 𝐵, 𝐶, 𝑅, 𝑄, 𝑊 fixed functions of a finite state 𝑠 that is governed by an 𝑁 state
Markov chain.
This makes decision rules depend on the Markov state, and so fluctuate through time in limited ways.
In particular, we use the following extension of a discrete-time linear quadratic dynamic programming problem.
We let 𝑠𝑡 ∈ [1, 2, … , 𝑁] be a time 𝑡 realization of an 𝑁 -state Markov chain with transition matrix Π having typical
element Π𝑖𝑗.
Here 𝑖 denotes today and 𝑗 denotes tomorrow and

Π𝑖𝑗 = Prob(𝑠𝑡+1 = 𝑗|𝑠𝑡 = 𝑖)
We’ll switch between labeling today’s state as 𝑠𝑡 and 𝑖 and between labeling tomorrow’s state as 𝑠𝑡+1 or 𝑗.
The decision-maker solves the minimization problem:

min
{𝑢𝑡}∞

𝑡=0
𝐸

∞
∑
𝑡=0

𝛽𝑡𝑟(𝑥𝑡, 𝑠𝑡, 𝑢𝑡)

with

𝑟(𝑥𝑡, 𝑠𝑡, 𝑢𝑡) = 𝑥′
𝑡𝑅𝑠𝑡

𝑥𝑡 + 𝑢′
𝑡𝑄𝑠𝑡

𝑢𝑡 + 2𝑢′
𝑡𝑊𝑠𝑡

𝑥𝑡

subject to linear laws of motion with matrices (𝐴, 𝐵, 𝐶) each possibly dependent on the Markov-state-𝑠𝑡:

𝑥𝑡+1 = 𝐴𝑠𝑡
𝑥𝑡 + 𝐵𝑠𝑡

𝑢𝑡 + 𝐶𝑠𝑡
𝑤𝑡+1

where {𝑤𝑡+1} is an i.i.d. stochastic process with 𝑤𝑡+1 ∼ 𝑁(0, 𝐼).
The optimal decision rule for this problem has the form

𝑢𝑡 = −𝐹𝑠𝑡
𝑥𝑡

and the optimal value functions are of the form

− (𝑥′
𝑡𝑃𝑠𝑡

𝑥𝑡 + 𝜌𝑠𝑡
)

or equivalently

−𝑥′
𝑡𝑃𝑖𝑥𝑡 − 𝜌𝑖

The optimal value functions −𝑥′𝑃𝑖𝑥 − 𝜌𝑖 for 𝑖 = 1, … , 𝑛 satisfy the 𝑁 interrelated Bellman equations
−𝑥′𝑃𝑖𝑥 − 𝜌𝑖 = max

𝑢
−

[𝑥′𝑅𝑖𝑥 + 𝑢′𝑄𝑖𝑢 + 2𝑢′𝑊𝑖𝑥 + 𝛽 ∑
𝑗

Π𝑖𝑗𝐸((𝐴𝑖𝑥 + 𝐵𝑖𝑢 + 𝐶𝑖𝑤)′𝑃𝑗(𝐴𝑖𝑥 + 𝐵𝑖𝑢 + 𝐶𝑖𝑤)𝑥 + 𝜌𝑗)]

The matrices 𝑃𝑠𝑡
= 𝑃𝑖 and the scalars 𝜌𝑠𝑡

= 𝜌𝑖, 𝑖 = 1, …, n satisfy the following stacked system of algebraic matrix
Riccati equations:

𝑃𝑖 = 𝑅𝑖 + 𝛽 ∑
𝑗

𝐴′
𝑖𝑃𝑗𝐴𝑖Π𝑖𝑗 − ∑

𝑗
Π𝑖𝑗[(𝛽𝐵′

𝑖𝑃𝑗𝐴𝑖 + 𝑊𝑖)′(𝑄 + 𝛽𝐵′
𝑖𝑃𝑗𝐵𝑖)−1(𝛽𝐵′

𝑖𝑃𝑗𝐴𝑖 + 𝑊𝑖)]

𝜌𝑖 = 𝛽 ∑
𝑗

Π𝑖𝑗(𝜌𝑗 + trace(𝑃𝑗𝐶𝑖𝐶′
𝑖))

and the 𝐹𝑖 in the optimal decision rules are

𝐹𝑖 = (𝑄𝑖 + 𝛽 ∑
𝑗

Π𝑖𝑗𝐵′
𝑖𝑃𝑗𝐵𝑖)−1(𝛽 ∑

𝑗
Π𝑖𝑗(𝐵′

𝑖𝑃𝑗𝐴𝑖) + 𝑊𝑖)

8.3. Linked Riccati equations for Markov LQ dynamic programming 147

Advanced Quantitative Economics with Python

8.4 Applications

We now describe some Python code and a few examples that put the code to work.
To begin, we import these Python modules

import numpy as np
import quantecon as qe
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

%matplotlib inline

Set discount factor
β = 0.95

8.5 Example 1

This example is a version of a classic problem of optimally adjusting a variable 𝑘𝑡 to a target level in the face of costly
adjustment.
This provides a model of gradual adjustment.
Given 𝑘0, the objective function is

max
{𝑘𝑡}∞

𝑡=1

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝑟 (𝑠𝑡, 𝑘𝑡)

where the one-period payoff function is

𝑟(𝑠𝑡, 𝑘𝑡) = 𝑓1,𝑠𝑡
𝑘𝑡 − 𝑓2,𝑠𝑡

𝑘2
𝑡 − 𝑑𝑠𝑡

(𝑘𝑡+1 − 𝑘𝑡)2,

𝐸0 is a mathematical expectation conditioned on time 0 information 𝑥0, 𝑠0 and the transition law for continuous state
variable 𝑘𝑡 is

𝑘𝑡+1 − 𝑘𝑡 = 𝑢𝑡

We can think of 𝑘𝑡 as the decision-maker’s capital and 𝑢𝑡 as costs of adjusting the level of capital.
We assume that 𝑓1 (𝑠𝑡) > 0, 𝑓2 (𝑠𝑡) > 0, and 𝑑 (𝑠𝑡) > 0.
Denote the state transition matrix for Markov state 𝑠𝑡 ∈ {1, 2} as Π:

Pr (𝑠𝑡+1 = 𝑗 ∣ 𝑠𝑡 = 𝑖) = Π𝑖𝑗

Let 𝑥𝑡 = [𝑘𝑡
1]

We can represent the one-period payoff function 𝑟 (𝑠𝑡, 𝑘𝑡) and the state-transition law as

𝑟 (𝑠𝑡, 𝑘𝑡) = 𝑓1,𝑠𝑡
𝑘𝑡 − 𝑓2,𝑠𝑡

𝑘2
𝑡 − 𝑑𝑠𝑡

𝑢𝑡
2

= −𝑥′
𝑡 [𝑓2,𝑠𝑡

− 𝑓1,𝑠𝑡
2

− 𝑓1,𝑠𝑡
2 0

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝑅(𝑠𝑡)

𝑥𝑡 + 𝑑𝑠𝑡⏟
≡𝑄(𝑠𝑡)

𝑢𝑡
2

148 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

𝑥𝑡+1 = [𝑘𝑡+1
1] = 𝐼2⏟

≡𝐴(𝑠𝑡)
𝑥𝑡 + [1

0]
⏟

≡𝐵(𝑠𝑡)

𝑢𝑡

def construct_arrays1(f1_vals=[1. ,1.],
f2_vals=[1., 1.],
d_vals=[1., 1.]):

"""
Construct matrices that map the problem described in example 1
into a Markov jump linear quadratic dynamic programming problem
"""

Number of Markov states
m = len(f1_vals)
Number of state and control variables
n, k = 2, 1

Construct sets of matrices for each state
As = [np.eye(n) for i in range(m)]
Bs = [np.array([[1, 0]]).T for i in range(m)]

Rs = np.zeros((m, n, n))
Qs = np.zeros((m, k, k))

for i in range(m):
Rs[i, 0, 0] = f2_vals[i]
Rs[i, 1, 0] = - f1_vals[i] / 2
Rs[i, 0, 1] = - f1_vals[i] / 2

Qs[i, 0, 0] = d_vals[i]

Cs, Ns = None, None

Compute the optimal k level of the payoff function in each state
k_star = np.empty(m)
for i in range(m):

k_star[i] = f1_vals[i] / (2 * f2_vals[i])

return Qs, Rs, Ns, As, Bs, Cs, k_star

The continuous part of the state 𝑥𝑡 consists of two variables, namely, 𝑘𝑡 and a constant term.

state_vec1 = ["k", "constant term"]

We start with a Markov transition matrix that makes the Markov state be strictly periodic:

Π1 = [0 1
1 0] ,

We set 𝑓1,𝑠𝑡
and 𝑓2,𝑠𝑡

to be independent of the Markov state 𝑠𝑡

𝑓1,1 = 𝑓1,2 = 1,

𝑓2,1 = 𝑓2,2 = 1
In contrast to 𝑓1,𝑠𝑡

and 𝑓2,𝑠𝑡
, we make the adjustment cost 𝑑𝑠𝑡

vary across Markov states 𝑠𝑡.
We set the adjustment cost to be lower in Markov state 2

𝑑1 = 1, 𝑑2 = 0.5

8.5. Example 1 149

Advanced Quantitative Economics with Python

The following code forms aMarkov switching LQ problem and computes the optimal value functions and optimal decision
rules for each Markov state

Construct Markov transition matrix
Π1 = np.array([[0., 1.],

[1., 0.]])

Construct matrices
Qs, Rs, Ns, As, Bs, Cs, k_star = construct_arrays1(d_vals=[1., 0.5])

Construct a Markov Jump LQ problem
ex1_a = qe.LQMarkov(Π1, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
Solve for optimal value functions and decision rules
ex1_a.stationary_values();

Let’s look at the value function matrices and the decision rules for each Markov state

P(s)
ex1_a.Ps

array([[[1.56626026, -0.78313013],
[-0.78313013, -4.60843493]],

[[1.37424214, -0.68712107],
[-0.68712107, -4.65643947]]])

d(s) = 0, since there is no randomness
ex1_a.ds

array([0., 0.])

F(s)
ex1_a.Fs

array([[[0.56626026, -0.28313013]],

[[0.74848427, -0.37424214]]])

Now we’ll plot the decision rules and see if they make sense

Plot the optimal decision rules
k_grid = np.linspace(0., 1., 100)
Optimal choice in state s1
u1_star = - ex1_a.Fs[0, 0, 1] - ex1_a.Fs[0, 0, 0] * k_grid
Optimal choice in state s2
u2_star = - ex1_a.Fs[1, 0, 1] - ex1_a.Fs[1, 0, 0] * k_grid

fig, ax = plt.subplots()
ax.plot(k_grid, k_grid + u1_star, label="\overline{s}_1 (high)")
ax.plot(k_grid, k_grid + u2_star, label="\overline{s}_2 (low)")

(continues on next page)

150 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

(continued from previous page)

The optimal k*
ax.scatter([0.5, 0.5], [0.5, 0.5], marker="*")
ax.plot([k_star[0], k_star[0]], [0., 1.0], '--')

45 degree line
ax.plot([0., 1.], [0., 1.], '--', label="45 degree line")

ax.set_xlabel("k_t")
ax.set_ylabel("k_{t+1}")
ax.legend()
plt.show()

The above graph plots 𝑘𝑡+1 = 𝑘𝑡 + 𝑢𝑡 = 𝑘𝑡 − 𝐹𝑥𝑡 as an affine (i.e., linear in 𝑘𝑡 plus a constant) function of 𝑘𝑡 for both
Markov states 𝑠𝑡.
It also plots the 45 degree line.
Notice that the two 𝑠𝑡-dependent closed loop functions that determine 𝑘𝑡+1 as functions of 𝑘𝑡 share the same rest point
(also called a fixed point) at 𝑘𝑡 = 0.5.
Evidently, the optimal decision rule in Markov state 2, in which the adjustment cost is lower, makes 𝑘𝑡+1 a flatter function
of 𝑘𝑡 in Markov state 2.
This happens because when 𝑘𝑡 is not at its fixed point, |𝑢𝑡,2| > |𝑢𝑡,2|, so that the decision-maker adjusts toward the fixed
point faster when the Markov state 𝑠𝑡 takes a value that makes it cheaper.

Compute time series
T = 20

(continues on next page)

8.5. Example 1 151

Advanced Quantitative Economics with Python

(continued from previous page)

x0 = np.array([[0., 1.]]).T
x_path = ex1_a.compute_sequence(x0, ts_length=T)[0]

fig, ax = plt.subplots()
ax.plot(range(T), x_path[0, :-1])
ax.set_xlabel("t")
ax.set_ylabel("k_t")
ax.set_title("Optimal path of k_t")
plt.show()

Now we’ll depart from the preceding transition matrix that made the Markov state be strictly periodic.
We’ll begin with symmetric transition matrices of the form

Π2 = [1 − 𝜆 𝜆
𝜆 1 − 𝜆] .

λ = 0.8 # high λ
Π2 = np.array([[1-λ, λ],

[λ, 1-λ]])

ex1_b = qe.LQMarkov(Π2, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
ex1_b.stationary_values();
ex1_b.Fs

152 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

array([[[0.57291724, -0.28645862]],

[[0.74434525, -0.37217263]]])

λ = 0.2 # low λ
Π2 = np.array([[1-λ, λ],

[λ, 1-λ]])

ex1_b = qe.LQMarkov(Π2, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
ex1_b.stationary_values();
ex1_b.Fs

array([[[0.59533259, -0.2976663]],

[[0.72818728, -0.36409364]]])

We can plot optimal decision rules associated with different 𝜆 values.

λ_vals = np.linspace(0., 1., 10)
F1 = np.empty((λ_vals.size, 2))
F2 = np.empty((λ_vals.size, 2))

for i, λ in enumerate(λ_vals):
Π2 = np.array([[1-λ, λ],

[λ, 1-λ]])

ex1_b = qe.LQMarkov(Π2, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
ex1_b.stationary_values();
F1[i, :] = ex1_b.Fs[0, 0, :]
F2[i, :] = ex1_b.Fs[1, 0, :]

for i, state_var in enumerate(state_vec1):
fig, ax = plt.subplots()
ax.plot(λ_vals, F1[:, i], label="\overline{s}_1", color="b")
ax.plot(λ_vals, F2[:, i], label="\overline{s}_2", color="r")

ax.set_xlabel("λ")
ax.set_ylabel("F_{s_t}")
ax.set_title(f"Coefficient on {state_var}")
ax.legend()
plt.show()

8.5. Example 1 153

Advanced Quantitative Economics with Python

154 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

Notice how the decision rules’ constants and slopes behave as functions of 𝜆.
Evidently, as the Markov chain becomes more nearly periodic (i.e., as 𝜆 → 1), the dynamic program adjusts capital faster
in the low adjustment cost Markov state to take advantage of what is only temporarily a more favorable time to invest.
Now let’s study situations in which the Markov transition matrix Π is asymmetric

Π3 = [1 − 𝜆 𝜆
𝛿 1 − 𝛿] .

λ, δ = 0.8, 0.2
Π3 = np.array([[1-λ, λ],

[δ, 1-δ]])

ex1_b = qe.LQMarkov(Π3, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
ex1_b.stationary_values();
ex1_b.Fs

array([[[0.57169781, -0.2858489]],

[[0.72749075, -0.36374537]]])

We can plot optimal decision rules for different 𝜆 and 𝛿 values.

λ_vals = np.linspace(0., 1., 10)
δ_vals = np.linspace(0., 1., 10)

(continues on next page)

8.5. Example 1 155

Advanced Quantitative Economics with Python

(continued from previous page)

λ_grid = np.empty((λ_vals.size, δ_vals.size))
δ_grid = np.empty((λ_vals.size, δ_vals.size))
F1_grid = np.empty((λ_vals.size, δ_vals.size, len(state_vec1)))
F2_grid = np.empty((λ_vals.size, δ_vals.size, len(state_vec1)))

for i, λ in enumerate(λ_vals):
λ_grid[i, :] = λ
δ_grid[i, :] = δ_vals
for j, δ in enumerate(δ_vals):

Π3 = np.array([[1-λ, λ],
[δ, 1-δ]])

ex1_b = qe.LQMarkov(Π3, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
ex1_b.stationary_values();
F1_grid[i, j, :] = ex1_b.Fs[0, 0, :]
F2_grid[i, j, :] = ex1_b.Fs[1, 0, :]

for i, state_var in enumerate(state_vec1):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
high adjustment cost, blue surface
ax.plot_surface(λ_grid, δ_grid, F1_grid[:, :, i], color="b")
low adjustment cost, red surface
ax.plot_surface(λ_grid, δ_grid, F2_grid[:, :, i], color="r")
ax.set_xlabel("λ")
ax.set_ylabel("δ")
ax.set_zlabel("F_{s_t}")
ax.set_title(f"coefficient on {state_var}")
plt.show()

156 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

The following code defines a wrapper function that computes optimal decision rules for cases with different Markov
transition matrices

8.5. Example 1 157

Advanced Quantitative Economics with Python

def run(construct_func, vals_dict, state_vec):
"""
A Wrapper function that repeats the computation above
for different cases
"""

Qs, Rs, Ns, As, Bs, Cs, k_star = construct_func(**vals_dict)

Symmetric Π
Notice that pure periodic transition is a special case
when λ=1
print("symmetric Π case:\n")
λ_vals = np.linspace(0., 1., 10)
F1 = np.empty((λ_vals.size, len(state_vec)))
F2 = np.empty((λ_vals.size, len(state_vec)))

for i, λ in enumerate(λ_vals):
Π2 = np.array([[1-λ, λ],

[λ, 1-λ]])

mplq = qe.LQMarkov(Π2, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
mplq.stationary_values();
F1[i, :] = mplq.Fs[0, 0, :]
F2[i, :] = mplq.Fs[1, 0, :]

for i, state_var in enumerate(state_vec):
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(λ_vals, F1[:, i], label="\overline{s}_1", color="b")
ax.plot(λ_vals, F2[:, i], label="\overline{s}_2", color="r")

ax.set_xlabel("λ")
ax.set_ylabel("$F(\overline{s}_t)$")
ax.set_title(f"coefficient on {state_var}")
ax.legend()
plt.show()

Plot optimal k*_{s_t} and k that optimal policies are targeting
only for example 1
if state_vec == ["k", "constant term"]:

fig = plt.figure()
ax = fig.add_subplot(111)
for i in range(2):

F = [F1, F2][i]
c = ["b", "r"][i]
ax.plot([0, 1], [k_star[i], k_star[i]], "--",

color=c, label="$k^*(\overline{s}_"+str(i+1)+")$")
ax.plot(λ_vals, - F[:, 1] / F[:, 0], color=c,

label="$k^{target}(\overline{s}_"+str(i+1)+")$")

Plot a vertical line at λ=0.5
ax.plot([0.5, 0.5], [min(k_star), max(k_star)], "-.")

ax.set_xlabel("λ")
ax.set_ylabel("k")
ax.set_title("Optimal k levels and k targets")
ax.text(0.5, min(k_star)+(max(k_star)-min(k_star))/20, "$\lambda=0.5$")

(continues on next page)

158 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

(continued from previous page)

ax.legend(bbox_to_anchor=(1., 1.))
plt.show()

Asymmetric Π
print("asymmetric Π case:\n")
δ_vals = np.linspace(0., 1., 10)

λ_grid = np.empty((λ_vals.size, δ_vals.size))
δ_grid = np.empty((λ_vals.size, δ_vals.size))
F1_grid = np.empty((λ_vals.size, δ_vals.size, len(state_vec)))
F2_grid = np.empty((λ_vals.size, δ_vals.size, len(state_vec)))

for i, λ in enumerate(λ_vals):
λ_grid[i, :] = λ
δ_grid[i, :] = δ_vals
for j, δ in enumerate(δ_vals):

Π3 = np.array([[1-λ, λ],
[δ, 1-δ]])

mplq = qe.LQMarkov(Π3, Qs, Rs, As, Bs, Cs=Cs, Ns=Ns, beta=β)
mplq.stationary_values();
F1_grid[i, j, :] = mplq.Fs[0, 0, :]
F2_grid[i, j, :] = mplq.Fs[1, 0, :]

for i, state_var in enumerate(state_vec):
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(λ_grid, δ_grid, F1_grid[:, :, i], color="b")
ax.plot_surface(λ_grid, δ_grid, F2_grid[:, :, i], color="r")
ax.set_xlabel("λ")
ax.set_ylabel("δ")
ax.set_zlabel("$F(\overline{s}_t)$")
ax.set_title(f"coefficient on {state_var}")
plt.show()

To illustrate the code with another example, we shall set 𝑓2,𝑠𝑡
and 𝑑𝑠𝑡

as constant functions and

𝑓1,1 = 0.5, 𝑓1,2 = 1

Thus, the sole role of the Markov jump state 𝑠𝑡 is to identify times in which capital is very productive and other times in
which it is less productive.
The example below reveals much about the structure of the optimum problem and optimal policies.
Only 𝑓1,𝑠𝑡

varies with 𝑠𝑡.

So there are different 𝑠𝑡-dependent optimal static 𝑘 level in different states 𝑘∗
𝑠𝑡

= 𝑓1,𝑠𝑡
2𝑓2,𝑠𝑡

, values of 𝑘 that maximize
one-period payoff functions in each state.
We denote a target 𝑘 level as 𝑘𝑡𝑎𝑟𝑔𝑒𝑡

𝑠𝑡 , the fixed point of the optimal policies in each state, given the value of 𝜆.
We call 𝑘𝑡𝑎𝑟𝑔𝑒𝑡

𝑠𝑡 a “target” because in each Markov state 𝑠𝑡, optimal policies are contraction mappings and will push 𝑘𝑡
towards a fixed point 𝑘𝑡𝑎𝑟𝑔𝑒𝑡

𝑠𝑡 .

When 𝜆 → 0, each Markov state becomes close to absorbing state and consequently 𝑘𝑡𝑎𝑟𝑔𝑒𝑡
𝑠𝑡 → 𝑘∗

𝑠𝑡
.

But when 𝜆 → 1, the Markov transition matrix becomes more nearly periodic, so the optimum decision rules target more
at the optimal 𝑘 level in the other state in order to enjoy higher expected payoff in the next period.

8.5. Example 1 159

Advanced Quantitative Economics with Python

The switch happens at 𝜆 = 0.5 when both states are equally likely to be reached.
Below we plot an additional figure that shows optimal 𝑘 levels in the two states Markov jump state and also how the
targeted 𝑘 levels change as 𝜆 changes.

run(construct_arrays1, {"f1_vals":[0.5, 1.]}, state_vec1)

symmetric Π case:

160 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

8.5. Example 1 161

Advanced Quantitative Economics with Python

asymmetric Π case:

162 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

Set 𝑓1,𝑠𝑡
and 𝑑𝑠𝑡

as constant functions and

𝑓2,1 = 0.5, 𝑓2,2 = 1

run(construct_arrays1, {"f2_vals":[0.5, 1.]}, state_vec1)

symmetric Π case:

8.5. Example 1 163

Advanced Quantitative Economics with Python

164 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

asymmetric Π case:

8.5. Example 1 165

Advanced Quantitative Economics with Python

8.6 Example 2

We now add to the example 1 setup another state variable 𝑤𝑡 that follows the evolution law

𝑤𝑡+1 = 𝛼0 (𝑠𝑡) + 𝜌 (𝑠𝑡) 𝑤𝑡 + 𝜎 (𝑠𝑡) 𝜖𝑡+1, 𝜖𝑡+1 ∼ 𝑁 (0, 1)

We think of 𝑤𝑡 as a rental rate or tax rate that the decision maker pays each period for 𝑘𝑡.
To capture this idea, we add to the decision-maker’s one-period payoff function the product of 𝑤𝑡 and 𝑘𝑡

𝑟(𝑠𝑡, 𝑘𝑡, 𝑤𝑡) = 𝑓1,𝑠𝑡
𝑘𝑡 − 𝑓2,𝑠𝑡

𝑘2
𝑡 − 𝑑𝑠𝑡

(𝑘𝑡+1 − 𝑘𝑡)2 − 𝑤𝑡𝑘𝑡,

We now let the continuous part of the state at time 𝑡 be 𝑥𝑡 = ⎡⎢
⎣

𝑘𝑡
1

𝑤𝑡

⎤⎥
⎦
and continue to set the control 𝑢𝑡 = 𝑘𝑡+1 − 𝑘𝑡.

We can write the one-period payoff function 𝑟 (𝑠𝑡, 𝑘𝑡, 𝑤𝑡) and the state-transition law as

𝑟 (𝑠𝑡, 𝑘𝑡, 𝑤𝑡) = 𝑓1 (𝑠𝑡) 𝑘𝑡 − 𝑓2 (𝑠𝑡) 𝑘2
𝑡 − 𝑑 (𝑠𝑡) (𝑘𝑡+1 − 𝑘𝑡)

2 − 𝑤𝑡𝑘𝑡

= −
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑥′
𝑡
⎡⎢
⎣

𝑓2 (𝑠𝑡) − 𝑓1(𝑠𝑡)
2

1
2

− 𝑓1(𝑠𝑡)
2 0 0

1
2 0 0

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝑅(𝑠𝑡)

𝑥𝑡 + 𝑑 (𝑠𝑡)⏟
≡𝑄(𝑠𝑡)

𝑢2
𝑡

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

,

and

𝑥𝑡+1 = ⎡⎢
⎣

𝑘𝑡+1
1

𝑤𝑡+1

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
0 1 0
0 𝛼0 (𝑠𝑡) 𝜌 (𝑠𝑡)

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟

≡𝐴(𝑠𝑡)

𝑥𝑡 + ⎡⎢
⎣

1
0
0
⎤⎥
⎦⏟

≡𝐵(𝑠𝑡)

𝑢𝑡 + ⎡⎢
⎣

0
0

𝜎 (𝑠𝑡)
⎤⎥
⎦⏟

≡𝐶(𝑠𝑡)

𝜖𝑡+1

def construct_arrays2(f1_vals=[1. ,1.],
f2_vals=[1., 1.],
d_vals=[1., 1.],
α0_vals=[1., 1.],
ρ_vals=[0.9, 0.9],
σ_vals=[1., 1.]):

"""
Construct matrices that maps the problem described in example 2
into a Markov jump linear quadratic dynamic programming problem.
"""

m = len(f1_vals)
n, k, j = 3, 1, 1

Rs = np.zeros((m, n, n))
Qs = np.zeros((m, k, k))
As = np.zeros((m, n, n))
Bs = np.zeros((m, n, k))
Cs = np.zeros((m, n, j))

for i in range(m):
Rs[i, 0, 0] = f2_vals[i]
Rs[i, 1, 0] = - f1_vals[i] / 2

(continues on next page)

166 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

(continued from previous page)

Rs[i, 0, 1] = - f1_vals[i] / 2
Rs[i, 0, 2] = 1/2
Rs[i, 2, 0] = 1/2

Qs[i, 0, 0] = d_vals[i]

As[i, 0, 0] = 1
As[i, 1, 1] = 1
As[i, 2, 1] = α0_vals[i]
As[i, 2, 2] = ρ_vals[i]

Bs[i, :, :] = np.array([[1, 0, 0]]).T

Cs[i, :, :] = np.array([[0, 0, σ_vals[i]]]).T

Ns = None
k_star = None

return Qs, Rs, Ns, As, Bs, Cs, k_star

state_vec2 = ["k", "constant term", "w"]

Only 𝑑𝑠𝑡
depends on 𝑠𝑡.

run(construct_arrays2, {"d_vals":[1., 0.5]}, state_vec2)

symmetric Π case:

8.6. Example 2 167

Advanced Quantitative Economics with Python

168 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

8.6. Example 2 169

Advanced Quantitative Economics with Python

asymmetric Π case:

170 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

8.6. Example 2 171

Advanced Quantitative Economics with Python

Only 𝑓1,𝑠𝑡
depends on 𝑠𝑡.

run(construct_arrays2, {"f1_vals":[0.5, 1.]}, state_vec2)

symmetric Π case:

172 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

8.6. Example 2 173

Advanced Quantitative Economics with Python

174 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

asymmetric Π case:

8.6. Example 2 175

Advanced Quantitative Economics with Python

176 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

Only 𝑓2,𝑠𝑡
depends on 𝑠𝑡.

run(construct_arrays2, {"f2_vals":[0.5, 1.]}, state_vec2)

symmetric Π case:

8.6. Example 2 177

Advanced Quantitative Economics with Python

178 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

8.6. Example 2 179

Advanced Quantitative Economics with Python

asymmetric Π case:

180 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

8.6. Example 2 181

Advanced Quantitative Economics with Python

Only 𝛼0(𝑠𝑡) depends on 𝑠𝑡.

run(construct_arrays2, {"α0_vals":[0.5, 1.]}, state_vec2)

symmetric Π case:

182 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

8.6. Example 2 183

Advanced Quantitative Economics with Python

184 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

asymmetric Π case:

8.6. Example 2 185

Advanced Quantitative Economics with Python

186 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

Only 𝜌𝑠𝑡
depends on 𝑠𝑡.

run(construct_arrays2, {"ρ_vals":[0.5, 0.9]}, state_vec2)

symmetric Π case:

8.6. Example 2 187

Advanced Quantitative Economics with Python

188 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

8.6. Example 2 189

Advanced Quantitative Economics with Python

asymmetric Π case:

190 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

8.6. Example 2 191

Advanced Quantitative Economics with Python

Only 𝜎𝑠𝑡
depends on 𝑠𝑡.

run(construct_arrays2, {"σ_vals":[0.5, 1.]}, state_vec2)

symmetric Π case:

192 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

8.6. Example 2 193

Advanced Quantitative Economics with Python

194 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

asymmetric Π case:

8.6. Example 2 195

Advanced Quantitative Economics with Python

196 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

Advanced Quantitative Economics with Python

8.7 More examples

The following lectures describe how Markov jump linear quadratic dynamic programming can be used to extend the
[Bar79] model of optimal tax-smoothing and government debt in several interesting directions

1. How to Pay for a War: Part 1

2. How to Pay for a War: Part 2

3. How to Pay for a War: Part 3

8.7. More examples 197

Advanced Quantitative Economics with Python

198 Chapter 8. Markov Jump Linear Quadratic Dynamic Programming

CHAPTER

NINE

HOW TO PAY FOR A WAR: PART 1

Contents

• How to Pay for a War: Part 1

– Reader’s Guide

– Public Finance Questions

– Barro (1979) Model

– Python Class to Solve Markov Jump Linear Quadratic Control Problems

– Barro Model with a Time-varying Interest Rate

In addition to what’s in Anaconda, this lecture will deploy quantecon:

!pip install --upgrade quantecon

9.1 Reader’s Guide

Let’s start with some standard imports:

import quantecon as qe
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

This lecture uses the method of Markov jump linear quadratic dynamic programming that is described in lecture
Markov Jump LQ dynamic programming to extend the [Bar79] model of optimal tax-smoothing and government debt in
a particular direction.
This lecture has two sequels that offer further extensions of the Barro model

1. How to Pay for a War: Part 2

2. How to Pay for a War: Part 3

The extensions are modified versions of his 1979 model later suggested by Barro (1999 [Bar99], 2003 [BM03]).
Barro’s original 1979 [Bar79] model is about a government that borrows and lends in order to minimize an intertemporal
measure of distortions caused by taxes.
Technical tractability induced Barro [Bar79] to assume that

199

Advanced Quantitative Economics with Python

• the government trades only one-period risk-free debt, and
• the one-period risk-free interest rate is constant

By usingMarkov jump linear quadratic dynamic programmingwe can allow interest rates to move over time in empirically
interesting ways.
Also, by expanding the dimension of the state, we can add a maturity composition decision to the government’s problem.
It is by doing these two things that we extend Barro’s 1979 [Bar79] model along lines he suggested in Barro (1999 [Bar99],
2003 [BM03]).
Barro (1979) [Bar79] assumed

• that a government faces an exogenous sequence of expenditures that it must finance by a tax collection sequence
whose expected present value equals the initial debt it owes plus the expected present value of those expenditures.

• that the government wants to minimize the following measure of tax distortions: 𝐸0 ∑∞
𝑡=0 𝛽𝑡𝑇 2

𝑡 , where 𝑇𝑡 are total
tax collections and 𝐸0 is a mathematical expectation conditioned on time 0 information.

• that the government trades only one asset, a risk-free one-period bond.
• that the gross interest rate on the one-period bond is constant and equal to 𝛽−1, the reciprocal of the factor 𝛽 at
which the government discounts future tax distortions.

Barro’s model can be mapped into a discounted linear quadratic dynamic programming problem.
Partly inspired by Barro (1999) [Bar99] and Barro (2003) [BM03], our generalizations of Barro’s (1979) [Bar79] model
assume

• that the government borrows or saves in the form of risk-free bonds of maturities 1, 2, … , 𝐻 .
• that interest rates on those bonds are time-varying and in particular, governed by a jointly stationary stochastic
process.

Our generalizations are designed to fit within a generalization of an ordinary linear quadratic dynamic programming
problem in which matrices that define the quadratic objective function and the state transition function are time-varying
and stochastic.
This generalization, known as aMarkov jump linear quadratic dynamic program, combines

• the computational simplicity of linear quadratic dynamic programming, and
• the ability of finite state Markov chains to represent interesting patterns of random variation.

We want the stochastic time variation in the matrices defining the dynamic programming problem to represent variation
over time in

• interest rates
• default rates
• roll over risks

As described inMarkov Jump LQ dynamic programming, the idea underlyingMarkov jump linear quadratic dynamic
programming is to replace the constant matrices defining a linear quadratic dynamic programming problem with
matrices that are fixed functions of an 𝑁 state Markov chain.
For infinite horizon problems, this leads to 𝑁 interrelated matrix Riccati equations that pin down 𝑁 value functions and
𝑁 linear decision rules, applying to the 𝑁 Markov states.

200 Chapter 9. How to Pay for a War: Part 1

Advanced Quantitative Economics with Python

9.2 Public Finance Questions

Barro’s 1979 [Bar79] model is designed to answer questions such as
• Should a government finance an exogenous surge in government expenditures by raising taxes or borrowing?
• How does the answer to that first question depend on the exogenous stochastic process for government expenditures,
for example, on whether the surge in government expenditures can be expected to be temporary or permanent?

Barro’s 1999 [Bar99] and 2003 [BM03] models are designed to answer more fine-grained questions such as
• What determines whether a government wants to issue short-term or long-term debt?
• How do roll-over risks affect that decision?
• How does the government’s long-short portfolio management decision depend on features of the exogenous stochas-
tic process for government expenditures?

Thus, both the simple and the more fine-grained versions of Barro’s models are ways of precisely formulating the classic
issue of How to pay for a war.
This lecture describes:

• An application of Markov jump LQ dynamic programming to a model in which a government faces exogenous
time-varying interest rates for issuing one-period risk-free debt.

A sequel to this lecture describes applies Markov LQ control to settings in which a government issues risk-free debt of
different maturities.

9.3 Barro (1979) Model

We begin by solving a version of the Barro (1979) [Bar79] model by mapping it into the original LQ framework.
As mentioned in this lecture, the Barro model is mathematically isomorphic with the LQ permanent income model.
Let 𝑇𝑡 denote tax collections, 𝛽 a discount factor, 𝑏𝑡,𝑡+1 time 𝑡 + 1 goods that the government promises to pay at 𝑡, 𝐺𝑡
government purchases, 𝑝𝑡,𝑡+1 the number of time 𝑡 goods received per time 𝑡 + 1 goods promised.
Evidently, 𝑝𝑡,𝑡+1 is inversely related to appropriate corresponding gross interest rates on government debt.
In the spirit of Barro (1979) [Bar79], the stochastic process of government expenditures is exogenous.
The government’s problem is to choose a plan for taxation and borrowing {𝑏𝑡+1, 𝑇𝑡}∞

𝑡=0 to minimize

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝑇 2
𝑡

subject to the constraints

𝑇𝑡 + 𝑝𝑡,𝑡+1𝑏𝑡,𝑡+1 = 𝐺𝑡 + 𝑏𝑡−1,𝑡

𝐺𝑡 = 𝑈𝑔𝑧𝑡

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1

where 𝑤𝑡+1 ∼ 𝑁(0, 𝐼)
The variables 𝑇𝑡, 𝑏𝑡,𝑡+1 are control variables chosen at 𝑡, while 𝑏𝑡−1,𝑡 is an endogenous state variable inherited from the
past at time 𝑡 and 𝑝𝑡,𝑡+1 is an exogenous state variable at time 𝑡.
To begin, we assume that 𝑝𝑡,𝑡+1 is constant (and equal to 𝛽)

9.2. Public Finance Questions 201

https://python-intro.quantecon.org/perm_income_cons.html

Advanced Quantitative Economics with Python

• later we will extend the model to allow 𝑝𝑡,𝑡+1 to vary over time

To map into the LQ framework, we use 𝑥𝑡 = [𝑏𝑡−1,𝑡
𝑧𝑡

] as the state vector, and 𝑢𝑡 = 𝑏𝑡,𝑡+1 as the control variable.

Therefore, the (𝐴, 𝐵, 𝐶) matrices are defined by the state-transition law:

𝑥𝑡+1 = [0 0
0 𝐴22

] 𝑥𝑡 + [1
0] 𝑢𝑡 + [0

𝐶2
] 𝑤𝑡+1

To find the appropriate (𝑅, 𝑄, 𝑊) matrices, we note that 𝐺𝑡 and 𝑏𝑡−1,𝑡 can be written as appropriately defined functions
of the current state:

𝐺𝑡 = 𝑆𝐺𝑥𝑡 , 𝑏𝑡−1,𝑡 = 𝑆1𝑥𝑡

If we define 𝑀𝑡 = −𝑝𝑡,𝑡+1, and let 𝑆 = 𝑆𝐺 + 𝑆1, then we can write taxation as a function of the states and control using
the government’s budget constraint:

𝑇𝑡 = 𝑆𝑥𝑡 + 𝑀𝑡𝑢𝑡

It follows that the (𝑅, 𝑄, 𝑊) matrices are implicitly defined by:

𝑇 2
𝑡 = 𝑥′

𝑡𝑆′𝑆𝑥𝑡 + 𝑢′
𝑡𝑀 ′

𝑡 𝑀𝑡𝑢𝑡 + 2𝑢′
𝑡𝑀 ′

𝑡 𝑆𝑥𝑡

If we assume that 𝑝𝑡,𝑡+1 = 𝛽, then 𝑀𝑡 ≡ 𝑀 = −𝛽.
In this case, none of the LQ matrices are time varying, and we can use the original LQ framework.
We will implement this constant interest-rate version first, assuming that 𝐺𝑡 follows an AR(1) process:

𝐺𝑡+1 = ̄𝐺 + 𝜌𝐺𝑡 + 𝜎𝑤𝑡+1

To do this, we set 𝑧𝑡 = [1
𝐺𝑡

], and consequently:

𝐴22 = [1 0
̄𝐺 𝜌] , 𝐶2 = [0

𝜎]

Model parameters
β, Gbar, ρ, σ = 0.95, 5, 0.8, 1

Basic model matrices
A22 = np.array([[1, 0],

[Gbar, ρ],])

C2 = np.array([[0],
[σ]])

Ug = np.array([[0, 1]])

LQ framework matrices
A_t = np.zeros((1, 3))
A_b = np.hstack((np.zeros((2, 1)), A22))
A = np.vstack((A_t, A_b))

B = np.zeros((3, 1))
B[0, 0] = 1

(continues on next page)

202 Chapter 9. How to Pay for a War: Part 1

Advanced Quantitative Economics with Python

(continued from previous page)

C = np.vstack((np.zeros((1, 1)), C2))

Sg = np.hstack((np.zeros((1, 1)), Ug))
S1 = np.zeros((1, 3))
S1[0, 0] = 1
S = S1 + Sg

M = np.array([[-β]])

R = S.T @ S
Q = M.T @ M
W = M.T @ S

Small penalty on the debt required to implement the no-Ponzi scheme
R[0, 0] = R[0, 0] + 1e-9

We can now create an instance of LQ:

LQBarro = qe.LQ(Q, R, A, B, C=C, N=W, beta=β)
P, F, d = LQBarro.stationary_values()
x0 = np.array([[100, 1, 25]])

We can see the isomorphism by noting that consumption is a martingale in the permanent income model and that taxation
is a martingale in Barro’s model.
We can check this using the 𝐹 matrix of the LQ model.
Because 𝑢𝑡 = −𝐹𝑥𝑡, we have

𝑇𝑡 = 𝑆𝑥𝑡 + 𝑀𝑢𝑡 = (𝑆 − 𝑀𝐹)𝑥𝑡

and

𝑇𝑡+1 = (𝑆 − 𝑀𝐹)𝑥𝑡+1 = (𝑆 − 𝑀𝐹)(𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1) = (𝑆 − 𝑀𝐹)((𝐴 − 𝐵𝐹)𝑥𝑡 + 𝐶𝑤𝑡+1)

Therefore, the mathematical expectation of 𝑇𝑡+1 conditional on time 𝑡 information is

𝐸𝑡𝑇𝑡+1 = (𝑆 − 𝑀𝐹)(𝐴 − 𝐵𝐹)𝑥𝑡

Consequently, taxation is a martingale (𝐸𝑡𝑇𝑡+1 = 𝑇𝑡) if

(𝑆 − 𝑀𝐹)(𝐴 − 𝐵𝐹) = (𝑆 − 𝑀𝐹),

which holds in this case:

S - M @ F, (S - M @ F) @ (A - B @ F)

(array([[0.05000002, 19.79166502, 0.2083334]]),
array([[0.05000002, 19.79166504, 0.2083334]]))

This explains the fanning out of the conditional empirical distribution of taxation across time, computing by simulation
the Barro model a large number of times:

9.3. Barro (1979) Model 203

Advanced Quantitative Economics with Python

T = 500
for i in range(250):

x, u, w = LQBarro.compute_sequence(x0, ts_length=T)
plt.plot(list(range(T+1)), ((S - M @ F) @ x)[0, :])

plt.xlabel('Time')
plt.ylabel('Taxation')
plt.show()

We can see a similar, but a smoother pattern, if we plot government debt over time.

T = 500
for i in range(250):

x, u, w = LQBarro.compute_sequence(x0, ts_length=T)
plt.plot(list(range(T+1)), x[0, :])

plt.xlabel('Time')
plt.ylabel('Govt Debt')
plt.show()

204 Chapter 9. How to Pay for a War: Part 1

Advanced Quantitative Economics with Python

9.4 Python Class to Solve Markov Jump Linear Quadratic Control
Problems

To implement the extension to the Barro model in which 𝑝𝑡,𝑡+1 varies over time, we must allow the M matrix to be
time-varying.
Our 𝑄 and 𝑊 matrices must also vary over time.
We can solve such a model using the LQMarkov class that solves Markov jump linear quandratic control problems as
described above.
The code for the class can be viewed here.
The class takes lists of matrices that corresponds to 𝑁 Markov states.
The value and policy functions are then found by iterating on a coupled system of matrix Riccati difference equations.
Optimal 𝑃𝑠, 𝐹𝑠, 𝑑𝑠 are stored as attributes.
The class also contains a “method” for simulating the model.

9.4. Python Class to Solve Markov Jump Linear Quadratic Control Problems 205

https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/_lqcontrol.py

Advanced Quantitative Economics with Python

9.5 Barro Model with a Time-varying Interest Rate

We can use the above class to implement a version of the Barro model with a time-varying interest rate. The simplest
way to extend the model is to allow the interest rate to take two possible values. We set:

𝑝1
𝑡,𝑡+1 = 𝛽 + 0.02 = 0.97

𝑝2
𝑡,𝑡+1 = 𝛽 − 0.017 = 0.933

Thus, the first Markov state has a low interest rate, and the second Markov state has a high interest rate.
We also need to specify a transition matrix for the Markov state.
We use:

Π = [0.8 0.2
0.2 0.8]

(so each Markov state is persistent, and there is an equal chance of moving from one state to the other)
The choice of parameters means that the unconditional expectation of 𝑝𝑡,𝑡+1 is 0.9515, higher than 𝛽(= 0.95).
If we were to set 𝑝𝑡,𝑡+1 = 0.9515 in the version of the model with a constant interest rate, government debt would
explode.

Create list of matrices that corresponds to each Markov state
Π = np.array([[0.8, 0.2],

[0.2, 0.8]])

As = [A, A]
Bs = [B, B]
Cs = [C, C]
Rs = [R, R]

M1 = np.array([[-β - 0.02]])
M2 = np.array([[-β + 0.017]])

Q1 = M1.T @ M1
Q2 = M2.T @ M2
Qs = [Q1, Q2]
W1 = M1.T @ S
W2 = M2.T @ S
Ws = [W1, W2]

create Markov Jump LQ DP problem instance
lqm = qe.LQMarkov(Π, Qs, Rs, As, Bs, Cs=Cs, Ns=Ws, beta=β)
lqm.stationary_values();

The decision rules are now dependent on the Markov state:

lqm.Fs[0]

array([[-0.98437712, 19.20516427, -0.8314215]])

lqm.Fs[1]

206 Chapter 9. How to Pay for a War: Part 1

Advanced Quantitative Economics with Python

array([[-1.01434301, 21.5847983 , -0.83851116]])

Simulating a large number of such economies over time reveals interesting dynamics.
Debt tends to stay low and stable but recurrently surges.

T = 2000
x0 = np.array([[1000, 1, 25]])
for i in range(250):

x, u, w, s = lqm.compute_sequence(x0, ts_length=T)
plt.plot(list(range(T+1)), x[0, :])

plt.xlabel('Time')
plt.ylabel('Govt Debt')
plt.show()

9.5. Barro Model with a Time-varying Interest Rate 207

Advanced Quantitative Economics with Python

208 Chapter 9. How to Pay for a War: Part 1

CHAPTER

TEN

HOW TO PAY FOR A WAR: PART 2

Contents

• How to Pay for a War: Part 2

– An Application of Markov Jump Linear Quadratic Dynamic Programming

– Two example specifications

– One- and Two-period Bonds but No Restructuring

– Mapping into an LQ Markov Jump Problem

– Penalty on Different Issuance Across Maturities

– A Model with Restructuring

– Restructuring as a Markov Jump Linear Quadratic Control Problem

In addition to what’s in Anaconda, this lecture deploys the quantecon library:

!pip install --upgrade quantecon

10.1 An Application of Markov Jump Linear Quadratic Dynamic Pro-
gramming

This is a sequel to an earlier lecture.
We use a method introduced in lectureMarkov Jump LQ dynamic programming to implement suggestions by Barro (1999
[Bar99], 2003 [BM03]) for extending his classic 1979 model of tax smoothing.
Barro’s 1979 [Bar79] model is about a government that borrows and lends in order to help it minimize an intertemporal
measure of distortions caused by taxes.
Technically, Barro’s 1979 [Bar79] model looks a lot like a consumption-smoothing model.
Our generalizations of his 1979 [Bar79] model will also look like souped-up consumption-smoothing models.
Wanting tractability induced Barro in 1979 [Bar79] to assume that

• the government trades only one-period risk-free debt, and
• the one-period risk-free interest rate is constant

209

Advanced Quantitative Economics with Python

In our earlier lecture, we relaxed the second of these assumptions but not the first.
In particular, we used Markov jump linear quadratic dynamic programming to allow the exogenous interest rate to vary
over time.
In this lecture, we add a maturity composition decision to the government’s problem by expanding the dimension of the
state.
We assume

• that the government borrows or saves in the form of risk-free bonds of maturities 1, 2, … , 𝐻 .
• that interest rates on those bonds are time-varying and in particular are governed by a jointly stationary stochastic
process.

Let’s start with some standard imports:

import quantecon as qe
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

10.2 Two example specifications

We’ll describe two possible specifications
• In one, each period the government issues zero-coupon bonds of one- and two-period maturities and redeems them
only when they mature – in this version, the maturity structure of government debt at each date is partly inherited
from the past.

• In the second, the government redesigns the maturity structure of the debt each period.

10.3 One- and Two-period Bonds but No Restructuring

Let 𝑇𝑡 denote tax collections, 𝛽 a discount factor, 𝑏𝑡,𝑡+1 time 𝑡 + 1 goods that the government promises to pay at 𝑡, 𝑏𝑡,𝑡+2
time 𝑡 + 2 goods that the government promises to pay at time 𝑡, 𝐺𝑡 government purchases, 𝑝𝑡,𝑡+1 the number of time
𝑡 goods received per time 𝑡 + 1 goods promised, and 𝑝𝑡,𝑡+2 the number of time 𝑡 goods received per time 𝑡 + 2 goods
promised.
Evidently, 𝑝𝑡,𝑡+1, 𝑝𝑡,𝑡+2 are inversely related to appropriate corresponding gross interest rates on government debt.
In the spirit of Barro (1979) [Bar79], government expenditures are governed by an exogenous stochastic process.
Given initial conditions 𝑏−2,0, 𝑏−1,0, 𝑧0, 𝑖0, where 𝑖0 is the initial Markov state, the government chooses a contingency
plan for {𝑏𝑡,𝑡+1, 𝑏𝑡,𝑡+2, 𝑇𝑡}∞

𝑡=0 to maximize.

−𝐸0
∞

∑
𝑡=0

𝛽𝑡 [𝑇 2
𝑡 + 𝑐1(𝑏𝑡,𝑡+1 − 𝑏𝑡,𝑡+2)2]

210 Chapter 10. How to Pay for a War: Part 2

Advanced Quantitative Economics with Python

subject to the constraints

𝑇𝑡 = 𝐺𝑡 + 𝑏𝑡−2,𝑡 + 𝑏𝑡−1,𝑡 − 𝑝𝑡,𝑡+2𝑏𝑡,𝑡+2 − 𝑝𝑡,𝑡+1𝑏𝑡,𝑡+1
𝐺𝑡 = 𝑈𝑔,𝑠𝑡

𝑧𝑡

𝑧𝑡+1 = 𝐴22,𝑠𝑡
𝑧𝑡 + 𝐶2,𝑠𝑡

𝑤𝑡+1

⎡
⎢
⎢
⎢
⎣

𝑝𝑡,𝑡+1
𝑝𝑡,𝑡+2
𝑈𝑔,𝑠𝑡
𝐴22,𝑠𝑡
𝐶2,𝑠𝑡

⎤
⎥
⎥
⎥
⎦

∼ functions of Markov state with transition matrix Π

Here 𝑤𝑡+1 ∼ 𝑁(0, 𝐼) and Π𝑖𝑗 is the probability that the Markov state moves from state 𝑖 to state 𝑗 in one period.
The variables 𝑇𝑡, 𝑏𝑡,𝑡+1, 𝑏𝑡,𝑡+2 are control variables chosen at 𝑡, while the variables 𝑏𝑡−1,𝑡, 𝑏𝑡−2,𝑡 are endogenous state
variables inherited from the past at time 𝑡 and 𝑝𝑡,𝑡+1, 𝑝𝑡,𝑡+2 are exogenous state variables at time 𝑡.
The parameter 𝑐1 imposes a penalty on the government’s issuing different quantities of one and two-period debt.
This penalty deters the government from taking large “long-short” positions in debt of different maturities. An example
below will show this in action.
As well as extending the model to allow for a maturity decision for government debt, we can also in principle allow the
matrices 𝑈𝑔,𝑠𝑡

, 𝐴22,𝑠𝑡
, 𝐶2,𝑠𝑡

to depend on the Markov state 𝑠𝑡.
Below, we will often adopt the convention that for matrices appearing in a linear state space, 𝐴𝑡 ≡ 𝐴𝑠𝑡

, 𝐶𝑡 ≡ 𝐶𝑠𝑡
and

so on, so that dependence on 𝑡 is always intermediated through the Markov state 𝑠𝑡.

10.4 Mapping into an LQ Markov Jump Problem

First, define

̂𝑏𝑡 = 𝑏𝑡−1,𝑡 + 𝑏𝑡−2,𝑡,

which is debt due at time 𝑡.
Then define the endogenous part of the state:

�̄�𝑡 = [̂𝑏𝑡
𝑏𝑡−1,𝑡+1

]

and the complete state

𝑥𝑡 = [�̄�𝑡
𝑧𝑡

]

and the control vector

𝑢𝑡 = [𝑏𝑡,𝑡+1
𝑏𝑡,𝑡+2

]

The endogenous part of state vector follows the law of motion:

[̂𝑏𝑡+1
𝑏𝑡,𝑡+2

] = [0 1
0 0] [̂𝑏𝑡

𝑏𝑡−1,𝑡+1
] + [1 0

0 1] [𝑏𝑡,𝑡+1
𝑏𝑡,𝑡+2

]

or

�̄�𝑡+1 = 𝐴11�̄�𝑡 + 𝐵1𝑢𝑡

10.4. Mapping into an LQ Markov Jump Problem 211

Advanced Quantitative Economics with Python

Define the following functions of the state

𝐺𝑡 = 𝑆𝐺,𝑡𝑥𝑡, ̂𝑏𝑡 = 𝑆1𝑥𝑡

and

𝑀𝑡 = [−𝑝𝑡,𝑡+1 −𝑝𝑡,𝑡+2]

where 𝑝𝑡,𝑡+1 is the discount on one period loans in the discrete Markov state at time 𝑡 and 𝑝𝑡,𝑡+2 is the discount on
two-period loans in the discrete Markov state.
Define

𝑆𝑡 = 𝑆𝐺,𝑡 + 𝑆1

Note that in discrete Markov state 𝑖

𝑇𝑡 = 𝑀𝑡𝑢𝑡 + 𝑆𝑡𝑥𝑡

It follows that

𝑇 2
𝑡 = 𝑥′

𝑡𝑆′
𝑡𝑆𝑡𝑥𝑡 + 𝑢′

𝑡𝑀 ′
𝑡 𝑀𝑡𝑢𝑡 + 2𝑢′

𝑡𝑀 ′
𝑡 𝑆𝑡𝑥𝑡

or

𝑇 2
𝑡 = 𝑥′

𝑡𝑅𝑡𝑥𝑡 + 𝑢′
𝑡𝑄𝑡𝑢𝑡 + 2𝑢′

𝑡𝑊𝑡𝑥𝑡

where

𝑅𝑡 = 𝑆′
𝑡𝑆𝑡, 𝑄𝑡 = 𝑀 ′

𝑡 𝑀𝑡, 𝑊𝑡 = 𝑀 ′
𝑡 𝑆𝑡

Because the payoff function also includes the penalty parameter on issuing debt of different maturities, we have:

𝑇 2
𝑡 + 𝑐1(𝑏𝑡,𝑡+1 − 𝑏𝑡,𝑡+2)2 = 𝑥′

𝑡𝑅𝑡𝑥𝑡 + 𝑢′
𝑡𝑄𝑡𝑢𝑡 + 2𝑢′

𝑡𝑊𝑡𝑥𝑡 + 𝑐1𝑢′
𝑡𝑄𝑐𝑢𝑡

where 𝑄𝑐 = [1 −1
−1 1]. Therefore, the overall 𝑄 matrix for the Markov jump LQ problem is:

𝑄𝑐
𝑡 = 𝑄𝑡 + 𝑐1𝑄𝑐

The law of motion of the state in all discrete Markov states 𝑖 is

𝑥𝑡+1 = 𝐴𝑡𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑡𝑤𝑡+1

where

𝐴𝑡 = [𝐴11 0
0 𝐴22,𝑡

] , 𝐵 = [𝐵1
0] , 𝐶𝑡 = [0

𝐶2,𝑡
]

Thus, in this problem all the matrices apart from 𝐵 may depend on the Markov state at time 𝑡.
As shown in the previous lecture, the LQMarkov class can solve Markov jump LQ problems when provided with the
𝐴, 𝐵, 𝐶, 𝑅, 𝑄, 𝑊 matrices for each Markov state.
The function below maps the primitive matrices and parameters from the above two-period model into the matrices that
the LQMarkov class requires:

212 Chapter 10. How to Pay for a War: Part 2

Advanced Quantitative Economics with Python

def LQ_markov_mapping(A22, C2, Ug, p1, p2, c1=0):

"""
Function which takes A22, C2, Ug, p_{t, t+1}, p_{t, t+2} and penalty
parameter c1, and returns the required matrices for the LQMarkov
model: A, B, C, R, Q, W.
This version uses the condensed version of the endogenous state.
"""

Make sure all matrices can be treated as 2D arrays
A22 = np.atleast_2d(A22)
C2 = np.atleast_2d(C2)
Ug = np.atleast_2d(Ug)
p1 = np.atleast_2d(p1)
p2 = np.atleast_2d(p2)

Find the number of states (z) and shocks (w)
nz, nw = C2.shape

Create A11, B1, S1, S2, Sg, S matrices
A11 = np.zeros((2, 2))
A11[0, 1] = 1

B1 = np.eye(2)

S1 = np.hstack((np.eye(1), np.zeros((1, nz+1))))
Sg = np.hstack((np.zeros((1, 2)), Ug))
S = S1 + Sg

Create M matrix
M = np.hstack((-p1, -p2))

Create A, B, C matrices
A_T = np.hstack((A11, np.zeros((2, nz))))
A_B = np.hstack((np.zeros((nz, 2)), A22))
A = np.vstack((A_T, A_B))

B = np.vstack((B1, np.zeros((nz, 2))))

C = np.vstack((np.zeros((2, nw)), C2))

Create Q^c matrix
Qc = np.array([[1, -1], [-1, 1]])

Create R, Q, W matrices

R = S.T @ S
Q = M.T @ M + c1 * Qc
W = M.T @ S

return A, B, C, R, Q, W

With the above function, we can proceed to solve the model in two steps:
1. Use LQ_markov_mapping to map 𝑈𝑔,𝑡, 𝐴22,𝑡, 𝐶2,𝑡, 𝑝𝑡,𝑡+1, 𝑝𝑡,𝑡+2 into the 𝐴, 𝐵, 𝐶, 𝑅, 𝑄, 𝑊 matrices for each

of the 𝑛 Markov states.
2. Use the LQMarkov class to solve the resulting n-state Markov jump LQ problem.

10.4. Mapping into an LQ Markov Jump Problem 213

Advanced Quantitative Economics with Python

10.5 Penalty on Different Issuance Across Maturities

To implement a simple example of the two-period model, we assume that 𝐺𝑡 follows an AR(1) process:

𝐺𝑡+1 = ̄𝐺 + 𝜌𝐺𝑡 + 𝜎𝑤𝑡+1

To do this, we set 𝑧𝑡 = [1
𝐺𝑡

], and consequently:

𝐴22 = [1 0
̄𝐺 𝜌] , 𝐶2 = [0

𝜎] , 𝑈𝑔 = [0 1]

Therefore, in this example, 𝐴22, 𝐶2 and 𝑈𝑔 are not time-varying.
We will assume that there are two Markov states, one with a flatter yield curve, and one with a steeper yield curve. In
state 1, prices are:

𝑝1
𝑡,𝑡+1 = 𝛽 , 𝑝1

𝑡,𝑡+2 = 𝛽2 − 0.02

and in state 2, prices are:

𝑝2
𝑡,𝑡+1 = 𝛽 , 𝑝2

𝑡,𝑡+2 = 𝛽2 + 0.02

We first solve the model with no penalty parameter on different issuance across maturities, i.e. 𝑐1 = 0.
We also need to specify a transition matrix for the Markov state, we use:

Π = [0.9 0.1
0.1 0.9]

Thus, each Markov state is persistent, and there is an equal chance of moving from one to the other.

Model parameters
β, Gbar, ρ, σ, c1 = 0.95, 5, 0.8, 1, 0
p1, p2, p3, p4 = β, β**2 - 0.02, β, β**2 + 0.02

Basic model matrices
A22 = np.array([[1, 0], [Gbar, ρ] ,])
C_2 = np.array([[0], [σ]])
Ug = np.array([[0, 1]])

A1, B1, C1, R1, Q1, W1 = LQ_markov_mapping(A22, C_2, Ug, p1, p2, c1)
A2, B2, C2, R2, Q2, W2 = LQ_markov_mapping(A22, C_2, Ug, p3, p4, c1)

Small penalties on debt required to implement no-Ponzi scheme
R1[0, 0] = R1[0, 0] + 1e-9
R2[0, 0] = R2[0, 0] + 1e-9

Construct lists of matrices correspond to each state
As = [A1, A2]
Bs = [B1, B2]
Cs = [C1, C2]
Rs = [R1, R2]
Qs = [Q1, Q2]
Ws = [W1, W2]

Π = np.array([[0.9, 0.1],

(continues on next page)

214 Chapter 10. How to Pay for a War: Part 2

Advanced Quantitative Economics with Python

(continued from previous page)

[0.1, 0.9]])

Construct and solve the model using the LQMarkov class
lqm = qe.LQMarkov(Π, Qs, Rs, As, Bs, Cs=Cs, Ns=Ws, beta=β)
lqm.stationary_values()

Simulate the model
x0 = np.array([[100, 50, 1, 10]])
x, u, w, t = lqm.compute_sequence(x0, ts_length=300)

Plot of one and two-period debt issuance
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(u[0, :])
ax1.set_title('One-period debt issuance')
ax1.set_xlabel('Time')
ax2.plot(u[1, :])
ax2.set_title('Two-period debt issuance')
ax2.set_xlabel('Time')
plt.show()

The above simulations show that when no penalty is imposed on different issuances across maturities, the government has
an incentive to take large “long-short” positions in debt of different maturities.
To prevent such an outcome, we now set 𝑐1 = 0.01.
This penalty is enough to ensure that the government issues positive quantities of both one and two-period debt:

Put small penalty on different issuance across maturities
c1 = 0.01

A1, B1, C1, R1, Q1, W1 = LQ_markov_mapping(A22, C_2, Ug, p1, p2, c1)
A2, B2, C2, R2, Q2, W2 = LQ_markov_mapping(A22, C_2, Ug, p3, p4, c1)

Small penalties on debt required to implement no-Ponzi scheme
R1[0, 0] = R1[0, 0] + 1e-9
R2[0, 0] = R2[0, 0] + 1e-9

Construct lists of matrices
As = [A1, A2]
Bs = [B1, B2]

(continues on next page)

10.5. Penalty on Different Issuance Across Maturities 215

Advanced Quantitative Economics with Python

(continued from previous page)

Cs = [C1, C2]
Rs = [R1, R2]
Qs = [Q1, Q2]
Ws = [W1, W2]

Construct and solve the model using the LQMarkov class
lqm2 = qe.LQMarkov(Π, Qs, Rs, As, Bs, Cs=Cs, Ns=Ws, beta=β)
lqm2.stationary_values()

Simulate the model
x, u, w, t = lqm2.compute_sequence(x0, ts_length=300)

Plot of one and two-period debt issuance
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(u[0, :])
ax1.set_title('One-period debt issuance')
ax1.set_xlabel('Time')
ax2.plot(u[1, :])
ax2.set_title('Two-period debt issuance')
ax2.set_xlabel('Time')
plt.show()

10.6 A Model with Restructuring

This model alters two features of the previous model:
1. The maximum horizon of government debt is now extended to a general H periods.
2. The government is able to redesign the maturity structure of debt every period.

We impose a cost on adjusting issuance of each maturity by amending the payoff function to become:

𝑇 2
𝑡 +

𝐻−1
∑
𝑗=0

𝑐2(𝑏𝑡−1
𝑡+𝑗 − 𝑏𝑡

𝑡+𝑗+1)2

The government’s budget constraint is now:

𝑇𝑡 +
𝐻

∑
𝑗=1

𝑝𝑡,𝑡+𝑗𝑏𝑡
𝑡+𝑗 = 𝑏𝑡−1

𝑡 +
𝐻−1
∑
𝑗=1

𝑝𝑡,𝑡+𝑗𝑏𝑡−1
𝑡+𝑗 + 𝐺𝑡

216 Chapter 10. How to Pay for a War: Part 2

Advanced Quantitative Economics with Python

To map this into the Markov Jump LQ framework, we define state and control variables.
Let:

�̄�𝑡 =
⎡
⎢⎢
⎣

𝑏𝑡−1
𝑡

𝑏𝑡−1
𝑡+1
⋮

𝑏𝑡−1
𝑡+𝐻−1

⎤
⎥⎥
⎦

, 𝑢𝑡 =
⎡
⎢⎢
⎣

𝑏𝑡
𝑡+1

𝑏𝑡
𝑡+2
⋮

𝑏𝑡
𝑡+𝐻

⎤
⎥⎥
⎦

Thus, �̄�𝑡 is the endogenous state (debt issued last period) and 𝑢𝑡 is the control (debt issued today).
As before, we will also have the exogenous state 𝑧𝑡, which determines government spending.
Therefore, the full state is:

𝑥𝑡 = [�̄�𝑡
𝑧𝑡

]

We also define a vector 𝑝𝑡 that contains the time 𝑡 price of goods in period 𝑡 + 𝑗:

𝑝𝑡 =
⎡
⎢⎢
⎣

𝑝𝑡,𝑡+1
𝑝𝑡,𝑡+2

⋮
𝑝𝑡,𝑡+𝐻

⎤
⎥⎥
⎦

Finally, we define three useful matrices 𝑆𝑠, 𝑆𝑥, ̃𝑆𝑥:

⎡
⎢⎢
⎣

𝑝𝑡,𝑡+1
𝑝𝑡,𝑡+2

⋮
𝑝𝑡,𝑡+𝐻−1

⎤
⎥⎥
⎦

= 𝑆𝑠𝑝𝑡 where 𝑆𝑠 =
⎡
⎢⎢
⎣

1 0 0 ⋯ 0
0 1 0 ⋯ 0
⋮ ⋱
0 0 ⋯ 1 0

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

𝑏𝑡−1
𝑡+1

𝑏𝑡−1
𝑡+2
⋮

𝑏𝑡−1
𝑡+𝑇 −1

⎤
⎥⎥
⎦

= 𝑆𝑥�̄�𝑡 where 𝑆𝑥 =
⎡
⎢⎢
⎣

0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋱
0 0 ⋯ 0 1

⎤
⎥⎥
⎦

𝑏𝑡−1
𝑡 = ̃𝑆𝑥�̄�𝑡 where ̃𝑆𝑥 = [1 0 0 ⋯ 0]

In terms of dimensions, the first two matrices defined above are (𝐻 − 1) × 𝐻 .
The last is 1 × 𝐻
We can now write the government’s budget constraint in matrix notation. Rearranging the government budget constraint
gives:

𝑇𝑡 = 𝑏𝑡−1
𝑡 +

𝐻−1
∑
𝑗=1

𝑝𝑡
𝑡+𝑗𝑏𝑡−1

𝑡+𝑗 + 𝐺𝑡 −
𝐻

∑
𝑗=1

𝑝𝑡
𝑡+𝑗𝑏𝑡

𝑡+𝑗

or

𝑇𝑡 = ̃𝑆𝑥�̄�𝑡 + (𝑆𝑠𝑝𝑡) ⋅ (𝑆𝑥�̄�𝑡) + 𝑈𝑔𝑧𝑡 − 𝑝𝑡 ⋅ 𝑢𝑡

If we want to write this in terms of the full state, we have:

𝑇𝑡 = [(̃𝑆𝑥 + 𝑝′
𝑡𝑆′

𝑠𝑆𝑥) 𝑈𝑔] 𝑥𝑡 − 𝑝′
𝑡𝑢𝑡

To simplify the notation, let 𝑆𝑡 = [(̃𝑆𝑥 + 𝑝𝑡’𝑆𝑠’𝑆𝑥) 𝑈𝑔].

10.6. A Model with Restructuring 217

Advanced Quantitative Economics with Python

Then

𝑇𝑡 = 𝑆𝑡𝑥𝑡 − 𝑝′
𝑡𝑢𝑡

Therefore

𝑇 2
𝑡 = 𝑥′

𝑡𝑅𝑡𝑥𝑡 + 𝑢′
𝑡𝑄𝑡𝑢𝑡 + 2𝑢′

𝑡𝑊𝑡𝑥𝑡

where

𝑅𝑡 = 𝑆′
𝑡𝑆𝑡, 𝑄𝑡 = 𝑝𝑡𝑝′

𝑡, 𝑊𝑡 = −𝑝𝑡𝑆𝑡

where to economize on notation we adopt the convention that for the linear state matrices 𝑅𝑡 ≡ 𝑅𝑠𝑡
, 𝑄𝑡 ≡ 𝑊𝑠𝑡

and so
on.
We’ll continue to use this convention also for the linear state matrices 𝐴, 𝐵, 𝑊 and so on below.
Because the payoff function also includes the penalty parameter for rescheduling, we have:

𝑇 2
𝑡 +

𝐻−1
∑
𝑗=0

𝑐2(𝑏𝑡−1
𝑡+𝑗 − 𝑏𝑡

𝑡+𝑗+1)2 = 𝑇 2
𝑡 + 𝑐2(�̄�𝑡 − 𝑢𝑡)′(�̄�𝑡 − 𝑢𝑡)

Because the complete state is 𝑥𝑡 and not �̄�𝑡, we rewrite this as:

𝑇 2
𝑡 + 𝑐2(𝑆𝑐𝑥𝑡 − 𝑢𝑡)′(𝑆𝑐𝑥𝑡 − 𝑢𝑡)

where 𝑆𝑐 = [𝐼 0]
Multiplying this out gives:

𝑇 2
𝑡 + 𝑐2𝑥′

𝑡𝑆′
𝑐𝑆𝑐𝑥𝑡 − 2𝑐2𝑢′

𝑡𝑆𝑐𝑥𝑡 + 𝑐2𝑢′
𝑡𝑢𝑡

Therefore, with the cost term, we must amend our 𝑅, 𝑄, 𝑊 matrices as follows:

𝑅𝑐
𝑡 = 𝑅𝑡 + 𝑐2𝑆′

𝑐𝑆𝑐

𝑄𝑐
𝑡 = 𝑄𝑡 + 𝑐2𝐼

𝑊 𝑐
𝑡 = 𝑊𝑡 − 𝑐2𝑆𝑐

To finish mapping into the Markov jump LQ setup, we need to construct the law of motion for the full state.
This is simpler than in the previous setup, as we now have �̄�𝑡+1 = 𝑢𝑡.
Therefore:

𝑥𝑡+1 ≡ [�̄�𝑡+1
𝑧𝑡+1

] = 𝐴𝑡𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑡𝑤𝑡+1

where

𝐴𝑡 = [0 0
0 𝐴22,𝑡

] , 𝐵 = [𝐼
0] , 𝐶 = [0

𝐶2,𝑡
]

This completes the mapping into a Markov jump LQ problem.

218 Chapter 10. How to Pay for a War: Part 2

Advanced Quantitative Economics with Python

10.7 Restructuring as aMarkov Jump Linear Quadratic Control Prob-
lem

As with the previous model, we can use a function to map the primitives of the model with restructuring into the matrices
that the LQMarkov class requires:

def LQ_markov_mapping_restruct(A22, C2, Ug, T, p_t, c=0):

"""
Function which takes A22, C2, T, p_t, c and returns the
required matrices for the LQMarkov model: A, B, C, R, Q, W
Note, p_t should be a T by 1 matrix
c is the rescheduling cost (a scalar)
This version uses the condensed version of the endogenous state
"""

Make sure all matrices can be treated as 2D arrays
A22 = np.atleast_2d(A22)
C2 = np.atleast_2d(C2)
Ug = np.atleast_2d(Ug)
p_t = np.atleast_2d(p_t)

Find the number of states (z) and shocks (w)
nz, nw = C2.shape

Create Sx, tSx, Ss, S_t matrices (tSx stands for \tilde S_x)
Ss = np.hstack((np.eye(T-1), np.zeros((T-1, 1))))
Sx = np.hstack((np.zeros((T-1, 1)), np.eye(T-1)))
tSx = np.zeros((1, T))
tSx[0, 0] = 1

S_t = np.hstack((tSx + p_t.T @ Ss.T @ Sx, Ug))

Create A, B, C matrices
A_T = np.hstack((np.zeros((T, T)), np.zeros((T, nz))))
A_B = np.hstack((np.zeros((nz, T)), A22))
A = np.vstack((A_T, A_B))

B = np.vstack((np.eye(T), np.zeros((nz, T))))
C = np.vstack((np.zeros((T, nw)), C2))

Create cost matrix Sc
Sc = np.hstack((np.eye(T), np.zeros((T, nz))))

Create R_t, Q_t, W_t matrices

R_c = S_t.T @ S_t + c * Sc.T @ Sc
Q_c = p_t @ p_t.T + c * np.eye(T)
W_c = -p_t @ S_t - c * Sc

return A, B, C, R_c, Q_c, W_c

10.7. Restructuring as a Markov Jump Linear Quadratic Control Problem 219

Advanced Quantitative Economics with Python

10.7.1 Example with Restructuring

As an example of the model with restructuring, consider this model where 𝐻 = 3.
We will assume that there are two Markov states, one with a flatter yield curve, and one with a steeper yield curve.
In state 1, prices are:

𝑝1
𝑡,𝑡+1 = 0.9695 , 𝑝1

𝑡,𝑡+2 = 0.902 , 𝑝1
𝑡,𝑡+3 = 0.8369

and in state 2, prices are:

𝑝2
𝑡,𝑡+1 = 0.9295 , 𝑝2

𝑡,𝑡+2 = 0.902 , 𝑝2
𝑡,𝑡+3 = 0.8769

We will assume the same transition matrix and 𝐺𝑡 process as above

New model parameters
H = 3
p1 = np.array([[0.9695], [0.902], [0.8369]])
p2 = np.array([[0.9295], [0.902], [0.8769]])
Pi = np.array([[0.9, 0.1], [0.1, 0.9]])

Put penalty on different issuance across maturities
c2 = 0.5

A1, B1, C1, R1, Q1, W1 = LQ_markov_mapping_restruct(A22, C_2, Ug, H, p1, c2)
A2, B2, C2, R2, Q2, W2 = LQ_markov_mapping_restruct(A22, C_2, Ug, H, p2, c2)

Small penalties on debt required to implement no-Ponzi scheme
R1[0, 0] = R1[0, 0] + 1e-9
R1[1, 1] = R1[1, 1] + 1e-9
R1[2, 2] = R1[2, 2] + 1e-9
R2[0, 0] = R2[0, 0] + 1e-9
R2[1, 1] = R2[1, 1] + 1e-9
R2[2, 2] = R2[2, 2] + 1e-9

Construct lists of matrices
As = [A1, A2]
Bs = [B1, B2]
Cs = [C1, C2]
Rs = [R1, R2]
Qs = [Q1, Q2]
Ws = [W1, W2]

Construct and solve the model using the LQMarkov class
lqm3 = qe.LQMarkov(Π, Qs, Rs, As, Bs, Cs=Cs, Ns=Ws, beta=β)
lqm3.stationary_values()

x0 = np.array([[5000, 5000, 5000, 1, 10]])
x, u, w, t = lqm3.compute_sequence(x0, ts_length=300)

Plots of different maturities debt issuance

fig, (ax1, ax2, ax3, ax4) = plt.subplots(1, 4, figsize=(11, 3))
ax1.plot(u[0, :])
ax1.set_title('One-period debt issuance')
ax1.set_xlabel('Time')

(continues on next page)

220 Chapter 10. How to Pay for a War: Part 2

Advanced Quantitative Economics with Python

(continued from previous page)

ax2.plot(u[1, :])
ax2.set_title('Two-period debt issuance')
ax2.set_xlabel('Time')
ax3.plot(u[2, :])
ax3.set_title('Three-period debt issuance')
ax3.set_xlabel('Time')
ax4.plot(u[0, :] + u[1, :] + u[2, :])
ax4.set_title('Total debt issuance')
ax4.set_xlabel('Time')
plt.tight_layout()
plt.show()

Plot share of debt issuance that is short-term

fig, ax = plt.subplots()
ax.plot((u[0, :] / (u[0, :] + u[1, :] + u[2, :])))
ax.set_title('One-period debt issuance share')
ax.set_xlabel('Time')
plt.show()

10.7. Restructuring as a Markov Jump Linear Quadratic Control Problem 221

Advanced Quantitative Economics with Python

222 Chapter 10. How to Pay for a War: Part 2

CHAPTER

ELEVEN

HOW TO PAY FOR A WAR: PART 3

Contents

• How to Pay for a War: Part 3

– Another Application of Markov Jump Linear Quadratic Dynamic Programming

– Roll-Over Risk

– A Dead End

– Better Representation of Roll-Over Risk

In addition to what’s in Anaconda, this lecture deploys the quantecon library:

!pip install --upgrade quantecon

11.1 Another Application of Markov Jump Linear Quadratic Dynamic
Programming

This is another sequel to an earlier lecture.
We again use a method introduced in lecture Markov Jump LQ dynamic programming to implement some ideas Barro
(1999 [Bar99], 2003 [BM03]) that extend his classic 1979 [Bar79] model of tax smoothing.
Barro’s 1979 [Bar79] model is about a government that borrows and lends in order to help it minimize an intertemporal
measure of distortions caused by taxes.
Technically, Barro’s 1979 [Bar79] model looks a lot like a consumption-smoothing model.
Our generalizations of his 1979 model will also look like souped-up consumption-smoothing models.
In this lecture, we describe a tax-smoothing problem of a government that faces roll-over risk.
Let’s start with some standard imports:

import quantecon as qe
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

223

Advanced Quantitative Economics with Python

11.2 Roll-Over Risk

Let 𝑇𝑡 denote tax collections, 𝛽 a discount factor, 𝑏𝑡,𝑡+1 time 𝑡 + 1 goods that the government promises to pay at 𝑡, 𝐺𝑡
government purchases, 𝑝𝑡

𝑡+1 the number of time 𝑡 goods received per time 𝑡 + 1 goods promised.
The stochastic process of government expenditures is exogenous.
The government’s problem is to choose a plan for borrowing and tax collections {𝑏𝑡+1, 𝑇𝑡}∞

𝑡=0 to minimize

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝑇 2
𝑡

subject to the constraints

𝑇𝑡 + 𝑝𝑡
𝑡+1𝑏𝑡,𝑡+1 = 𝐺𝑡 + 𝑏𝑡−1,𝑡

𝐺𝑡 = 𝑈𝑔,𝑡𝑧𝑡

𝑧𝑡+1 = 𝐴22,𝑡𝑧𝑡 + 𝐶2,𝑡𝑤𝑡+1

where 𝑤𝑡+1 ∼ 𝑁(0, 𝐼). The variables 𝑇𝑡, 𝑏𝑡,𝑡+1 are control variables chosen at 𝑡, while 𝑏𝑡−1,𝑡 is an endogenous state
variable inherited from the past at time 𝑡 and 𝑝𝑡

𝑡+1 is an exogenous state variable at time 𝑡.
This is the same set-up as used in this lecture.
We will consider a situation in which the government faces “roll-over risk”.
Specifically, we shut down the government’s ability to borrow in one of the Markov states.

11.3 A Dead End

A first thought for how to implement this might be to allow 𝑝𝑡
𝑡+1 to vary over time with:

𝑝𝑡
𝑡+1 = 𝛽

in Markov state 1 and

𝑝𝑡
𝑡+1 = 0

in Markov state 2.
Consequently, in the second Markov state, the government is unable to borrow, and the budget constraint becomes 𝑇𝑡 =
𝐺𝑡 + 𝑏𝑡−1,𝑡.
However, if this is the only adjustment we make in our linear-quadratic model, the government will not set 𝑏𝑡,𝑡+1 = 0,
which is the outcome we want to express roll-over risk in period 𝑡.
Instead, the government would have an incentive to set 𝑏𝑡,𝑡+1 to a large negative number in state 2 – it would accumulate
large amounts of assets to bring into period 𝑡 + 1 because that is cheap (Our Riccati equations will discover this for us!).
Thus, we must represent “roll-over risk” some other way.

224 Chapter 11. How to Pay for a War: Part 3

Advanced Quantitative Economics with Python

11.4 Better Representation of Roll-Over Risk

To force the government to set 𝑏𝑡,𝑡+1 = 0, we can instead extend the model to have four Markov states:
1. Good today, good yesterday
2. Good today, bad yesterday
3. Bad today, good yesterday
4. Bad today, bad yesterday

where good is a state in which effectively the government can issue debt and bad is a state in which effectively the
government can’t issue debt.
We’ll explain what effectively means shortly.
We now set

𝑝𝑡
𝑡+1 = 𝛽

in all states.
In addition – and this is important because it defines what we mean by effectively – we put a large penalty on the 𝑏𝑡−1,𝑡
element of the state vector in states 2 and 4.
This will prevent the government from wishing to issue any debt in states 3 or 4 because it would experience a large
penalty from doing so in the next period.
The transition matrix for this formulation is:

Π =
⎡
⎢⎢
⎣

0.95 0 0.05 0
0.95 0 0.05 0

0 0.9 0 0.1
0 0.9 0 0.1

⎤
⎥⎥
⎦

This transition matrix ensures that the Markov state cannot move, for example, from state 3 to state 1.
Because state 3 is “bad today”, the next period cannot have “good yesterday”.

Model parameters
β, Gbar, ρ, σ = 0.95, 5, 0.8, 1

Basic model matrices
A22 = np.array([[1, 0], [Gbar, ρ],])
C2 = np.array([[0], [σ]])
Ug = np.array([[0, 1]])

LQ framework matrices
A_t = np.zeros((1, 3))
A_b = np.hstack((np.zeros((2, 1)), A22))
A = np.vstack((A_t, A_b))

B = np.zeros((3, 1))
B[0, 0] = 1

C = np.vstack((np.zeros((1, 1)), C2))

Sg = np.hstack((np.zeros((1, 1)), Ug))
S1 = np.zeros((1, 3))

(continues on next page)

11.4. Better Representation of Roll-Over Risk 225

Advanced Quantitative Economics with Python

(continued from previous page)

S1[0, 0] = 1
S = S1 + Sg

R = S.T @ S

Large penalty on debt in R2 to prevent borrowing in a bad state
R1 = np.copy(R)
R2 = np.copy(R)
R1[0, 0] = R[0, 0] + 1e-9
R2[0, 0] = R[0, 0] + 1e12

M = np.array([[-β]])
Q = M.T @ M
W = M.T @ S

Π = np.array([[0.95, 0, 0.05, 0],
[0.95, 0, 0.05, 0],
[0, 0.9, 0, 0.1],
[0, 0.9, 0, 0.1]])

Construct lists of matrices that correspond to each state
As = [A, A, A, A]
Bs = [B, B, B, B]
Cs = [C, C, C, C]
Rs = [R1, R2, R1, R2]
Qs = [Q, Q, Q, Q]
Ws = [W, W, W, W]

lqm = qe.LQMarkov(Π, Qs, Rs, As, Bs, Cs=Cs, Ns=Ws, beta=β)
lqm.stationary_values();

This model is simulated below, using the same process for 𝐺𝑡 as in this lecture.
When 𝑝𝑡

𝑡+1 = 𝛽 government debt fluctuates around zero.
The spikes in the series for taxation show periods when the government is unable to access financial markets: positive
spikes occur when debt is positive, and the government must raise taxes in the current period.
Negative spikes occur when the government has positive asset holdings.
An inability to use financial markets in the next period means that the government uses those assets to lower taxation
today.

x0 = np.array([[0, 1, 25]])
T = 300
x, u, w, state = lqm.compute_sequence(x0, ts_length=T)

Calculate taxation each period from the budget constraint and the Markov state
tax = np.zeros([T, 1])
for i in range(T):

tax[i, :] = S @ x[:, i] + M @ u[:, i]

Plot of debt issuance and taxation
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 3))
ax1.plot(x[0, :])
ax1.set_title('One-period debt issuance')
ax1.set_xlabel('Time')

(continues on next page)

226 Chapter 11. How to Pay for a War: Part 3

Advanced Quantitative Economics with Python

(continued from previous page)

ax2.plot(tax)
ax2.set_title('Taxation')
ax2.set_xlabel('Time')
plt.show()

We can adjust the model so that, rather than having debt fluctuate around zero, the government is a debtor in every period
we allow it to borrow.
To accomplish this, we simply raise 𝑝𝑡

𝑡+1 to 𝛽 + 0.02 = 0.97.

M = np.array([[-β - 0.02]])

Q = M.T @ M
W = M.T @ S

Construct lists of matrices
As = [A, A, A, A]
Bs = [B, B, B, B]
Cs = [C, C, C, C]
Rs = [R1, R2, R1, R2]
Qs = [Q, Q, Q, Q]
Ws = [W, W, W, W]

lqm2 = qe.LQMarkov(Π, Qs, Rs, As, Bs, Cs=Cs, Ns=Ws, beta=β)
x, u, w, state = lqm2.compute_sequence(x0, ts_length=T)

Calculate taxation each period from the budget constraint and the
Markov state
tax = np.zeros([T, 1])
for i in range(T):

tax[i, :] = S @ x[:, i] + M @ u[:, i]

Plot of debt issuance and taxation
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 3))
ax1.plot(x[0, :])
ax1.set_title('One-period debt issuance')
ax1.set_xlabel('Time')
ax2.plot(tax)
ax2.set_title('Taxation')
ax2.set_xlabel('Time')
plt.show()

11.4. Better Representation of Roll-Over Risk 227

Advanced Quantitative Economics with Python

With a lower interest rate, the government has an incentive to increase debt over time.
However, with “roll-over risk”, debt is recurrently reset to zero and taxes spike up.
Consequently, the government is wary of letting debt get too high, due to the high costs of a “sudden stop”.

228 Chapter 11. How to Pay for a War: Part 3

CHAPTER

TWELVE

OPTIMAL TAXATION IN AN LQ ECONOMY

Contents

• Optimal Taxation in an LQ Economy

– Overview

– The Ramsey Problem

– Implementation

– Examples

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

12.1 Overview

In this lecture, we study optimal fiscal policy in a linear quadratic setting.
We modify a model of Robert Lucas and Nancy Stokey [LS83] so that convenient formulas for solving linear-quadratic
models can be applied.
The economy consists of a representative household and a benevolent government.
The government finances an exogenous stream of government purchases with state-contingent loans and a linear tax on
labor income.
A linear tax is sometimes called a flat-rate tax.
The household maximizes utility by choosing paths for consumption and labor, taking prices and the government’s tax
rate and borrowing plans as given.
Maximum attainable utility for the household depends on the government’s tax and borrowing plans.
The Ramsey problem [Ram27] is to choose tax and borrowing plans that maximize the household’s welfare, taking the
household’s optimizing behavior as given.
There is a large number of competitive equilibria indexed by different government fiscal policies.
The Ramsey planner chooses the best competitive equilibrium.
We want to study the dynamics of tax rates, tax revenues, government debt under a Ramsey plan.

229

Advanced Quantitative Economics with Python

Because the Lucas and Stokey model features state-contingent government debt, the government debt dynamics differ
substantially from those in a model of Robert Barro [Bar79].
The treatment given here closely follows this manuscript, prepared by Thomas J. Sargent and Francois R. Velde.
We cover only the key features of the problem in this lecture, leaving you to refer to that source for additional results and
intuition.
We’ll need the following imports:

import sys
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from numpy import sqrt, eye, zeros, cumsum
from numpy.random import randn
import scipy.linalg
from collections import namedtuple
from quantecon import nullspace, mc_sample_path, var_quadratic_sum

12.1.1 Model Features

• Linear quadratic (LQ) model
• Representative household
• Stochastic dynamic programming over an infinite horizon
• Distortionary taxation

12.2 The Ramsey Problem

We begin by outlining the key assumptions regarding technology, households and the government sector.

12.2.1 Technology

Labor can be converted one-for-one into a single, non-storable consumption good.
In the usual spirit of the LQ model, the amount of labor supplied in each period is unrestricted.
This is unrealistic, but helpful when it comes to solving the model.
Realistic labor supply can be induced by suitable parameter values.

12.2.2 Households

Consider a representative household who chooses a path {ℓ𝑡, 𝑐𝑡} for labor and consumption to maximize

−𝔼1
2

∞
∑
𝑡=0

𝛽𝑡 [(𝑐𝑡 − 𝑏𝑡)2 + ℓ2
𝑡] (12.1)

subject to the budget constraint

𝔼
∞

∑
𝑡=0

𝛽𝑡𝑝0
𝑡 [𝑑𝑡 + (1 − 𝜏𝑡)ℓ𝑡 + 𝑠𝑡 − 𝑐𝑡] = 0 (12.2)

230 Chapter 12. Optimal Taxation in an LQ Economy

https://lectures.quantecon.org/_downloads/firenze.pdf

Advanced Quantitative Economics with Python

Here
• 𝛽 is a discount factor in (0, 1).
• 𝑝0

𝑡 is a scaled Arrow-Debreu price at time 0 of history contingent goods at time 𝑡 + 𝑗.
• 𝑏𝑡 is a stochastic preference parameter.
• 𝑑𝑡 is an endowment process.
• 𝜏𝑡 is a flat tax rate on labor income.
• 𝑠𝑡 is a promised time-𝑡 coupon payment on debt issued by the government.

The scaled Arrow-Debreu price 𝑝0
𝑡 is related to the unscaled Arrow-Debreu price as follows.

If we let 𝜋0
𝑡 (𝑥𝑡) denote the probability (density) of a history 𝑥𝑡 = [𝑥𝑡, 𝑥𝑡−1, … , 𝑥0] of the state 𝑥𝑡, then the Arrow-Debreu

time 0 price of a claim on one unit of consumption at date 𝑡, history 𝑥𝑡 would be

𝛽𝑡𝑝0
𝑡

𝜋0
𝑡 (𝑥𝑡)

Thus, our scaled Arrow-Debreu price is the ordinary Arrow-Debreu price multiplied by the discount factor 𝛽𝑡 and divided
by an appropriate probability.
The budget constraint (12.2) requires that the present value of consumption be restricted to equal the present value of
endowments, labor income and coupon payments on bond holdings.

12.2.3 Government

The government imposes a linear tax on labor income, fully committing to a stochastic path of tax rates at time zero.
The government also issues state-contingent debt.
Given government tax and borrowing plans, we can construct a competitive equilibrium with distorting government taxes.
Among all such competitive equilibria, the Ramsey plan is the one that maximizes the welfare of the representative
consumer.

12.2.4 Exogenous Variables

Endowments, government expenditure, the preference shock process 𝑏𝑡, and promised coupon payments on initial gov-
ernment debt 𝑠𝑡 are all exogenous, and given by

• 𝑑𝑡 = 𝑆𝑑𝑥𝑡

• 𝑔𝑡 = 𝑆𝑔𝑥𝑡

• 𝑏𝑡 = 𝑆𝑏𝑥𝑡

• 𝑠𝑡 = 𝑆𝑠𝑥𝑡

The matrices 𝑆𝑑, 𝑆𝑔, 𝑆𝑏, 𝑆𝑠 are primitives and {𝑥𝑡} is an exogenous stochastic process taking values in ℝ𝑘.
We consider two specifications for {𝑥𝑡}.

1. Discrete case: {𝑥𝑡} is a discrete state Markov chain with transition matrix 𝑃 .
2. VAR case: {𝑥𝑡} obeys 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1 where {𝑤𝑡} is independent zero-mean Gaussian with identify

covariance matrix.

12.2. The Ramsey Problem 231

Advanced Quantitative Economics with Python

12.2.5 Feasibility

The period-by-period feasibility restriction for this economy is

𝑐𝑡 + 𝑔𝑡 = 𝑑𝑡 + ℓ𝑡 (12.3)

A labor-consumption process {ℓ𝑡, 𝑐𝑡} is called feasible if (12.3) holds for all 𝑡.

12.2.6 Government Budget Constraint

Where 𝑝0
𝑡 is again a scaled Arrow-Debreu price, the time zero government budget constraint is

𝔼
∞

∑
𝑡=0

𝛽𝑡𝑝0
𝑡 (𝑠𝑡 + 𝑔𝑡 − 𝜏𝑡ℓ𝑡) = 0 (12.4)

12.2.7 Equilibrium

An equilibrium is a feasible allocation {ℓ𝑡, 𝑐𝑡}, a sequence of prices {𝑝0
𝑡 }, and a tax system {𝜏𝑡} such that

1. The allocation {ℓ𝑡, 𝑐𝑡} is optimal for the household given {𝑝0
𝑡 } and {𝜏𝑡}.

2. The government’s budget constraint (12.4) is satisfied.
The Ramsey problem is to choose the equilibrium {ℓ𝑡, 𝑐𝑡, 𝜏𝑡, 𝑝0

𝑡 } that maximizes the household’s welfare.
If {ℓ𝑡, 𝑐𝑡, 𝜏𝑡, 𝑝0

𝑡 } solves the Ramsey problem, then {𝜏𝑡} is called the Ramsey plan.
The solution procedure we adopt is

1. Use the first-order conditions from the household problem to pin down prices and allocations given {𝜏𝑡}.
2. Use these expressions to rewrite the government budget constraint (12.4) in terms of exogenous variables and

allocations.
3. Maximize the household’s objective function (12.1) subject to the constraint constructed in step 2 and the feasibility

constraint (12.3).
The solution to this maximization problem pins down all quantities of interest.

12.2.8 Solution

Step one is to obtain the first-conditions for the household’s problem, taking taxes and prices as given.
Letting 𝜇 be the Lagrange multiplier on (12.2), the first-order conditions are 𝑝0

𝑡 = (𝑐𝑡 −𝑏𝑡)/𝜇 and ℓ𝑡 = (𝑐𝑡 −𝑏𝑡)(1−𝜏𝑡).
Rearranging and normalizing at 𝜇 = 𝑏0 − 𝑐0, we can write these conditions as

𝑝0
𝑡 = 𝑏𝑡 − 𝑐𝑡

𝑏0 − 𝑐0
and 𝜏𝑡 = 1 − ℓ𝑡

𝑏𝑡 − 𝑐𝑡
(12.5)

Substituting (12.5) into the government’s budget constraint (12.4) yields

𝔼
∞

∑
𝑡=0

𝛽𝑡 [(𝑏𝑡 − 𝑐𝑡)(𝑠𝑡 + 𝑔𝑡 − ℓ𝑡) + ℓ2
𝑡] = 0 (12.6)

The Ramsey problem now amounts to maximizing (12.1) subject to (12.6) and (12.3).

232 Chapter 12. Optimal Taxation in an LQ Economy

Advanced Quantitative Economics with Python

The associated Lagrangian is

ℒ = 𝔼
∞

∑
𝑡=0

𝛽𝑡 {−1
2 [(𝑐𝑡 − 𝑏𝑡)2 + ℓ2

𝑡] + 𝜆 [(𝑏𝑡 − 𝑐𝑡)(ℓ𝑡 − 𝑠𝑡 − 𝑔𝑡) − ℓ2
𝑡] + 𝜇𝑡[𝑑𝑡 + ℓ𝑡 − 𝑐𝑡 − 𝑔𝑡]} (12.7)

The first-order conditions associated with 𝑐𝑡 and ℓ𝑡 are

−(𝑐𝑡 − 𝑏𝑡) + 𝜆[−ℓ𝑡 + (𝑔𝑡 + 𝑠𝑡)] = 𝜇𝑡

and

ℓ𝑡 − 𝜆[(𝑏𝑡 − 𝑐𝑡) − 2ℓ𝑡] = 𝜇𝑡

Combining these last two equalities with (12.3) and working through the algebra, one can show that

ℓ𝑡 = ̄ℓ𝑡 − 𝜈𝑚𝑡 and 𝑐𝑡 = ̄𝑐𝑡 − 𝜈𝑚𝑡 (12.8)

where
• 𝜈 ∶= 𝜆/(1 + 2𝜆)
• ̄ℓ𝑡 ∶= (𝑏𝑡 − 𝑑𝑡 + 𝑔𝑡)/2
• ̄𝑐𝑡 ∶= (𝑏𝑡 + 𝑑𝑡 − 𝑔𝑡)/2
• 𝑚𝑡 ∶= (𝑏𝑡 − 𝑑𝑡 − 𝑠𝑡)/2

Apart from 𝜈, all of these quantities are expressed in terms of exogenous variables.
To solve for 𝜈, we can use the government’s budget constraint again.
The term inside the brackets in (12.6) is (𝑏𝑡 − 𝑐𝑡)(𝑠𝑡 + 𝑔𝑡) − (𝑏𝑡 − 𝑐𝑡)ℓ𝑡 + ℓ2

𝑡 .
Using (12.8), the definitions above and the fact that ̄ℓ = 𝑏 − ̄𝑐, this term can be rewritten as

(𝑏𝑡 − ̄𝑐𝑡)(𝑔𝑡 + 𝑠𝑡) + 2𝑚2
𝑡 (𝜈2 − 𝜈)

Reinserting into (12.6), we get

𝔼 {
∞

∑
𝑡=0

𝛽𝑡(𝑏𝑡 − ̄𝑐𝑡)(𝑔𝑡 + 𝑠𝑡)} + (𝜈2 − 𝜈)𝔼 {
∞

∑
𝑡=0

𝛽𝑡2𝑚2
𝑡 } = 0 (12.9)

Although it might not be clear yet, we are nearly there because:
• The two expectations terms in (12.9) can be solved for in terms of model primitives.
• This in turn allows us to solve for the Lagrange multiplier 𝜈.
• With 𝜈 in hand, we can go back and solve for the allocations via (12.8).
• Once we have the allocations, prices and the tax system can be derived from (12.5).

12.2.9 Computing the Quadratic Term

Let’s consider how to obtain the term 𝜈 in (12.9).
If we can compute the two expected geometric sums

𝑏0 ∶= 𝔼 {
∞

∑
𝑡=0

𝛽𝑡(𝑏𝑡 − ̄𝑐𝑡)(𝑔𝑡 + 𝑠𝑡)} and 𝑎0 ∶= 𝔼 {
∞

∑
𝑡=0

𝛽𝑡2𝑚2
𝑡 } (12.10)

12.2. The Ramsey Problem 233

Advanced Quantitative Economics with Python

then the problem reduces to solving

𝑏0 + 𝑎0(𝜈2 − 𝜈) = 0

for 𝜈.
Provided that 4𝑏0 < 𝑎0, there is a unique solution 𝜈 ∈ (0, 1/2), and a unique corresponding 𝜆 > 0.
Let’s work out how to compute mathematical expectations in (12.10).
For the first one, the random variable (𝑏𝑡 − ̄𝑐𝑡)(𝑔𝑡 + 𝑠𝑡) inside the summation can be expressed as

1
2𝑥′

𝑡(𝑆𝑏 − 𝑆𝑑 + 𝑆𝑔)′(𝑆𝑔 + 𝑆𝑠)𝑥𝑡

For the second expectation in (12.10), the random variable 2𝑚2
𝑡 can be written as

1
2𝑥′

𝑡(𝑆𝑏 − 𝑆𝑑 − 𝑆𝑠)′(𝑆𝑏 − 𝑆𝑑 − 𝑆𝑠)𝑥𝑡

It follows that both objects of interest are special cases of the expression

𝑞(𝑥0) = 𝔼
∞

∑
𝑡=0

𝛽𝑡𝑥′
𝑡𝐻𝑥𝑡 (12.11)

where 𝐻 is a matrix conformable to 𝑥𝑡 and 𝑥′
𝑡 is the transpose of column vector 𝑥𝑡.

Suppose first that {𝑥𝑡} is the Gaussian VAR described above.
In this case, the formula for computing 𝑞(𝑥0) is known to be 𝑞(𝑥0) = 𝑥′

0𝑄𝑥0 + 𝑣, where
• 𝑄 is the solution to 𝑄 = 𝐻 + 𝛽𝐴′𝑄𝐴, and
• 𝑣 = trace (𝐶′𝑄𝐶)𝛽/(1 − 𝛽)

The first equation is known as a discrete Lyapunov equation and can be solved using this function.

12.2.10 Finite State Markov Case

Next, suppose that {𝑥𝑡} is the discrete Markov process described above.
Suppose further that each 𝑥𝑡 takes values in the state space {𝑥1, … , 𝑥𝑁} ⊂ ℝ𝑘.
Let ℎ∶ ℝ𝑘 → ℝ be a given function, and suppose that we wish to evaluate

𝑞(𝑥0) = 𝔼
∞

∑
𝑡=0

𝛽𝑡ℎ(𝑥𝑡) given 𝑥0 = 𝑥𝑗

For example, in the discussion above, ℎ(𝑥𝑡) = 𝑥′
𝑡𝐻𝑥𝑡.

It is legitimate to pass the expectation through the sum, leading to

𝑞(𝑥0) =
∞

∑
𝑡=0

𝛽𝑡(𝑃 𝑡ℎ)[𝑗] (12.12)

Here
• 𝑃 𝑡 is the 𝑡-th power of the transition matrix 𝑃 .
• ℎ is, with some abuse of notation, the vector (ℎ(𝑥1), … , ℎ(𝑥𝑁)).
• (𝑃 𝑡ℎ)[𝑗] indicates the 𝑗-th element of 𝑃 𝑡ℎ.

It can be shown that (12.12) is in fact equal to the 𝑗-th element of the vector (𝐼 − 𝛽𝑃)−1ℎ.
This last fact is applied in the calculations below.

234 Chapter 12. Optimal Taxation in an LQ Economy

https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/_matrix_eqn.py

Advanced Quantitative Economics with Python

12.2.11 Other Variables

We are interested in tracking several other variables besides the ones described above.
To prepare the way for this, we define

𝑝𝑡
𝑡+𝑗 = 𝑏𝑡+𝑗 − 𝑐𝑡+𝑗

𝑏𝑡 − 𝑐𝑡

as the scaled Arrow-Debreu time 𝑡 price of a history contingent claim on one unit of consumption at time 𝑡 + 𝑗.
These are prices that would prevail at time 𝑡 if markets were reopened at time 𝑡.
These prices are constituents of the present value of government obligations outstanding at time 𝑡, which can be expressed
as

𝐵𝑡 ∶= 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑝𝑡
𝑡+𝑗(𝜏𝑡+𝑗ℓ𝑡+𝑗 − 𝑔𝑡+𝑗) (12.13)

Using our expression for prices and the Ramsey plan, we can also write 𝐵𝑡 as

𝐵𝑡 = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗 (𝑏𝑡+𝑗 − 𝑐𝑡+𝑗)(ℓ𝑡+𝑗 − 𝑔𝑡+𝑗) − ℓ2
𝑡+𝑗

𝑏𝑡 − 𝑐𝑡

This version is more convenient for computation.
Using the equation

𝑝𝑡
𝑡+𝑗 = 𝑝𝑡

𝑡+1𝑝𝑡+1
𝑡+𝑗

it is possible to verify that (12.13) implies that

𝐵𝑡 = (𝜏𝑡ℓ𝑡 − 𝑔𝑡) + 𝐸𝑡
∞

∑
𝑗=1

𝑝𝑡
𝑡+𝑗(𝜏𝑡+𝑗ℓ𝑡+𝑗 − 𝑔𝑡+𝑗)

and

𝐵𝑡 = (𝜏𝑡ℓ𝑡 − 𝑔𝑡) + 𝛽𝐸𝑡𝑝𝑡
𝑡+1𝐵𝑡+1 (12.14)

Define

𝑅−1
𝑡 ∶= 𝔼𝑡𝛽𝑗𝑝𝑡

𝑡+1 (12.15)

𝑅𝑡 is the gross 1-period risk-free rate for loans between 𝑡 and 𝑡 + 1.

12.2.12 A Martingale

We now want to study the following two objects, namely,

𝜋𝑡+1 ∶= 𝐵𝑡+1 − 𝑅𝑡[𝐵𝑡 − (𝜏𝑡ℓ𝑡 − 𝑔𝑡)]

and the cumulation of 𝜋𝑡

Π𝑡 ∶=
𝑡

∑
𝑠=0

𝜋𝑡

The term 𝜋𝑡+1 is the difference between two quantities:

12.2. The Ramsey Problem 235

Advanced Quantitative Economics with Python

• 𝐵𝑡+1, the value of government debt at the start of period 𝑡 + 1.
• 𝑅𝑡[𝐵𝑡 + 𝑔𝑡 − 𝜏𝑡], which is what the government would have owed at the beginning of period 𝑡 + 1 if it had simply
borrowed at the one-period risk-free rate rather than selling state-contingent securities.

Thus, 𝜋𝑡+1 is the excess payout on the actual portfolio of state-contingent government debt relative to an alternative
portfolio sufficient to finance 𝐵𝑡 + 𝑔𝑡 − 𝜏𝑡ℓ𝑡 and consisting entirely of risk-free one-period bonds.
Use expressions (12.14) and (12.15) to obtain

𝜋𝑡+1 = 𝐵𝑡+1 − 1
𝛽𝐸𝑡𝑝𝑡

𝑡+1
[𝛽𝐸𝑡𝑝𝑡

𝑡+1𝐵𝑡+1]

or

𝜋𝑡+1 = 𝐵𝑡+1 − ̃𝐸𝑡𝐵𝑡+1 (12.16)

where ̃𝐸𝑡 is the conditional mathematical expectation taken with respect to a one-step transition density that has been
formed by multiplying the original transition density with the likelihood ratio

𝑚𝑡
𝑡+1 = 𝑝𝑡

𝑡+1
𝐸𝑡𝑝𝑡

𝑡+1

It follows from equation (12.16) that

̃𝐸𝑡𝜋𝑡+1 = ̃𝐸𝑡𝐵𝑡+1 − ̃𝐸𝑡𝐵𝑡+1 = 0

which asserts that {𝜋𝑡+1} is a martingale difference sequence under the distorted probability measure, and that {Π𝑡} is a
martingale under the distorted probability measure.
In the tax-smoothing model of Robert Barro [Bar79], government debt is a random walk.
In the current model, government debt {𝐵𝑡} is not a random walk, but the excess payoff {Π𝑡} on it is.

12.3 Implementation

The following code provides functions for
1. Solving for the Ramsey plan given a specification of the economy.
2. Simulating the dynamics of the major variables.

Description and clarifications are given below

Set up a namedtuple to store data on the model economy
Economy = namedtuple('economy',

('β', # Discount factor
'Sg', # Govt spending selector matrix
'Sd', # Exogenous endowment selector matrix
'Sb', # Utility parameter selector matrix
'Ss', # Coupon payments selector matrix
'discrete', # Discrete or continuous -- boolean
'proc')) # Stochastic process parameters

Set up a namedtuple to store return values for compute_paths()
Path = namedtuple('path',

('g', # Govt spending
'd', # Endowment

(continues on next page)

236 Chapter 12. Optimal Taxation in an LQ Economy

Advanced Quantitative Economics with Python

(continued from previous page)

'b', # Utility shift parameter
's', # Coupon payment on existing debt
'c', # Consumption
'l', # Labor
'p', # Price
'τ', # Tax rate
'rvn', # Revenue
'B', # Govt debt
'R', # Risk-free gross return
'π', # One-period risk-free interest rate
'Π', # Cumulative rate of return, adjusted
'ξ')) # Adjustment factor for Π

def compute_paths(T, econ):
"""
Compute simulated time paths for exogenous and endogenous variables.

Parameters
===========
T: int

Length of the simulation

econ: a namedtuple of type 'Economy', containing
β - Discount factor
Sg - Govt spending selector matrix
Sd - Exogenous endowment selector matrix
Sb - Utility parameter selector matrix
Ss - Coupon payments selector matrix
discrete - Discrete exogenous process (True or False)
proc - Stochastic process parameters

Returns
========
path: a namedtuple of type 'Path', containing

g - Govt spending
d - Endowment
b - Utility shift parameter
s - Coupon payment on existing debt
c - Consumption
l - Labor
p - Price
τ - Tax rate
rvn - Revenue
B - Govt debt
R - Risk-free gross return
π - One-period risk-free interest rate
Π - Cumulative rate of return, adjusted
ξ - Adjustment factor for Π

The corresponding values are flat numpy ndarrays.

"""

Simplify names
β, Sg, Sd, Sb, Ss = econ.β, econ.Sg, econ.Sd, econ.Sb, econ.Ss

(continues on next page)

12.3. Implementation 237

Advanced Quantitative Economics with Python

(continued from previous page)

if econ.discrete:
P, x_vals = econ.proc

else:
A, C = econ.proc

Simulate the exogenous process x
if econ.discrete:

state = mc_sample_path(P, init=0, sample_size=T)
x = x_vals[:, state]

else:
Generate an initial condition x0 satisfying x0 = A x0
nx, nx = A.shape
x0 = nullspace((eye(nx) - A))
x0 = -x0 if (x0[nx-1] < 0) else x0
x0 = x0 / x0[nx-1]

Generate a time series x of length T starting from x0
nx, nw = C.shape
x = zeros((nx, T))
w = randn(nw, T)
x[:, 0] = x0.T
for t in range(1, T):

x[:, t] = A @ x[:, t-1] + C @ w[:, t]

Compute exogenous variable sequences
g, d, b, s = ((S @ x).flatten() for S in (Sg, Sd, Sb, Ss))

Solve for Lagrange multiplier in the govt budget constraint
In fact we solve for ν = lambda / (1 + 2*lambda). Here ν is the
solution to a quadratic equation a(ν**2 - ν) + b = 0 where
a and b are expected discounted sums of quadratic forms of the state.
Sm = Sb - Sd - Ss
Compute a and b
if econ.discrete:

ns = P.shape[0]
F = scipy.linalg.inv(eye(ns) - β * P)
a0 = 0.5 * (F @ (x_vals.T @ Sm.T)**2)[0]
H = ((Sb - Sd + Sg) @ x_vals) * ((Sg - Ss) @ x_vals)
b0 = 0.5 * (F @ H.T)[0]
a0, b0 = float(a0), float(b0)

else:
H = Sm.T @ Sm
a0 = 0.5 * var_quadratic_sum(A, C, H, β, x0)
H = (Sb - Sd + Sg).T @ (Sg + Ss)
b0 = 0.5 * var_quadratic_sum(A, C, H, β, x0)

Test that ν has a real solution before assigning
warning_msg = """
Hint: you probably set government spending too {}. Elect a {}
Congress and start over.
"""
disc = a0**2 - 4 * a0 * b0
if disc >= 0:

ν = 0.5 * (a0 - sqrt(disc)) / a0
else:

(continues on next page)

238 Chapter 12. Optimal Taxation in an LQ Economy

Advanced Quantitative Economics with Python

(continued from previous page)

print("There is no Ramsey equilibrium for these parameters.")
print(warning_msg.format('high', 'Republican'))
sys.exit(0)

Test that the Lagrange multiplier has the right sign
if ν * (0.5 - ν) < 0:

print("Negative multiplier on the government budget constraint.")
print(warning_msg.format('low', 'Democratic'))
sys.exit(0)

Solve for the allocation given ν and x
Sc = 0.5 * (Sb + Sd - Sg - ν * Sm)
Sl = 0.5 * (Sb - Sd + Sg - ν * Sm)
c = (Sc @ x).flatten()
l = (Sl @ x).flatten()
p = ((Sb - Sc) @ x).flatten() # Price without normalization
τ = 1 - l / (b - c)
rvn = l * τ

Compute remaining variables
if econ.discrete:

H = ((Sb - Sc) @ x_vals) * ((Sl - Sg) @ x_vals) - (Sl @ x_vals)**2
temp = (F @ H.T).flatten()
B = temp[state] / p
H = (P[state, :] @ x_vals.T @ (Sb - Sc).T).flatten()
R = p / (β * H)
temp = ((P[state, :] @ x_vals.T @ (Sb - Sc).T)).flatten()
ξ = p[1:] / temp[:T-1]

else:
H = Sl.T @ Sl - (Sb - Sc).T @ (Sl - Sg)
L = np.empty(T)
for t in range(T):

L[t] = var_quadratic_sum(A, C, H, β, x[:, t])
B = L / p
Rinv = (β * ((Sb - Sc) @ A @ x)).flatten() / p
R = 1 / Rinv
AF1 = (Sb - Sc) @ x[:, 1:]
AF2 = (Sb - Sc) @ A @ x[:, :T-1]
ξ = AF1 / AF2
ξ = ξ.flatten()

π = B[1:] - R[:T-1] * B[:T-1] - rvn[:T-1] + g[:T-1]
Π = cumsum(π * ξ)

Prepare return values
path = Path(g=g, d=d, b=b, s=s, c=c, l=l, p=p,

τ=τ, rvn=rvn, B=B, R=R, π=π, Π=Π, ξ=ξ)

return path

def gen_fig_1(path):
"""
The parameter is the path namedtuple returned by compute_paths(). See
the docstring of that function for details.
"""

(continues on next page)

12.3. Implementation 239

Advanced Quantitative Economics with Python

(continued from previous page)

T = len(path.c)

Prepare axes
num_rows, num_cols = 2, 2
fig, axes = plt.subplots(num_rows, num_cols, figsize=(14, 10))
plt.subplots_adjust(hspace=0.4)
for i in range(num_rows):

for j in range(num_cols):
axes[i, j].grid()
axes[i, j].set_xlabel('Time')

bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

Plot consumption, govt expenditure and revenue
ax = axes[0, 0]
ax.plot(path.rvn, label=r'$\tau_t \ell_t$', **p_args)
ax.plot(path.g, label='g_t', **p_args)
ax.plot(path.c, label='c_t', **p_args)
ax.legend(ncol=3, **legend_args)

Plot govt expenditure and debt
ax = axes[0, 1]
ax.plot(list(range(1, T+1)), path.rvn, label=r'$\tau_t \ell_t$', **p_args)
ax.plot(list(range(1, T+1)), path.g, label='g_t', **p_args)
ax.plot(list(range(1, T)), path.B[1:T], label='B_{t+1}', **p_args)
ax.legend(ncol=3, **legend_args)

Plot risk-free return
ax = axes[1, 0]
ax.plot(list(range(1, T+1)), path.R - 1, label='$R_t - 1$', **p_args)
ax.legend(ncol=1, **legend_args)

Plot revenue, expenditure and risk free rate
ax = axes[1, 1]
ax.plot(list(range(1, T+1)), path.rvn, label=r'$\tau_t \ell_t$', **p_args)
ax.plot(list(range(1, T+1)), path.g, label='g_t', **p_args)
axes[1, 1].plot(list(range(1, T)), path.π, label=r'π_{t+1}', **p_args)
ax.legend(ncol=3, **legend_args)

plt.show()

def gen_fig_2(path):
"""
The parameter is the path namedtuple returned by compute_paths(). See
the docstring of that function for details.
"""

T = len(path.c)

Prepare axes
num_rows, num_cols = 2, 1
fig, axes = plt.subplots(num_rows, num_cols, figsize=(10, 10))
plt.subplots_adjust(hspace=0.5)

(continues on next page)

240 Chapter 12. Optimal Taxation in an LQ Economy

Advanced Quantitative Economics with Python

(continued from previous page)

bbox = (0., 1.02, 1., .102)
bbox = (0., 1.02, 1., .102)
legend_args = {'bbox_to_anchor': bbox, 'loc': 3, 'mode': 'expand'}
p_args = {'lw': 2, 'alpha': 0.7}

Plot adjustment factor
ax = axes[0]
ax.plot(list(range(2, T+1)), path.ξ, label=r'ξ_t', **p_args)
ax.grid()
ax.set_xlabel('Time')
ax.legend(ncol=1, **legend_args)

Plot adjusted cumulative return
ax = axes[1]
ax.plot(list(range(2, T+1)), path.Π, label=r'Π_t', **p_args)
ax.grid()
ax.set_xlabel('Time')
ax.legend(ncol=1, **legend_args)

plt.show()

12.3.1 Comments on the Code

The function var_quadratic_sum imported from quadsums is for computing the value of (12.11) when the ex-
ogenous process {𝑥𝑡} is of the VAR type described above.
Below the definition of the function, you will see definitions of two namedtuple objects, Economy and Path.
The first is used to collect all the parameters and primitives of a given LQ economy, while the second collects output of
the computations.
In Python, a namedtuple is a popular data type from the collectionsmodule of the standard library that replicates
the functionality of a tuple, but also allows you to assign a name to each tuple element.
These elements can then be references via dotted attribute notation — see for example the use of path in the functions
gen_fig_1() and gen_fig_2().
The benefits of using namedtuples:

• Keeps content organized by meaning.
• Helps reduce the number of global variables.

Other than that, our code is long but relatively straightforward.

12.4 Examples

Let’s look at two examples of usage.

12.4. Examples 241

Advanced Quantitative Economics with Python

12.4.1 The Continuous Case

Our first example adopts the VAR specification described above.
Regarding the primitives, we set

• 𝛽 = 1/1.05
• 𝑏𝑡 = 2.135 and 𝑠𝑡 = 𝑑𝑡 = 0 for all 𝑡

Government spending evolves according to

𝑔𝑡+1 − 𝜇𝑔 = 𝜌(𝑔𝑡 − 𝜇𝑔) + 𝐶𝑔𝑤𝑔,𝑡+1

with 𝜌 = 0.7, 𝜇𝑔 = 0.35 and 𝐶𝑔 = 𝜇𝑔√1 − 𝜌2/10.
Here’s the code

== Parameters ==
β = 1 / 1.05
ρ, mg = .7, .35
A = eye(2)
A[0, :] = ρ, mg * (1-ρ)
C = np.zeros((2, 1))
C[0, 0] = np.sqrt(1 - ρ**2) * mg / 10
Sg = np.array((1, 0)).reshape(1, 2)
Sd = np.array((0, 0)).reshape(1, 2)
Sb = np.array((0, 2.135)).reshape(1, 2)
Ss = np.array((0, 0)).reshape(1, 2)

economy = Economy(β=β, Sg=Sg, Sd=Sd, Sb=Sb, Ss=Ss,
discrete=False, proc=(A, C))

T = 50
path = compute_paths(T, economy)
gen_fig_1(path)

242 Chapter 12. Optimal Taxation in an LQ Economy

Advanced Quantitative Economics with Python

The legends on the figures indicate the variables being tracked.
Most obvious from the figure is tax smoothing in the sense that tax revenue is much less variable than government expen-
diture.

gen_fig_2(path)

12.4. Examples 243

Advanced Quantitative Economics with Python

See the original manuscript for comments and interpretation.

12.4.2 The Discrete Case

Our second example adopts a discrete Markov specification for the exogenous process

== Parameters ==
β = 1 / 1.05
P = np.array([[0.8, 0.2, 0.0],

[0.0, 0.5, 0.5],
[0.0, 0.0, 1.0]])

Possible states of the world

(continues on next page)

244 Chapter 12. Optimal Taxation in an LQ Economy

https://lectures.quantecon.org/_downloads/firenze.pdf

Advanced Quantitative Economics with Python

(continued from previous page)

Each column is a state of the world. The rows are [g d b s 1]
x_vals = np.array([[0.5, 0.5, 0.25],

[0.0, 0.0, 0.0],
[2.2, 2.2, 2.2],
[0.0, 0.0, 0.0],
[1.0, 1.0, 1.0]])

Sg = np.array((1, 0, 0, 0, 0)).reshape(1, 5)
Sd = np.array((0, 1, 0, 0, 0)).reshape(1, 5)
Sb = np.array((0, 0, 1, 0, 0)).reshape(1, 5)
Ss = np.array((0, 0, 0, 1, 0)).reshape(1, 5)

economy = Economy(β=β, Sg=Sg, Sd=Sd, Sb=Sb, Ss=Ss,
discrete=True, proc=(P, x_vals))

T = 15
path = compute_paths(T, economy)
gen_fig_1(path)

The call gen_fig_2(path) generates

12.4. Examples 245

Advanced Quantitative Economics with Python

gen_fig_2(path)

See the original manuscript for comments and interpretation.

246 Chapter 12. Optimal Taxation in an LQ Economy

https://lectures.quantecon.org/_downloads/firenze.pdf

Advanced Quantitative Economics with Python

12.5 Exercises

Exercise 12.5.1
Modify the VAR example given above, setting

𝑔𝑡+1 − 𝜇𝑔 = 𝜌(𝑔𝑡−3 − 𝜇𝑔) + 𝐶𝑔𝑤𝑔,𝑡+1

with 𝜌 = 0.95 and 𝐶𝑔 = 0.7√1 − 𝜌2.
Produce the corresponding figures.

Solution to Exercise 12.5.1

== Parameters ==
β = 1 / 1.05
ρ, mg = .95, .35
A = np.array([[0, 0, 0, ρ, mg*(1-ρ)],

[1, 0, 0, 0, 0],
[0, 1, 0, 0, 0],
[0, 0, 1, 0, 0],
[0, 0, 0, 0, 1]])

C = np.zeros((5, 1))
C[0, 0] = np.sqrt(1 - ρ**2) * mg / 8
Sg = np.array((1, 0, 0, 0, 0)).reshape(1, 5)
Sd = np.array((0, 0, 0, 0, 0)).reshape(1, 5)
Chosen st. (Sc + Sg) * x0 = 1
Sb = np.array((0, 0, 0, 0, 2.135)).reshape(1, 5)
Ss = np.array((0, 0, 0, 0, 0)).reshape(1, 5)

economy = Economy(β=β, Sg=Sg, Sd=Sd, Sb=Sb,
Ss=Ss, discrete=False, proc=(A, C))

T = 50
path = compute_paths(T, economy)

gen_fig_1(path)

12.5. Exercises 247

Advanced Quantitative Economics with Python

gen_fig_2(path)

248 Chapter 12. Optimal Taxation in an LQ Economy

Advanced Quantitative Economics with Python

12.5. Exercises 249

Advanced Quantitative Economics with Python

250 Chapter 12. Optimal Taxation in an LQ Economy

Part III

Multiple Agent Models

251

CHAPTER

THIRTEEN

DEFAULT RISK AND INCOME FLUCTUATIONS

Contents

• Default Risk and Income Fluctuations

– Overview

– Structure

– Equilibrium

– Computation

– Results

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

13.1 Overview

This lecture computes versions of Arellano’s [Are08] model of sovereign default.
The model describes interactions among default risk, output, and an equilibrium interest rate that includes a premium for
endogenous default risk.
The decision maker is a government of a small open economy that borrows from risk-neutral foreign creditors.
The foreign lenders must be compensated for default risk.
The government borrows and lends abroad in order to smooth the consumption of its citizens.
The government repays its debt only if it wants to, but declining to pay has adverse consequences.
The interest rate on government debt adjusts in response to the state-dependent default probability chosen by government.
The model yields outcomes that help interpret sovereign default experiences, including

• countercyclical interest rates on sovereign debt
• countercyclical trade balances
• high volatility of consumption relative to output

253

Advanced Quantitative Economics with Python

Notably, long recessions caused by bad draws in the income process increase the government’s incentive to default.
This can lead to

• spikes in interest rates
• temporary losses of access to international credit markets
• large drops in output, consumption, and welfare
• large capital outflows during recessions

Such dynamics are consistent with experiences of many countries.
Let’s start with some imports:

import matplotlib.pyplot as plt
import numpy as np
import quantecon as qe

from numba import njit, prange
%matplotlib inline

13.2 Structure

In this section we describe the main features of the model.

13.2.1 Output, Consumption and Debt

A small open economy is endowed with an exogenous stochastically fluctuating potential output stream {𝑦𝑡}.
Potential output is realized only in periods in which the government honors its sovereign debt.
The output good can be traded or consumed.
The sequence {𝑦𝑡} is described by a Markov process with stochastic density kernel 𝑝(𝑦, 𝑦′).
Households within the country are identical and rank stochastic consumption streams according to

𝔼
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) (13.1)

Here
• 0 < 𝛽 < 1 is a time discount factor
• 𝑢 is an increasing and strictly concave utility function

Consumption sequences enjoyed by households are affected by the government’s decision to borrow or lend internationally.
The government is benevolent in the sense that its aim is to maximize (13.1).
The government is the only domestic actor with access to foreign credit.
Because household are averse to consumption fluctuations, the government will try to smooth consumption by borrowing
from (and lending to) foreign creditors.

254 Chapter 13. Default Risk and Income Fluctuations

Advanced Quantitative Economics with Python

13.2.2 Asset Markets

The only credit instrument available to the government is a one-period bond traded in international credit markets.
The bond market has the following features

• The bond matures in one period and is not state contingent.
• A purchase of a bond with face value 𝐵′ is a claim to 𝐵′ units of the consumption good next period.
• To purchase 𝐵′ next period costs 𝑞𝐵′ now, or, what is equivalent.
• For selling −𝐵′ units of next period goods the seller earns −𝑞𝐵′ of today’s goods.

– If 𝐵′ < 0, then −𝑞𝐵′ units of the good are received in the current period, for a promise to repay −𝐵′ units
next period.

– There is an equilibrium price function 𝑞(𝐵′, 𝑦) that makes 𝑞 depend on both 𝐵′ and 𝑦.
Earnings on the government portfolio are distributed (or, if negative, taxed) lump sum to households.
When the government is not excluded from financial markets, the one-period national budget constraint is

𝑐 = 𝑦 + 𝐵 − 𝑞(𝐵′, 𝑦)𝐵′ (13.2)

Here and below, a prime denotes a next period value or a claim maturing next period.
To rule out Ponzi schemes, we also require that 𝐵 ≥ −𝑍 in every period.

• 𝑍 is chosen to be sufficiently large that the constraint never binds in equilibrium.

13.2.3 Financial Markets

Foreign creditors
• are risk neutral
• know the domestic output stochastic process {𝑦𝑡} and observe 𝑦𝑡, 𝑦𝑡−1, … , at time 𝑡
• can borrow or lend without limit in an international credit market at a constant international interest rate 𝑟
• receive full payment if the government chooses to pay
• receive zero if the government defaults on its one-period debt due

When a government is expected to default next period with probability 𝛿, the expected value of a promise to pay one unit
of consumption next period is 1 − 𝛿.
Therefore, the discounted expected value of a promise to pay 𝐵 next period is

𝑞 = 1 − 𝛿
1 + 𝑟 (13.3)

Next we turn to how the government in effect chooses the default probability 𝛿.

13.2. Structure 255

Advanced Quantitative Economics with Python

13.2.4 Government’s Decisions

At each point in time 𝑡, the government chooses between
1. defaulting
2. meeting its current obligations and purchasing or selling an optimal quantity of one-period sovereign debt

Defaulting means declining to repay all of its current obligations.
If the government defaults in the current period, then consumption equals current output.
But a sovereign default has two consequences:

1. Output immediately falls from 𝑦 to ℎ(𝑦), where 0 ≤ ℎ(𝑦) ≤ 𝑦.
• It returns to 𝑦 only after the country regains access to international credit markets.

2. The country loses access to foreign credit markets.

13.2.5 Reentering International Credit Market

While in a state of default, the economy regains access to foreign credit in each subsequent period with probability 𝜃.

13.3 Equilibrium

Informally, an equilibrium is a sequence of interest rates on its sovereign debt, a stochastic sequence of government default
decisions and an implied flow of household consumption such that

1. Consumption and assets satisfy the national budget constraint.
2. The government maximizes household utility taking into account

• the resource constraint
• the effect of its choices on the price of bonds
• consequences of defaulting now for future net output and future borrowing and lending opportunities

3. The interest rate on the government’s debt includes a risk-premium sufficient to make foreign creditors expect on
average to earn the constant risk-free international interest rate.

To express these ideas more precisely, consider first the choices of the government, which
1. enters a period with initial assets 𝐵, or what is the same thing, initial debt to be repaid now of −𝐵
2. observes current output 𝑦, and
3. chooses either

1. to default, or
2. to pay −𝐵 and set next period’s debt due to −𝐵′

In a recursive formulation,
• state variables for the government comprise the pair (𝐵, 𝑦)
• 𝑣(𝐵, 𝑦) is the optimum value of the government’s problem when at the beginning of a period it faces the choice of
whether to honor or default

• 𝑣𝑐(𝐵, 𝑦) is the value of choosing to pay obligations falling due
• 𝑣𝑑(𝑦) is the value of choosing to default

256 Chapter 13. Default Risk and Income Fluctuations

Advanced Quantitative Economics with Python

𝑣𝑑(𝑦) does not depend on 𝐵 because, when access to credit is eventually regained, net foreign assets equal 0.
Expressed recursively, the value of defaulting is

𝑣𝑑(𝑦) = 𝑢(ℎ(𝑦)) + 𝛽 ∫ {𝜃𝑣(0, 𝑦′) + (1 − 𝜃)𝑣𝑑(𝑦′)} 𝑝(𝑦, 𝑦′)𝑑𝑦′

The value of paying is

𝑣𝑐(𝐵, 𝑦) = max
𝐵′≥−𝑍

{𝑢(𝑦 − 𝑞(𝐵′, 𝑦)𝐵′ + 𝐵) + 𝛽 ∫ 𝑣(𝐵′, 𝑦′)𝑝(𝑦, 𝑦′)𝑑𝑦′}

The three value functions are linked by

𝑣(𝐵, 𝑦) = max{𝑣𝑐(𝐵, 𝑦), 𝑣𝑑(𝑦)}
The government chooses to default when

𝑣𝑐(𝐵, 𝑦) < 𝑣𝑑(𝑦)
and hence given 𝐵′ the probability of default next period is

𝛿(𝐵′, 𝑦) ∶= ∫ 𝟙{𝑣𝑐(𝐵′, 𝑦′) < 𝑣𝑑(𝑦′)}𝑝(𝑦, 𝑦′)𝑑𝑦′ (13.4)

Given zero profits for foreign creditors in equilibrium, we can combine (13.3) and (13.4) to pin down the bond price
function:

𝑞(𝐵′, 𝑦) = 1 − 𝛿(𝐵′, 𝑦)
1 + 𝑟 (13.5)

13.3.1 Definition of Equilibrium

An equilibrium is
• a pricing function 𝑞(𝐵′, 𝑦),
• a triple of value functions (𝑣𝑐(𝐵, 𝑦), 𝑣𝑑(𝑦), 𝑣(𝐵, 𝑦)),
• a decision rule telling the government when to default and when to pay as a function of the state (𝐵, 𝑦), and
• an asset accumulation rule that, conditional on choosing not to default, maps (𝐵, 𝑦) into 𝐵′

such that
• The three Bellman equations for (𝑣𝑐(𝐵, 𝑦), 𝑣𝑑(𝑦), 𝑣(𝐵, 𝑦)) are satisfied
• Given the price function 𝑞(𝐵′, 𝑦), the default decision rule and the asset accumulation decision rule attain the
optimal value function 𝑣(𝐵, 𝑦), and

• The price function 𝑞(𝐵′, 𝑦) satisfies equation (13.5)

13.4 Computation

Let’s now compute an equilibrium of Arellano’s model.
The equilibrium objects are the value function 𝑣(𝐵, 𝑦), the associated default decision rule, and the pricing function
𝑞(𝐵′, 𝑦).
We’ll use our code to replicate Arellano’s results.
After that we’ll perform some additional simulations.
We use a slightly modified version of the algorithm recommended by Arellano.

13.4. Computation 257

Advanced Quantitative Economics with Python

• The appendix to [Are08] recommends value function iteration until convergence, updating the price, and then
repeating.

• Instead, we update the bond price at every value function iteration step.
The second approach is faster and the two different procedures deliver very similar results.
Here is a more detailed description of our algorithm:

1. Guess a pair of non-default and default value functions 𝑣𝑐 and 𝑣𝑑.
2. Using these functions, calculate the value function 𝑣, the corresponding default probabilities and the price function

𝑞.
3. At each pair (𝐵, 𝑦),

1. update the value of defaulting 𝑣𝑑(𝑦).
2. update the value of remaining 𝑣𝑐(𝐵, 𝑦).

4. Check for convergence. If converged, stop – if not, go to step 2.
We use simple discretization on a grid of asset holdings and income levels.
The output process is discretized using a quadrature method due to Tauchen.
As we have in other places, we accelerate our code using Numba.
We define a class that will store parameters, grids and transition probabilities.

class Arellano_Economy:
" Stores data and creates primitives for the Arellano economy. "

def __init__(self,
B_grid_size= 251, # Grid size for bonds
B_grid_min=-0.45, # Smallest B value
B_grid_max=0.45, # Largest B value
y_grid_size=51, # Grid size for income
β=0.953, # Time discount parameter
γ=2.0, # Utility parameter
r=0.017, # Lending rate
ρ=0.945, # Persistence in the income process
η=0.025, # Standard deviation of the income process
θ=0.282, # Prob of re-entering financial markets
def_y_param=0.969): # Parameter governing income in default

Save parameters
self.β, self.γ, self.r, = β, γ, r
self.ρ, self.η, self.θ = ρ, η, θ

self.y_grid_size = y_grid_size
self.B_grid_size = B_grid_size
self.B_grid = np.linspace(B_grid_min, B_grid_max, B_grid_size)
mc = qe.markov.tauchen(y_grid_size, ρ, η, 0, 3)
self.y_grid, self.P = np.exp(mc.state_values), mc.P

The index at which B_grid is (close to) zero
self.B0_idx = np.searchsorted(self.B_grid, 1e-10)

Output recieved while in default, with same shape as y_grid
self.def_y = np.minimum(def_y_param * np.mean(self.y_grid), self.y_grid)

(continues on next page)

258 Chapter 13. Default Risk and Income Fluctuations

https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/markov/approximation.py

Advanced Quantitative Economics with Python

(continued from previous page)

def params(self):
return self.β, self.γ, self.r, self.ρ, self.η, self.θ

def arrays(self):
return self.P, self.y_grid, self.B_grid, self.def_y, self.B0_idx

Notice how the class returns the data it stores as simple numerical values and arrays via the methods params and
arrays.
We will use this data in the Numba-jitted functions defined below.
Jitted functions prefer simple arguments, since type inference is easier.
Here is the utility function.

@njit
def u(c, γ):

return c**(1-γ)/(1-γ)

Here is a function to compute the bond price at each state, given 𝑣𝑐 and 𝑣𝑑.

@njit
def compute_q(v_c, v_d, q, params, arrays):

"""
Compute the bond price function q(b, y) at each (b, y) pair.

This function writes to the array q that is passed in as an argument.
"""

Unpack
β, γ, r, ρ, η, θ = params
P, y_grid, B_grid, def_y, B0_idx = arrays

for B_idx in range(len(B_grid)):
for y_idx in range(len(y_grid)):

Compute default probability and corresponding bond price
default_states = 1.0 * (v_c[B_idx, :] < v_d)
delta = np.dot(default_states, P[y_idx, :])
q[B_idx, y_idx] = (1 - delta) / (1 + r)

Next we introduce Bellman operators that updated 𝑣𝑑 and 𝑣𝑐.

@njit
def T_d(y_idx, v_c, v_d, params, arrays):

"""
The RHS of the Bellman equation when income is at index y_idx and
the country has chosen to default. Returns an update of v_d.
"""
Unpack
β, γ, r, ρ, η, θ = params
P, y_grid, B_grid, def_y, B0_idx = arrays

current_utility = u(def_y[y_idx], γ)
v = np.maximum(v_c[B0_idx, :], v_d)
cont_value = np.sum((θ * v + (1 - θ) * v_d) * P[y_idx, :])

(continues on next page)

13.4. Computation 259

Advanced Quantitative Economics with Python

(continued from previous page)

return current_utility + β * cont_value

@njit
def T_c(B_idx, y_idx, v_c, v_d, q, params, arrays):

"""
The RHS of the Bellman equation when the country is not in a
defaulted state on their debt. Returns a value that corresponds to
v_c[B_idx, y_idx], as well as the optimal level of bond sales B'.
"""
Unpack
β, γ, r, ρ, η, θ = params
P, y_grid, B_grid, def_y, B0_idx = arrays
B = B_grid[B_idx]
y = y_grid[y_idx]

Compute the RHS of Bellman equation
current_max = -1e10
Step through choices of next period B'
for Bp_idx, Bp in enumerate(B_grid):

c = y + B - q[Bp_idx, y_idx] * Bp
if c > 0:

v = np.maximum(v_c[Bp_idx, :], v_d)
val = u(c, γ) + β * np.sum(v * P[y_idx, :])
if val > current_max:

current_max = val
Bp_star_idx = Bp_idx

return current_max, Bp_star_idx

Here is a fast function that calls these operators in the right sequence.

@njit(parallel=True)
def update_values_and_prices(v_c, v_d, # Current guess of value functions

B_star, q, # Arrays to be written to
params, arrays):

Unpack
β, γ, r, ρ, η, θ = params
P, y_grid, B_grid, def_y, B0_idx = arrays
y_grid_size = len(y_grid)
B_grid_size = len(B_grid)

Compute bond prices and write them to q
compute_q(v_c, v_d, q, params, arrays)

Allocate memory
new_v_c = np.empty_like(v_c)
new_v_d = np.empty_like(v_d)

Calculate and return new guesses for v_c and v_d
for y_idx in prange(y_grid_size):

new_v_d[y_idx] = T_d(y_idx, v_c, v_d, params, arrays)
for B_idx in range(B_grid_size):

new_v_c[B_idx, y_idx], Bp_idx = T_c(B_idx, y_idx,
v_c, v_d, q, params, arrays)

B_star[B_idx, y_idx] = Bp_idx

(continues on next page)

260 Chapter 13. Default Risk and Income Fluctuations

Advanced Quantitative Economics with Python

(continued from previous page)

return new_v_c, new_v_d

We can now write a function that will use the Arellano_Economy class and the functions defined above to compute
the solution to our model.
We do not need to JIT compile this function since it only consists of outer loops (and JIT compiling makes almost zero
difference).
In fact, one of the jobs of this function is to take an instance of Arellano_Economy, which is hard for the JIT compiler
to handle, and strip it down to more basic objects, which are then passed out to jitted functions.

def solve(model, tol=1e-8, max_iter=10_000):
"""
Given an instance of Arellano_Economy, this function computes the optimal
policy and value functions.
"""
Unpack
params = model.params()
arrays = model.arrays()
y_grid_size, B_grid_size = model.y_grid_size, model.B_grid_size

Initial conditions for v_c and v_d
v_c = np.zeros((B_grid_size, y_grid_size))
v_d = np.zeros(y_grid_size)

Allocate memory
q = np.empty_like(v_c)
B_star = np.empty_like(v_c, dtype=int)

current_iter = 0
dist = np.inf
while (current_iter < max_iter) and (dist > tol):

if current_iter % 100 == 0:
print(f"Entering iteration {current_iter}.")

new_v_c, new_v_d = update_values_and_prices(v_c, v_d, B_star, q, params,␣
↪arrays)

Check tolerance and update
dist = np.max(np.abs(new_v_c - v_c)) + np.max(np.abs(new_v_d - v_d))
v_c = new_v_c
v_d = new_v_d
current_iter += 1

print(f"Terminating at iteration {current_iter}.")
return v_c, v_d, q, B_star

Finally, we write a function that will allow us to simulate the economy once we have the policy functions

def simulate(model, T, v_c, v_d, q, B_star, y_idx=None, B_idx=None):
"""
Simulates the Arellano 2008 model of sovereign debt

Here `model` is an instance of `Arellano_Economy` and `T` is the length of
the simulation. Endogenous objects `v_c`, `v_d`, `q` and `B_star` are

(continues on next page)

13.4. Computation 261

Advanced Quantitative Economics with Python

(continued from previous page)

assumed to come from a solution to `model`.

"""
Unpack elements of the model
B0_idx = model.B0_idx
y_grid = model.y_grid
B_grid, y_grid, P = model.B_grid, model.y_grid, model.P

Set initial conditions to middle of grids
if y_idx == None:

y_idx = np.searchsorted(y_grid, y_grid.mean())
if B_idx == None:

B_idx = B0_idx
in_default = False

Create Markov chain and simulate income process
mc = qe.MarkovChain(P, y_grid)
y_sim_indices = mc.simulate_indices(T+1, init=y_idx)

Allocate memory for outputs
y_sim = np.empty(T)
y_a_sim = np.empty(T)
B_sim = np.empty(T)
q_sim = np.empty(T)
d_sim = np.empty(T, dtype=int)

Perform simulation
t = 0
while t < T:

Store the value of y_t and B_t
y_sim[t] = y_grid[y_idx]
B_sim[t] = B_grid[B_idx]

if in default:
if v_c[B_idx, y_idx] < v_d[y_idx] or in_default:

y_a_sim[t] = model.def_y[y_idx]
d_sim[t] = 1
Bp_idx = B0_idx
Re-enter financial markets next period with prob θ
in_default = False if np.random.rand() < model.θ else True

else:
y_a_sim[t] = y_sim[t]
d_sim[t] = 0
Bp_idx = B_star[B_idx, y_idx]

q_sim[t] = q[Bp_idx, y_idx]

Update time and indices
t += 1
y_idx = y_sim_indices[t]
B_idx = Bp_idx

return y_sim, y_a_sim, B_sim, q_sim, d_sim

262 Chapter 13. Default Risk and Income Fluctuations

Advanced Quantitative Economics with Python

13.5 Results

Let’s start by trying to replicate the results obtained in [Are08].
In what follows, all results are computed using Arellano’s parameter values.
The values can be seen in the __init__ method of the Arellano_Economy shown above.
For example, r=0.017 matches the average quarterly rate on a 5 year US treasury over the period 1983–2001.
Details on how to compute the figures are reported as solutions to the exercises.
The first figure shows the bond price schedule and replicates Figure 3 of Arellano, where 𝑦𝐿 and 𝑌𝐻 are particular below
average and above average values of output 𝑦.

• 𝑦𝐿 is 5% below the mean of the 𝑦 grid values
• 𝑦𝐻 is 5% above the mean of the 𝑦 grid values

The grid used to compute this figure was relatively fine (y_grid_size, B_grid_size = 51, 251), which
explains the minor differences between this and Arrelano’s figure.
The figure shows that

• Higher levels of debt (larger −𝐵′) induce larger discounts on the face value, which correspond to higher interest
rates.

• Lower income also causes more discounting, as foreign creditors anticipate greater likelihood of default.
The next figure plots value functions and replicates the right hand panel of Figure 4 of [Are08].
We can use the results of the computation to study the default probability 𝛿(𝐵′, 𝑦) defined in (13.4).

13.5. Results 263

Advanced Quantitative Economics with Python

264 Chapter 13. Default Risk and Income Fluctuations

Advanced Quantitative Economics with Python

The next plot shows these default probabilities over (𝐵′, 𝑦) as a heat map.
As anticipated, the probability that the government chooses to default in the following period increases with indebtedness
and falls with income.
Next let’s run a time series simulation of {𝑦𝑡}, {𝐵𝑡} and 𝑞(𝐵𝑡+1, 𝑦𝑡).
The grey vertical bars correspond to periods when the economy is excluded from financial markets because of a past
default.
One notable feature of the simulated data is the nonlinear response of interest rates.
Periods of relative stability are followed by sharp spikes in the discount rate on government debt.

13.6 Exercises

Exercise 13.6.1
To the extent that you can, replicate the figures shown above

• Use the parameter values listed as defaults in Arellano_Economy.
• The time series will of course vary depending on the shock draws.

Solution to Exercise 13.6.1
Compute the value function, policy and equilibrium prices

ae = Arellano_Economy()

v_c, v_d, q, B_star = solve(ae)

Entering iteration 0.

Entering iteration 100.

Entering iteration 200.

Entering iteration 300.

Terminating at iteration 399.

Compute the bond price schedule as seen in figure 3 of Arellano (2008)

Unpack some useful names
B_grid, y_grid, P = ae.B_grid, ae.y_grid, ae.P
B_grid_size, y_grid_size = len(B_grid), len(y_grid)
r = ae.r

Create "Y High" and "Y Low" values as 5% devs from mean

(continues on next page)

13.6. Exercises 265

Advanced Quantitative Economics with Python

266 Chapter 13. Default Risk and Income Fluctuations

Advanced Quantitative Economics with Python

(continued from previous page)

high, low = np.mean(y_grid) * 1.05, np.mean(y_grid) * .95
iy_high, iy_low = (np.searchsorted(y_grid, x) for x in (high, low))

fig, ax = plt.subplots(figsize=(10, 6.5))
ax.set_title("Bond price schedule $q(y, B')$")

Extract a suitable plot grid
x = []
q_low = []
q_high = []
for i, B in enumerate(B_grid):

if -0.35 <= B <= 0: # To match fig 3 of Arellano
x.append(B)
q_low.append(q[i, iy_low])
q_high.append(q[i, iy_high])

ax.plot(x, q_high, label="y_H", lw=2, alpha=0.7)
ax.plot(x, q_low, label="y_L", lw=2, alpha=0.7)
ax.set_xlabel("B'")
ax.legend(loc='upper left', frameon=False)
plt.show()

Draw a plot of the value functions

v = np.maximum(v_c, np.reshape(v_d, (1, y_grid_size)))

fig, ax = plt.subplots(figsize=(10, 6.5))

(continues on next page)

13.6. Exercises 267

Advanced Quantitative Economics with Python

(continued from previous page)

ax.set_title("Value Functions")
ax.plot(B_grid, v[:, iy_high], label="y_H", lw=2, alpha=0.7)
ax.plot(B_grid, v[:, iy_low], label="y_L", lw=2, alpha=0.7)
ax.legend(loc='upper left')
ax.set(xlabel="B", ylabel="$v(y, B)$")
ax.set_xlim(min(B_grid), max(B_grid))
plt.show()

Draw a heat map for default probability

xx, yy = B_grid, y_grid
zz = np.empty_like(v_c)

for B_idx in range(B_grid_size):
for y_idx in range(y_grid_size):

default_states = 1.0 * (v_c[B_idx, :] < v_d)
zz[B_idx, y_idx] = np.dot(default_states, P[y_idx, :])

Create figure
fig, ax = plt.subplots(figsize=(10, 6.5))
hm = ax.pcolormesh(xx, yy, zz.T)
cax = fig.add_axes([.92, .1, .02, .8])
fig.colorbar(hm, cax=cax)
ax.axis([xx.min(), 0.05, yy.min(), yy.max()])
ax.set(xlabel="B'", ylabel="y", title="Probability of Default")
plt.show()

268 Chapter 13. Default Risk and Income Fluctuations

Advanced Quantitative Economics with Python

Plot a time series of major variables simulated from the model

T = 250
np.random.seed(42)
y_sim, y_a_sim, B_sim, q_sim, d_sim = simulate(ae, T, v_c, v_d, q, B_star)

Pick up default start and end dates
start_end_pairs = []
i = 0
while i < len(d_sim):

if d_sim[i] == 0:
i += 1

else:
If we get to here we're in default
start_default = i
while i < len(d_sim) and d_sim[i] == 1:

i += 1
end_default = i - 1
start_end_pairs.append((start_default, end_default))

plot_series = (y_sim, B_sim, q_sim)
titles = 'output', 'foreign assets', 'bond price'

fig, axes = plt.subplots(len(plot_series), 1, figsize=(10, 12))
fig.subplots_adjust(hspace=0.3)

for ax, series, title in zip(axes, plot_series, titles):
Determine suitable y limits
s_max, s_min = max(series), min(series)
s_range = s_max - s_min
y_max = s_max + s_range * 0.1

(continues on next page)

13.6. Exercises 269

Advanced Quantitative Economics with Python

(continued from previous page)

y_min = s_min - s_range * 0.1
ax.set_ylim(y_min, y_max)
for pair in start_end_pairs:

ax.fill_between(pair, (y_min, y_min), (y_max, y_max),
color='k', alpha=0.3)

ax.grid()
ax.plot(range(T), series, lw=2, alpha=0.7)
ax.set(title=title, xlabel="time")

plt.show()

270 Chapter 13. Default Risk and Income Fluctuations

Advanced Quantitative Economics with Python

13.6. Exercises 271

Advanced Quantitative Economics with Python

272 Chapter 13. Default Risk and Income Fluctuations

CHAPTER

FOURTEEN

GLOBALIZATION AND CYCLES

Contents

• Globalization and Cycles

– Overview

– Key Ideas

– Model

– Simulation

– Exercises

14.1 Overview

In this lecture, we review the paper Globalization and Synchronization of Innovation Cycles by Kiminori Matsuyama,
Laura Gardini and Iryna Sushko.
This model helps us understand several interesting stylized facts about the world economy.
One of these is synchronized business cycles across different countries.
Most existing models that generate synchronized business cycles do so by assumption, since they tie output in each country
to a common shock.
They also fail to explain certain features of the data, such as the fact that the degree of synchronization tends to increase
with trade ties.
By contrast, in the model we consider in this lecture, synchronization is both endogenous and increasing with the extent
of trade integration.
In particular, as trade costs fall and international competition increases, innovation incentives become aligned and coun-
tries synchronize their innovation cycles.
Let’s start with some imports:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from numba import jit
from ipywidgets import interact

273

http://www.centreformacroeconomics.ac.uk/Discussion-Papers/2015/CFMDP2015-27-Paper.pdf
http://faculty.wcas.northwestern.edu/~kmatsu/
http://www.mdef.it/index.php?id=32
http://irynasushko.altervista.org/

Advanced Quantitative Economics with Python

14.1.1 Background

The model builds on work by Judd [Jud85], Deneckner and Judd [DJ92] and Helpman and Krugman [HK85] by devel-
oping a two-country model with trade and innovation.
On the technical side, the paper introduces the concept of coupled oscillators to economic modeling.
As we will see, coupled oscillators arise endogenously within the model.
Below we review the model and replicate some of the results on synchronization of innovation across countries.

14.2 Key Ideas

It is helpful to begin with an overview of the mechanism.

14.2.1 Innovation Cycles

As discussed above, two countries produce and trade with each other.
In each country, firms innovate, producing new varieties of goods and, in doing so, receiving temporary monopoly power.
Imitators follow and, after one period of monopoly, what had previously been new varieties now enter competitive pro-
duction.
Firms have incentives to innovate and produce new goods when the mass of varieties of goods currently in production is
relatively low.
In addition, there are strategic complementarities in the timing of innovation.
Firms have incentives to innovate in the same period, so as to avoid competing with substitutes that are competitively
produced.
This leads to temporal clustering in innovations in each country.
After a burst of innovation, the mass of goods currently in production increases.
However, goods also become obsolete, so that not all survive from period to period.
This mechanism generates a cycle, where the mass of varieties increases through simultaneous innovation and then falls
through obsolescence.

14.2.2 Synchronization

In the absence of trade, the timing of innovation cycles in each country is decoupled.
This will be the case when trade costs are prohibitively high.
If trade costs fall, then goods produced in each country penetrate each other’s markets.
As illustrated below, this leads to synchronization of business cycles across the two countries.

274 Chapter 14. Globalization and Cycles

https://en.wikipedia.org/wiki/Oscillation#Coupled_oscillations

Advanced Quantitative Economics with Python

14.3 Model

Let’s write down the model more formally.
(The treatment is relatively terse since full details can be found in the original paper)
Time is discrete with 𝑡 = 0, 1, ….
There are two countries indexed by 𝑗 or 𝑘.
In each country, a representative household inelastically supplies 𝐿𝑗 units of labor at wage rate 𝑤𝑗,𝑡.
Without loss of generality, it is assumed that 𝐿1 ≥ 𝐿2.
Households consume a single nontradeable final good which is produced competitively.
Its production involves combining two types of tradeable intermediate inputs via

𝑌𝑘,𝑡 = 𝐶𝑘,𝑡 = (
𝑋𝑜

𝑘,𝑡
1 − 𝛼)

1−𝛼
(𝑋𝑘,𝑡

𝛼)
𝛼

Here 𝑋𝑜
𝑘,𝑡 is a homogeneous input which can be produced from labor using a linear, one-for-one technology.

It is freely tradeable, competitively supplied, and homogeneous across countries.
By choosing the price of this good as numeraire and assuming both countries find it optimal to always produce the
homogeneous good, we can set 𝑤1,𝑡 = 𝑤2,𝑡 = 1.
The good 𝑋𝑘,𝑡 is a composite, built from many differentiated goods via

𝑋1− 1
𝜎

𝑘,𝑡 = ∫
Ω𝑡

[𝑥𝑘,𝑡(𝜈)]1− 1
𝜎 𝑑𝜈

Here 𝑥𝑘,𝑡(𝜈) is the total amount of a differentiated good 𝜈 ∈ Ω𝑡 that is produced.
The parameter 𝜎 > 1 is the direct partial elasticity of substitution between a pair of varieties and Ω𝑡 is the set of varieties
available in period 𝑡.
We can split the varieties into those which are supplied competitively and those supplied monopolistically; that is, Ω𝑡 =
Ω𝑐

𝑡 + Ω𝑚
𝑡 .

14.3.1 Prices

Demand for differentiated inputs is

𝑥𝑘,𝑡(𝜈) = (𝑝𝑘,𝑡(𝜈)
𝑃𝑘,𝑡

)
−𝜎 𝛼𝐿𝑘

𝑃𝑘,𝑡

Here
• 𝑝𝑘,𝑡(𝜈) is the price of the variety 𝜈 and
• 𝑃𝑘,𝑡 is the price index for differentiated inputs in 𝑘, defined by

[𝑃𝑘,𝑡]
1−𝜎 = ∫

Ω𝑡

[𝑝𝑘,𝑡(𝜈)]1−𝜎𝑑𝜈

The price of a variety also depends on the origin, 𝑗, and destination, 𝑘, of the goods because shipping varieties between
countries incurs an iceberg trade cost 𝜏𝑗,𝑘.
Thus the effective price in country 𝑘 of a variety 𝜈 produced in country 𝑗 becomes 𝑝𝑘,𝑡(𝜈) = 𝜏𝑗,𝑘 𝑝𝑗,𝑡(𝜈).

14.3. Model 275

http://www.centreformacroeconomics.ac.uk/Discussion-Papers/2015/CFMDP2015-27-Paper.pdf

Advanced Quantitative Economics with Python

Using these expressions, we can derive the total demand for each variety, which is

𝐷𝑗,𝑡(𝜈) = ∑
𝑘

𝜏𝑗,𝑘𝑥𝑘,𝑡(𝜈) = 𝛼𝐴𝑗,𝑡(𝑝𝑗,𝑡(𝜈))−𝜎

where

𝐴𝑗,𝑡 ∶= ∑
𝑘

𝜌𝑗,𝑘𝐿𝑘
(𝑃𝑘,𝑡)1−𝜎 and 𝜌𝑗,𝑘 = (𝜏𝑗,𝑘)1−𝜎 ≤ 1

It is assumed that 𝜏1,1 = 𝜏2,2 = 1 and 𝜏1,2 = 𝜏2,1 = 𝜏 for some 𝜏 > 1, so that

𝜌1,2 = 𝜌2,1 = 𝜌 ∶= 𝜏1−𝜎 < 1

The value 𝜌 ∈ [0, 1) is a proxy for the degree of globalization.
Producing one unit of each differentiated variety requires 𝜓 units of labor, so the marginal cost is equal to 𝜓 for 𝜈 ∈ Ω𝑗,𝑡.
Additionally, all competitive varieties will have the same price (because of equal marginal cost), which means that, for
all 𝜈 ∈ Ω𝑐,

𝑝𝑗,𝑡(𝜈) = 𝑝𝑐
𝑗,𝑡 ∶= 𝜓 and 𝐷𝑗,𝑡 = 𝑦𝑐

𝑗,𝑡 ∶= 𝛼𝐴𝑗,𝑡(𝑝𝑐
𝑗,𝑡)−𝜎

Monopolists will have the same marked-up price, so, for all 𝜈 ∈ Ω𝑚 ,

𝑝𝑗,𝑡(𝜈) = 𝑝𝑚
𝑗,𝑡 ∶= 𝜓

1 − 1
𝜎

and 𝐷𝑗,𝑡 = 𝑦𝑚
𝑗,𝑡 ∶= 𝛼𝐴𝑗,𝑡(𝑝𝑚

𝑗,𝑡)−𝜎

Define

𝜃 ∶= 𝑝𝑐
𝑗,𝑡

𝑝𝑚
𝑗,𝑡

𝑦𝑐
𝑗,𝑡

𝑦𝑚
𝑗,𝑡

= (1 − 1
𝜎)

1−𝜎

Using the preceding definitions and some algebra, the price indices can now be rewritten as

(𝑃𝑘,𝑡
𝜓)

1−𝜎
= 𝑀𝑘,𝑡 + 𝜌𝑀𝑗,𝑡 where 𝑀𝑗,𝑡 ∶= 𝑁𝑐

𝑗,𝑡 + 𝑁𝑚
𝑗,𝑡
𝜃

The symbols 𝑁𝑐
𝑗,𝑡 and 𝑁𝑚

𝑗,𝑡 will denote the measures of Ω𝑐 and Ω𝑚 respectively.

14.3.2 New Varieties

To introduce a new variety, a firm must hire 𝑓 units of labor per variety in each country.
Monopolist profits must be less than or equal to zero in expectation, so

𝑁𝑚
𝑗,𝑡 ≥ 0, 𝜋𝑚

𝑗,𝑡 ∶= (𝑝𝑚
𝑗,𝑡 − 𝜓)𝑦𝑚

𝑗,𝑡 − 𝑓 ≤ 0 and 𝜋𝑚
𝑗,𝑡𝑁𝑚

𝑗,𝑡 = 0

With further manipulations, this becomes

𝑁𝑚
𝑗,𝑡 = 𝜃(𝑀𝑗,𝑡 − 𝑁𝑐

𝑗,𝑡) ≥ 0, 1
𝜎 [𝛼𝐿𝑗

𝜃(𝑀𝑗,𝑡 + 𝜌𝑀𝑘,𝑡)
+ 𝛼𝐿𝑘

𝜃(𝑀𝑗,𝑡 + 𝑀𝑘,𝑡/𝜌)] ≤ 𝑓

276 Chapter 14. Globalization and Cycles

Advanced Quantitative Economics with Python

14.3.3 Law of Motion

With 𝛿 as the exogenous probability of a variety becoming obsolete, the dynamic equation for the measure of firms
becomes

𝑁𝑐
𝑗,𝑡+1 = 𝛿(𝑁𝑐

𝑗,𝑡 + 𝑁𝑚
𝑗,𝑡) = 𝛿(𝑁𝑐

𝑗,𝑡 + 𝜃(𝑀𝑗,𝑡 − 𝑁𝑐
𝑗,𝑡))

We will work with a normalized measure of varieties

𝑛𝑗,𝑡 ∶= 𝜃𝜎𝑓𝑁𝑐
𝑗,𝑡

𝛼(𝐿1 + 𝐿2) , 𝑖𝑗,𝑡 ∶= 𝜃𝜎𝑓𝑁𝑚
𝑗,𝑡

𝛼(𝐿1 + 𝐿2) , 𝑚𝑗,𝑡 ∶= 𝜃𝜎𝑓𝑀𝑗,𝑡
𝛼(𝐿1 + 𝐿2) = 𝑛𝑗,𝑡 + 𝑖𝑗,𝑡

𝜃

We also use 𝑠𝑗 ∶= 𝐿𝑗
𝐿1+𝐿2

to be the share of labor employed in country 𝑗.
We can use these definitions and the preceding expressions to obtain a law of motion for 𝑛𝑡 ∶= (𝑛1,𝑡, 𝑛2,𝑡).
In particular, given an initial condition, 𝑛0 = (𝑛1,0, 𝑛2,0) ∈ ℝ2

+, the equilibrium trajectory, {𝑛𝑡}∞
𝑡=0 = {(𝑛1,𝑡, 𝑛2,𝑡)}∞

𝑡=0,
is obtained by iterating on 𝑛𝑡+1 = 𝐹(𝑛𝑡) where 𝐹 ∶ ℝ2

+ → ℝ2
+ is given by

𝐹(𝑛𝑡) =

⎧{{
⎨{{⎩

(𝛿(𝜃𝑠1(𝜌) + (1 − 𝜃)𝑛1,𝑡), 𝛿(𝜃𝑠2(𝜌) + (1 − 𝜃)𝑛2,𝑡)) for 𝑛𝑡 ∈ 𝐷𝐿𝐿
(𝛿𝑛1,𝑡, 𝛿𝑛2,𝑡) for 𝑛𝑡 ∈ 𝐷𝐻𝐻
(𝛿𝑛1,𝑡, 𝛿(𝜃ℎ2(𝑛1,𝑡) + (1 − 𝜃)𝑛2,𝑡)) for 𝑛𝑡 ∈ 𝐷𝐻𝐿
(𝛿(𝜃ℎ1(𝑛2,𝑡) + (1 − 𝜃)𝑛1,𝑡, 𝛿𝑛2,𝑡)) for 𝑛𝑡 ∈ 𝐷𝐿𝐻

Here

𝐷𝐿𝐿 ∶= {(𝑛1, 𝑛2) ∈ ℝ2
+|𝑛𝑗 ≤ 𝑠𝑗(𝜌)}

𝐷𝐻𝐻 ∶= {(𝑛1, 𝑛2) ∈ ℝ2
+|𝑛𝑗 ≥ ℎ𝑗(𝑛𝑘)}

𝐷𝐻𝐿 ∶= {(𝑛1, 𝑛2) ∈ ℝ2
+|𝑛1 ≥ 𝑠1(𝜌) and 𝑛2 ≤ ℎ2(𝑛1)}

𝐷𝐿𝐻 ∶= {(𝑛1, 𝑛2) ∈ ℝ2
+|𝑛1 ≤ ℎ1(𝑛2) and 𝑛2 ≥ 𝑠2(𝜌)}

while

𝑠1(𝜌) = 1 − 𝑠2(𝜌) = min{𝑠1 − 𝜌𝑠2
1 − 𝜌 , 1}

and ℎ𝑗(𝑛𝑘) is defined implicitly by the equation

1 = 𝑠𝑗
ℎ𝑗(𝑛𝑘) + 𝜌𝑛𝑘

+ 𝑠𝑘
ℎ𝑗(𝑛𝑘) + 𝑛𝑘/𝜌

Rewriting the equation above gives us a quadratic equation in terms of ℎ𝑗(𝑛𝑘).
Since we know ℎ𝑗(𝑛𝑘) > 0 then we can just solve the quadratic equation and return the positive root.
This gives us

ℎ𝑗(𝑛𝑘)2 + ((𝜌 + 1
𝜌)𝑛𝑘 − 𝑠𝑗 − 𝑠𝑘) ℎ𝑗(𝑛𝑘) + (𝑛2

𝑘 − 𝑠𝑗𝑛𝑘
𝜌 − 𝑠𝑘𝑛𝑘𝜌) = 0

14.4 Simulation

Let’s try simulating some of these trajectories.
We will focus in particular on whether or not innovation cycles synchronize across the two countries.
As we will see, this depends on initial conditions.

14.4. Simulation 277

Advanced Quantitative Economics with Python

For some parameterizations, synchronization will occur for “most” initial conditions, while for others synchronization will
be rare.
The computational burden of testing synchronization across many initial conditions is not trivial.
In order to make our code fast, we will use just in time compiled functions that will get called and handled by our class.
These are the @jit statements that you see below (review this lecture if you don’t recall how to use JIT compilation).
Here’s the main body of code

@jit(nopython=True)
def _hj(j, nk, s1, s2, θ, δ, ρ):

"""
If we expand the implicit function for h_j(n_k) then we find that
it is quadratic. We know that h_j(n_k) > 0 so we can get its
value by using the quadratic form
"""
Find out who's h we are evaluating
if j == 1:

sj = s1
sk = s2

else:
sj = s2
sk = s1

Coefficients on the quadratic a x^2 + b x + c = 0
a = 1.0
b = ((ρ + 1 / ρ) * nk - sj - sk)
c = (nk * nk - (sj * nk) / ρ - sk * ρ * nk)

Positive solution of quadratic form
root = (-b + np.sqrt(b * b - 4 * a * c)) / (2 * a)

return root

@jit(nopython=True)
def DLL(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):

"Determine whether (n1, n2) is in the set DLL"
return (n1 <= s1_ρ) and (n2 <= s2_ρ)

@jit(nopython=True)
def DHH(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):

"Determine whether (n1, n2) is in the set DHH"
return (n1 >= _hj(1, n2, s1, s2, θ, δ, ρ)) and \

(n2 >= _hj(2, n1, s1, s2, θ, δ, ρ))

@jit(nopython=True)
def DHL(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):

"Determine whether (n1, n2) is in the set DHL"
return (n1 >= s1_ρ) and (n2 <= _hj(2, n1, s1, s2, θ, δ, ρ))

@jit(nopython=True)
def DLH(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):

"Determine whether (n1, n2) is in the set DLH"
return (n1 <= _hj(1, n2, s1, s2, θ, δ, ρ)) and (n2 >= s2_ρ)

@jit(nopython=True)
def one_step(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):

(continues on next page)

278 Chapter 14. Globalization and Cycles

https://python-programming.quantecon.org/numba.html

Advanced Quantitative Economics with Python

(continued from previous page)

"""
Takes a current value for (n_{1, t}, n_{2, t}) and returns the
values (n_{1, t+1}, n_{2, t+1}) according to the law of motion.
"""
Depending on where we are, evaluate the right branch
if DLL(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):

n1_tp1 = δ * (θ * s1_ρ + (1 - θ) * n1)
n2_tp1 = δ * (θ * s2_ρ + (1 - θ) * n2)

elif DHH(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):
n1_tp1 = δ * n1
n2_tp1 = δ * n2

elif DHL(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):
n1_tp1 = δ * n1
n2_tp1 = δ * (θ * _hj(2, n1, s1, s2, θ, δ, ρ) + (1 - θ) * n2)

elif DLH(n1, n2, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):
n1_tp1 = δ * (θ * _hj(1, n2, s1, s2, θ, δ, ρ) + (1 - θ) * n1)
n2_tp1 = δ * n2

return n1_tp1, n2_tp1

@jit(nopython=True)
def n_generator(n1_0, n2_0, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ):

"""
Given an initial condition, continues to yield new values of
n1 and n2
"""
n1_t, n2_t = n1_0, n2_0
while True:

n1_tp1, n2_tp1 = one_step(n1_t, n2_t, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ)
yield (n1_tp1, n2_tp1)
n1_t, n2_t = n1_tp1, n2_tp1

@jit(nopython=True)
def _pers_till_sync(n1_0, n2_0, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ, maxiter, npers):

"""
Takes initial values and iterates forward to see whether
the histories eventually end up in sync.

If countries are symmetric then as soon as the two countries have the
same measure of firms then they will be synchronized -- However, if
they are not symmetric then it is possible they have the same measure
of firms but are not yet synchronized. To address this, we check whether
firms stay synchronized for `npers` periods with Euclidean norm

Parameters

n1_0 : scalar(Float)

Initial normalized measure of firms in country one
n2_0 : scalar(Float)

Initial normalized measure of firms in country two
maxiter : scalar(Int)

Maximum number of periods to simulate
npers : scalar(Int)

Number of periods we would like the countries to have the
same measure for

(continues on next page)

14.4. Simulation 279

Advanced Quantitative Economics with Python

(continued from previous page)

Returns

synchronized : scalar(Bool)

Did the two economies end up synchronized
pers_2_sync : scalar(Int)

The number of periods required until they synchronized
"""
Initialize the status of synchronization
synchronized = False
pers_2_sync = maxiter
iters = 0

Initialize generator
n_gen = n_generator(n1_0, n2_0, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ)

Will use a counter to determine how many times in a row
the firm measures are the same
nsync = 0

while (not synchronized) and (iters < maxiter):
Increment the number of iterations and get next values
iters += 1
n1_t, n2_t = next(n_gen)

Check whether same in this period
if abs(n1_t - n2_t) < 1e-8:

nsync += 1
If not, then reset the nsync counter
else:

nsync = 0

If we have been in sync for npers then stop and countries
became synchronized nsync periods ago
if nsync > npers:

synchronized = True
pers_2_sync = iters - nsync

return synchronized, pers_2_sync

@jit(nopython=True)
def _create_attraction_basis(s1_ρ, s2_ρ, s1, s2, θ, δ, ρ,

maxiter, npers, npts):
Create unit range with npts
synchronized, pers_2_sync = False, 0
unit_range = np.linspace(0.0, 1.0, npts)

Allocate space to store time to sync
time_2_sync = np.empty((npts, npts))
Iterate over initial conditions
for (i, n1_0) in enumerate(unit_range):

for (j, n2_0) in enumerate(unit_range):
synchronized, pers_2_sync = _pers_till_sync(n1_0, n2_0, s1_ρ,

s2_ρ, s1, s2, θ, δ,
ρ, maxiter, npers)

time_2_sync[i, j] = pers_2_sync

(continues on next page)

280 Chapter 14. Globalization and Cycles

Advanced Quantitative Economics with Python

(continued from previous page)

return time_2_sync

== Now we define a class for the model ==

class MSGSync:
"""
The paper "Globalization and Synchronization of Innovation Cycles" presents
a two-country model with endogenous innovation cycles. Combines elements
from Deneckere Judd (1985) and Helpman Krugman (1985) to allow for a
model with trade that has firms who can introduce new varieties into
the economy.

We focus on being able to determine whether the two countries eventually
synchronize their innovation cycles. To do this, we only need a few
of the many parameters. In particular, we need the parameters listed
below

Parameters

s1 : scalar(Float)

Amount of total labor in country 1 relative to total worldwide labor
θ : scalar(Float)

A measure of how much more of the competitive variety is used in
production of final goods

δ : scalar(Float)
Percentage of firms that are not exogenously destroyed every period

ρ : scalar(Float)
Measure of how expensive it is to trade between countries

"""
def __init__(self, s1=0.5, θ=2.5, δ=0.7, ρ=0.2):

Store model parameters
self.s1, self.θ, self.δ, self.ρ = s1, θ, δ, ρ

Store other cutoffs and parameters we use
self.s2 = 1 - s1
self.s1_ρ = self._calc_s1_ρ()
self.s2_ρ = 1 - self.s1_ρ

def _unpack_params(self):
return self.s1, self.s2, self.θ, self.δ, self.ρ

def _calc_s1_ρ(self):
Unpack params
s1, s2, θ, δ, ρ = self._unpack_params()

s_1(ρ) = min(val, 1)
val = (s1 - ρ * s2) / (1 - ρ)
return min(val, 1)

def simulate_n(self, n1_0, n2_0, T):
"""
Simulates the values of (n1, n2) for T periods

Parameters

(continues on next page)

14.4. Simulation 281

Advanced Quantitative Economics with Python

(continued from previous page)

n1_0 : scalar(Float)
Initial normalized measure of firms in country one

n2_0 : scalar(Float)
Initial normalized measure of firms in country two

T : scalar(Int)
Number of periods to simulate

Returns

n1 : Array(Float64, ndim=1)

A history of normalized measures of firms in country one
n2 : Array(Float64, ndim=1)

A history of normalized measures of firms in country two
"""
Unpack parameters
s1, s2, θ, δ, ρ = self._unpack_params()
s1_ρ, s2_ρ = self.s1_ρ, self.s2_ρ

Allocate space
n1 = np.empty(T)
n2 = np.empty(T)

Create the generator
n1[0], n2[0] = n1_0, n2_0
n_gen = n_generator(n1_0, n2_0, s1_ρ, s2_ρ, s1, s2, θ, δ, ρ)

Simulate for T periods
for t in range(1, T):

Get next values
n1_tp1, n2_tp1 = next(n_gen)

Store in arrays
n1[t] = n1_tp1
n2[t] = n2_tp1

return n1, n2

def pers_till_sync(self, n1_0, n2_0, maxiter=500, npers=3):
"""
Takes initial values and iterates forward to see whether
the histories eventually end up in sync.

If countries are symmetric then as soon as the two countries have the
same measure of firms then they will be synchronized -- However, if
they are not symmetric then it is possible they have the same measure
of firms but are not yet synchronized. To address this, we check whether
firms stay synchronized for `npers` periods with Euclidean norm

Parameters

n1_0 : scalar(Float)

Initial normalized measure of firms in country one
n2_0 : scalar(Float)

Initial normalized measure of firms in country two
maxiter : scalar(Int)

Maximum number of periods to simulate

(continues on next page)

282 Chapter 14. Globalization and Cycles

Advanced Quantitative Economics with Python

(continued from previous page)

npers : scalar(Int)
Number of periods we would like the countries to have the
same measure for

Returns

synchronized : scalar(Bool)

Did the two economies end up synchronized
pers_2_sync : scalar(Int)

The number of periods required until they synchronized
"""
Unpack parameters
s1, s2, θ, δ, ρ = self._unpack_params()
s1_ρ, s2_ρ = self.s1_ρ, self.s2_ρ

return _pers_till_sync(n1_0, n2_0, s1_ρ, s2_ρ,
s1, s2, θ, δ, ρ, maxiter, npers)

def create_attraction_basis(self, maxiter=250, npers=3, npts=50):
"""
Creates an attraction basis for values of n on [0, 1] X [0, 1]
with npts in each dimension
"""
Unpack parameters
s1, s2, θ, δ, ρ = self._unpack_params()
s1_ρ, s2_ρ = self.s1_ρ, self.s2_ρ

ab = _create_attraction_basis(s1_ρ, s2_ρ, s1, s2, θ, δ,
ρ, maxiter, npers, npts)

return ab

14.4.1 Time Series of Firm Measures

We write a short function below that exploits the preceding code and plots two time series.
Each time series gives the dynamics for the two countries.
The time series share parameters but differ in their initial condition.
Here’s the function

def plot_timeseries(n1_0, n2_0, s1=0.5, θ=2.5,
δ=0.7, ρ=0.2, ax=None, title=''):

"""
Plot a single time series with initial conditions
"""
if ax is None:

fig, ax = plt.subplots()

Create the MSG Model and simulate with initial conditions
model = MSGSync(s1, θ, δ, ρ)
n1, n2 = model.simulate_n(n1_0, n2_0, 25)

ax.plot(np.arange(25), n1, label="n_1", lw=2)

(continues on next page)

14.4. Simulation 283

Advanced Quantitative Economics with Python

(continued from previous page)

ax.plot(np.arange(25), n2, label="n_2", lw=2)

ax.legend()
ax.set(title=title, ylim=(0.15, 0.8))

return ax

Create figure
fig, ax = plt.subplots(2, 1, figsize=(10, 8))

plot_timeseries(0.15, 0.35, ax=ax[0], title='Not Synchronized')
plot_timeseries(0.4, 0.3, ax=ax[1], title='Synchronized')

fig.tight_layout()

plt.show()

In the first case, innovation in the two countries does not synchronize.
In the second case, different initial conditions are chosen, and the cycles become synchronized.

284 Chapter 14. Globalization and Cycles

Advanced Quantitative Economics with Python

14.4.2 Basin of Attraction

Next, let’s study the initial conditions that lead to synchronized cycles more systematically.
We generate time series from a large collection of different initial conditions and mark those conditions with different
colors according to whether synchronization occurs or not.
The next display shows exactly this for four different parameterizations (one for each subfigure).
Dark colors indicate synchronization, while light colors indicate failure to synchronize.

As you can see, larger values of 𝜌 translate to more synchronization.
You are asked to replicate this figure in the exercises.
In the solution to the exercises, you’ll also find a figure with sliders, allowing you to experiment with different parameters.
Here’s one snapshot from the interactive figure

14.4. Simulation 285

Advanced Quantitative Economics with Python

286 Chapter 14. Globalization and Cycles

Advanced Quantitative Economics with Python

14.5 Exercises

Exercise 14.5.1
Replicate the figure shown above by coloring initial conditions according to whether or not synchronization occurs from
those conditions.

Solution to Exercise 14.5.1

def plot_attraction_basis(s1=0.5, θ=2.5, δ=0.7, ρ=0.2, npts=250, ax=None):
if ax is None:

fig, ax = plt.subplots()

Create attraction basis
unitrange = np.linspace(0, 1, npts)
model = MSGSync(s1, θ, δ, ρ)
ab = model.create_attraction_basis(npts=npts)
cf = ax.pcolormesh(unitrange, unitrange, ab, cmap="viridis")

return ab, cf

fig = plt.figure(figsize=(14, 12))

Left - Bottom - Width - Height
ax0 = fig.add_axes((0.05, 0.475, 0.38, 0.35), label="axes0")
ax1 = fig.add_axes((0.5, 0.475, 0.38, 0.35), label="axes1")
ax2 = fig.add_axes((0.05, 0.05, 0.38, 0.35), label="axes2")
ax3 = fig.add_axes((0.5, 0.05, 0.38, 0.35), label="axes3")

params = [[0.5, 2.5, 0.7, 0.2],
[0.5, 2.5, 0.7, 0.4],
[0.5, 2.5, 0.7, 0.6],
[0.5, 2.5, 0.7, 0.8]]

ab0, cf0 = plot_attraction_basis(*params[0], npts=500, ax=ax0)
ab1, cf1 = plot_attraction_basis(*params[1], npts=500, ax=ax1)
ab2, cf2 = plot_attraction_basis(*params[2], npts=500, ax=ax2)
ab3, cf3 = plot_attraction_basis(*params[3], npts=500, ax=ax3)

cbar_ax = fig.add_axes([0.9, 0.075, 0.03, 0.725])
plt.colorbar(cf0, cax=cbar_ax)

ax0.set_title(r"$s_1=0.5$, $\theta=2.5$, $\delta=0.7$, $\rho=0.2$",
fontsize=22)

ax1.set_title(r"$s_1=0.5$, $\theta=2.5$, $\delta=0.7$, $\rho=0.4$",
fontsize=22)

ax2.set_title(r"$s_1=0.5$, $\theta=2.5$, $\delta=0.7$, $\rho=0.6$",
fontsize=22)

ax3.set_title(r"$s_1=0.5$, $\theta=2.5$, $\delta=0.7$, $\rho=0.8$",
fontsize=22)

fig.suptitle("Synchronized versus Asynchronized 2-cycles",
x=0.475, y=0.915, size=26)

plt.show()

14.5. Exercises 287

Advanced Quantitative Economics with Python

Additionally, instead of just seeing 4 plots at once, we might want to manually be able to change 𝜌 and see how it affects
the plot in real-time. Below we use an interactive plot to do this.
Note, interactive plotting requires the ipywidgets module to be installed and enabled.

def interact_attraction_basis(ρ=0.2, maxiter=250, npts=250):
Create the figure and axis that we will plot on
fig, ax = plt.subplots(figsize=(12, 10))

Create model and attraction basis
s1, θ, δ = 0.5, 2.5, 0.75
model = MSGSync(s1, θ, δ, ρ)
ab = model.create_attraction_basis(maxiter=maxiter, npts=npts)

Color map with colormesh
unitrange = np.linspace(0, 1, npts)
cf = ax.pcolormesh(unitrange, unitrange, ab, cmap="viridis")
cbar_ax = fig.add_axes([0.95, 0.15, 0.05, 0.7])
plt.colorbar(cf, cax=cbar_ax)
plt.show()
return None

fig = interact(interact_attraction_basis,

(continues on next page)

288 Chapter 14. Globalization and Cycles

https://github.com/jupyter-widgets/ipywidgets

Advanced Quantitative Economics with Python

(continued from previous page)

ρ=(0.0, 1.0, 0.05),
maxiter=(50, 5000, 50),
npts=(25, 750, 25))

interactive(children=(FloatSlider(value=0.2, description='ρ', max=1.0, step=0.05),␣
↪IntSlider(value=250, descri…

14.5. Exercises 289

Advanced Quantitative Economics with Python

290 Chapter 14. Globalization and Cycles

CHAPTER

FIFTEEN

COASE’S THEORY OF THE FIRM

Contents

• Coase’s Theory of the Firm

– Overview

– The Model

– Equilibrium

– Existence, Uniqueness and Computation of Equilibria

– Implementation

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install interpolation

15.1 Overview

In 1937, Ronald Coase wrote a brilliant essay on the nature of the firm [Coa37].
Coase was writing at a time when the Soviet Union was rising to become a significant industrial power.
At the same time, many free-market economies were afflicted by a severe and painful depression.
This contrast led to an intensive debate on the relative merits of decentralized, price-based allocation versus top-down
planning.
In themidst of this debate, Coasemade an important observation: even in free-market economies, a great deal of top-down
planning does in fact take place.
This is because firms form an integral part of free-market economies and, within firms, allocation is by planning.
In other words, free-market economies blend both planning (within firms) and decentralized production coordinated by
prices.
The question Coase asked is this: if prices and free markets are so efficient, then why do firms even exist?
Couldn’t the associated within-firm planning be done more efficiently by the market?
We’ll use the following imports:

291

Advanced Quantitative Economics with Python

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from scipy.optimize import fminbound
from interpolation import interp

/usr/share/miniconda3/envs/quantecon/lib/python3.11/site-packages/numba/core/
↪decorators.py:262: NumbaDeprecationWarning: numba.generated_jit is deprecated.␣
↪Please see the documentation at: https://numba.readthedocs.io/en/stable/
↪reference/deprecation.html#deprecation-of-generated-jit for more information and␣
↪advice on a suitable replacement.
warnings.warn(msg, NumbaDeprecationWarning)

15.1.1 Why Firms Exist

On top of asking a deep and fascinating question, Coase also supplied an illuminating answer: firms exist because of
transaction costs.
Here’s one example of a transaction cost:
Suppose agent A is considering setting up a small business and needs a web developer to construct and help run an online
store.
She can use the labor of agent B, a web developer, by writing up a freelance contract for these tasks and agreeing on a
suitable price.
But contracts like this can be time-consuming and difficult to verify

• How will agent A be able to specify exactly what she wants, to the finest detail, when she herself isn’t sure how the
business will evolve?

• And what if she isn’t familiar with web technology? How can she specify all the relevant details?
• And, if things go badly, will failure to comply with the contract be verifiable in court?

In this situation, perhaps it will be easier to employ agent B under a simple labor contract.
The cost of this contract is far smaller because such contracts are simpler and more standard.
The basic agreement in a labor contract is: B will do what A asks him to do for the term of the contract, in return for a
given salary.
Making this agreement is much easier than trying to map every task out in advance in a contract that will hold up in a
court of law.
So agent A decides to hire agent B and a firm of nontrivial size appears, due to transaction costs.

15.1.2 A Trade-Off

Actually, we haven’t yet come to the heart of Coase’s investigation.
The issue of why firms exist is a binary question: should firms have positive size or zero size?
A better and more general question is: what determines the size of firms?
The answer Coase came up with was that “a firm will tend to expand until the costs of organizing an extra transaction
within the firm become equal to the costs of carrying out the same transaction by means of an exchange on the open
market…” ([Coa37], p. 395).

292 Chapter 15. Coase’s Theory of the Firm

Advanced Quantitative Economics with Python

But what are these internal and external costs?
In short, Coase envisaged a trade-off between

• transaction costs, which add to the expense of operating between firms, and
• diminishing returns to management, which adds to the expense of operating within firms

We discussed an example of transaction costs above (contracts).
The other cost, diminishing returns to management, is a catch-all for the idea that big operations are increasingly costly
to manage.
For example, you could think of management as a pyramid, so hiring more workers to implement more tasks requires
expansion of the pyramid, and hence labor costs grow at a rate more than proportional to the range of tasks.
Diminishing returns to management makes in-house production expensive, favoring small firms.

15.1.3 Summary

Here’s a summary of our discussion:
• Firms grow because transaction costs encourage them to take some operations in house.
• But as they get large, in-house operations become costly due to diminishing returns to management.
• The size of firms is determined by balancing these effects, thereby equalizing the marginal costs of each form of
operation.

15.1.4 A Quantitative Interpretation

Coases ideas were expressed verbally, without any mathematics.
In fact, his essay is a wonderful example of how far you can get with clear thinking and plain English.
However, plain English is not good for quantitative analysis, so let’s bring some mathematical and computation tools to
bear.
In doing so we’ll add a bit more structure than Coase did, but this price will be worth paying.
Our exposition is based on [KNS18].

15.2 The Model

The model we study involves production of a single unit of a final good.
Production requires a linearly ordered chain, requiring sequential completion of a large number of processing stages.
The stages are indexed by 𝑡 ∈ [0, 1], with 𝑡 = 0 indicating that no tasks have been undertaken and 𝑡 = 1 indicating that
the good is complete.

15.2. The Model 293

Advanced Quantitative Economics with Python

15.2.1 Subcontracting

The subcontracting scheme by which tasks are allocated across firms is illustrated in the figure below

In this example,
• Firm 1 receives a contract to sell one unit of the completed good to a final buyer.
• Firm 1 then forms a contract with firm 2 to purchase the partially completed good at stage 𝑡1, with the intention of
implementing the remaining 1 − 𝑡1 tasks in-house (i.e., processing from stage 𝑡1 to stage 1).

• Firm 2 repeats this procedure, forming a contract with firm 3 to purchase the good at stage 𝑡2.
• Firm 3 decides to complete the chain, selecting 𝑡3 = 0.

At this point, production unfolds in the opposite direction (i.e., from upstream to downstream).
• Firm 3 completes processing stages from 𝑡3 = 0 up to 𝑡2 and transfers the good to firm 2.
• Firm 2 then processes from 𝑡2 up to 𝑡1 and transfers the good to firm 1,
• Firm 1 processes from 𝑡1 to 1 and delivers the completed good to the final buyer.

The length of the interval of stages (range of tasks) carried out by firm 𝑖 is denoted by ℓ𝑖.
Each firm chooses only its upstream boundary, treating its downstream boundary as given.
The benefit of this formulation is that it implies a recursive structure for the decision problem for each firm.
In choosing how many processing stages to subcontract, each successive firm faces essentially the same decision problem
as the firm above it in the chain, with the only difference being that the decision space is a subinterval of the decision
space for the firm above.
We will exploit this recursive structure in our study of equilibrium.

294 Chapter 15. Coase’s Theory of the Firm

Advanced Quantitative Economics with Python

15.2.2 Costs

Recall that we are considering a trade-off between two types of costs.
Let’s discuss these costs and how we represent them mathematically.
Diminishing returns to managementmeans rising costs per task when a firm expands the range of productive activities
coordinated by its managers.
We represent these ideas by taking the cost of carrying out ℓ tasks in-house to be 𝑐(ℓ), where 𝑐 is increasing and strictly
convex.
Thus, the average cost per task rises with the range of tasks performed in-house.
We also assume that 𝑐 is continuously differentiable, with 𝑐(0) = 0 and 𝑐′(0) > 0.
Transaction costs are represented as a wedge between the buyer’s and seller’s prices.
It matters little for us whether the transaction cost is borne by the buyer or the seller.
Here we assume that the cost is borne only by the buyer.
In particular, when two firms agree to a trade at face value 𝑣, the buyer’s total outlay is 𝛿𝑣, where 𝛿 > 1.
The seller receives only 𝑣, and the difference is paid to agents outside the model.

15.3 Equilibrium

We assume that all firms are ex-ante identical and act as price takers.
As price takers, they face a price function 𝑝, which is a map from [0, 1] to ℝ+, with 𝑝(𝑡) interpreted as the price of the
good at processing stage 𝑡.
There is a countable infinity of firms indexed by 𝑖 and no barriers to entry.
The cost of supplying the initial input (the good processed up to stage zero) is set to zero for simplicity.
Free entry and the infinite fringe of competitors rule out positive profits for incumbents, since any incumbent could be
replaced by a member of the competitive fringe filling the same role in the production chain.
Profits are never negative in equilibrium because firms can freely exit.

15.3. Equilibrium 295

Advanced Quantitative Economics with Python

15.3.1 Informal Definition of Equilibrium

An equilibrium in this setting is an allocation of firms and a price function such that
1. all active firms in the chain make zero profits, including suppliers of raw materials
2. no firm in the production chain has an incentive to deviate, and
3. no inactive firms can enter and extract positive profits

15.3.2 Formal Definition of Equilibrium

Let’s make this definition more formal.
(You might like to skip this section on first reading)
An allocation of firms is a nonnegative sequence {ℓ𝑖}𝑖∈ℕ such that ℓ𝑖 = 0 for all sufficiently large 𝑖.
Recalling the figures above,

• ℓ𝑖 represents the range of tasks implemented by the 𝑖-th firm
As a labeling convention, we assume that firms enter in order, with firm 1 being the furthest downstream.
An allocation {ℓ𝑖} is called feasible if ∑ 𝑖≥1 ℓ𝑖 = 1.
In a feasible allocation, the entire production process is completed by finitely many firms.
Given a feasible allocation, {ℓ𝑖}, let {𝑡𝑖} represent the corresponding transaction stages, defined by

𝑡0 = 𝑠 and 𝑡𝑖 = 𝑡𝑖−1 − ℓ𝑖 (15.1)

In particular, 𝑡𝑖−1 is the downstream boundary of firm 𝑖 and 𝑡𝑖 is its upstream boundary.
As transaction costs are incurred only by the buyer, its profits are

𝜋𝑖 = 𝑝(𝑡𝑖−1) − 𝑐(ℓ𝑖) − 𝛿𝑝(𝑡𝑖) (15.2)

Given a price function 𝑝 and a feasible allocation {ℓ𝑖}, let
• {𝑡𝑖} be the corresponding firm boundaries.
• {𝜋𝑖} be corresponding profits, as defined in (15.2).

This price-allocation pair is called an equilibrium for the production chain if
1. 𝑝(0) = 0,
2. 𝜋𝑖 = 0 for all 𝑖, and
3. 𝑝(𝑠) − 𝑐(𝑠 − 𝑡) − 𝛿𝑝(𝑡) ≤ 0 for any pair 𝑠, 𝑡 with 0 ≤ 𝑠 ≤ 𝑡 ≤ 1.

The rationale behind these conditions was given in our informal definition of equilibrium above.

296 Chapter 15. Coase’s Theory of the Firm

Advanced Quantitative Economics with Python

15.4 Existence, Uniqueness and Computation of Equilibria

We have defined an equilibrium but does one exist? Is it unique? And, if so, how can we compute it?

15.4.1 A Fixed Point Method

To address these questions, we introduce the operator 𝑇 mapping a nonnegative function 𝑝 on [0, 1] to 𝑇 𝑝 via

𝑇 𝑝(𝑠) = min
𝑡≤𝑠

{𝑐(𝑠 − 𝑡) + 𝛿𝑝(𝑡)} for all 𝑠 ∈ [0, 1]. (15.3)

Here and below, the restriction 0 ≤ 𝑡 in the minimum is understood.
The operator 𝑇 is similar to a Bellman operator.
Under this analogy, 𝑝 corresponds to a value function and 𝛿 to a discount factor.
But 𝛿 > 1, so 𝑇 is not a contraction in any obvious metric, and in fact, 𝑇 𝑛𝑝 diverges for many choices of 𝑝.
Nevertheless, there exists a domain on which 𝑇 is well-behaved: the set of convex increasing continuous functions
𝑝 ∶ [0, 1] → ℝ such that 𝑐′(0)𝑠 ≤ 𝑝(𝑠) ≤ 𝑐(𝑠) for all 0 ≤ 𝑠 ≤ 1.
We denote this set of functions by 𝒫.
In [KNS18] it is shown that the following statements are true:

1. 𝑇 maps 𝒫 into itself.
2. 𝑇 has a unique fixed point in 𝒫, denoted below by 𝑝∗.
3. For all 𝑝 ∈ 𝒫 we have 𝑇 𝑘𝑝 → 𝑝∗ uniformly as 𝑘 → ∞.

Now consider the choice function

𝑡∗(𝑠) ∶= the solution to min
𝑡≤𝑠

{𝑐(𝑠 − 𝑡) + 𝛿𝑝∗(𝑡)} (15.4)

By definition, 𝑡∗(𝑠) is the cost-minimizing upstream boundary for a firm that is contracted to deliver the good at stage 𝑠
and faces the price function 𝑝∗.
Since 𝑝∗ lies in 𝒫 and since 𝑐 is strictly convex, it follows that the right-hand side of (15.4) is continuous and strictly
convex in 𝑡.
Hence the minimizer 𝑡∗(𝑠) exists and is uniquely defined.
We can use 𝑡∗ to construct an equilibrium allocation as follows:
Recall that firm 1 sells the completed good at stage 𝑠 = 1, its optimal upstream boundary is 𝑡∗(1).
Hence firm 2’s optimal upstream boundary is 𝑡∗(𝑡∗(1)).
Continuing in this way produces the sequence {𝑡∗

𝑖} defined by

𝑡∗
0 = 1 and 𝑡∗

𝑖 = 𝑡∗(𝑡𝑖−1) (15.5)

The sequence ends when a firm chooses to complete all remaining tasks.
We label this firm (and hence the number of firms in the chain) as

𝑛∗ ∶= inf{𝑖 ∈ ℕ ∶ 𝑡∗
𝑖 = 0} (15.6)

The task allocation corresponding to (15.5) is given by ℓ∗
𝑖 ∶= 𝑡∗

𝑖−1 − 𝑡∗
𝑖 for all 𝑖.

In [KNS18] it is shown that

15.4. Existence, Uniqueness and Computation of Equilibria 297

Advanced Quantitative Economics with Python

1. The value 𝑛∗ in (15.6) is well-defined and finite,
2. the allocation {ℓ∗

𝑖 } is feasible, and
3. the price function 𝑝∗ and this allocation together forms an equilibrium for the production chain.

While the proofs are too long to repeat here, much of the insight can be obtained by observing that, as a fixed point of 𝑇 ,
the equilibrium price function must satisfy

𝑝∗(𝑠) = min
𝑡≤𝑠

{𝑐(𝑠 − 𝑡) + 𝛿𝑝∗(𝑡)} for all 𝑠 ∈ [0, 1] (15.7)

From this equation, it is clear that so profits are zero for all incumbent firms.

15.4.2 Marginal Conditions

We can develop some additional insights on the behavior of firms by examining marginal conditions associated with the
equilibrium.
As a first step, let ℓ∗(𝑠) ∶= 𝑠 − 𝑡∗(𝑠).
This is the cost-minimizing range of in-house tasks for a firm with downstream boundary 𝑠.
In [KNS18] it is shown that 𝑡∗ and ℓ∗ are increasing and continuous, while 𝑝∗ is continuously differentiable at all 𝑠 ∈ (0, 1)
with

(𝑝∗)′(𝑠) = 𝑐′(ℓ∗(𝑠)) (15.8)

Equation (15.8) follows from 𝑝∗(𝑠) = min𝑡≤𝑠 {𝑐(𝑠 − 𝑡) + 𝛿𝑝∗(𝑡)} and the envelope theorem for derivatives.
A related equation is the first order condition for 𝑝∗(𝑠) = min𝑡≤𝑠 {𝑐(𝑠 − 𝑡) + 𝛿𝑝∗(𝑡)}, the minimization problem for a
firm with upstream boundary 𝑠, which is

𝛿(𝑝∗)′(𝑡∗(𝑠)) = 𝑐′(𝑠 − 𝑡∗(𝑠)) (15.9)

This condition matches the marginal condition expressed verbally by Coase that we stated above:
“A firm will tend to expand until the costs of organizing an extra transaction within the firm become equal
to the costs of carrying out the same transaction by means of an exchange on the open market…”

Combining (15.8) and (15.9) and evaluating at 𝑠 = 𝑡𝑖, we see that active firms that are adjacent satisfy

𝛿 𝑐′(ℓ∗
𝑖+1) = 𝑐′(ℓ∗

𝑖) (15.10)

In other words, the marginal in-house cost per task at a given firm is equal to that of its upstream partner multiplied by
gross transaction cost.
This expression can be thought of as a Coase–Euler equation, which determines inter-firm efficiency by indicating how
two costly forms of coordination (markets and management) are jointly minimized in equilibrium.

15.5 Implementation

For most specifications of primitives, there is no closed-form solution for the equilibrium as far as we are aware.
However, we know that we can compute the equilibrium corresponding to a given transaction cost parameter 𝛿 and a cost
function 𝑐 by applying the results stated above.
In particular, we can

1. fix initial condition 𝑝 ∈ 𝒫,

298 Chapter 15. Coase’s Theory of the Firm

Advanced Quantitative Economics with Python

2. iterate with 𝑇 until 𝑇 𝑛𝑝 has converged to 𝑝∗, and
3. recover firm choices via the choice function (15.3)

At each iterate, we will use continuous piecewise linear interpolation of functions.
To begin, here’s a class to store primitives and a grid:

class ProductionChain:

def __init__(self,
n=1000,
delta=1.05,
c=lambda t: np.exp(10 * t) - 1):

self.n, self.delta, self.c = n, delta, c
self.grid = np.linspace(1e-04, 1, n)

Now let’s implement and iterate with 𝑇 until convergence.
Recalling that our initial condition must lie in 𝒫, we set 𝑝0 = 𝑐

def compute_prices(pc, tol=1e-5, max_iter=5000):
"""
Compute prices by iterating with T

* pc is an instance of ProductionChain
* The initial condition is p = c

"""
delta, c, n, grid = pc.delta, pc.c, pc.n, pc.grid
p = c(grid) # Initial condition is c(s), as an array
new_p = np.empty_like(p)
error = tol + 1
i = 0

while error > tol and i < max_iter:
for j, s in enumerate(grid):

Tp = lambda t: delta * interp(grid, p, t) + c(s - t)
new_p[j] = Tp(fminbound(Tp, 0, s))

error = np.max(np.abs(p - new_p))
p = new_p
i = i + 1

if i < max_iter:
print(f"Iteration converged in {i} steps")

else:
print(f"Warning: iteration hit upper bound {max_iter}")

p_func = lambda x: interp(grid, p, x)
return p_func

The next function computes optimal choice of upstream boundary and range of task implemented for a firm face price
function p_function and with downstream boundary 𝑠.

def optimal_choices(pc, p_function, s):
"""
Takes p_func as the true function, minimizes on [0,s]

(continues on next page)

15.5. Implementation 299

Advanced Quantitative Economics with Python

(continued from previous page)

Returns optimal upstream boundary t_star and optimal size of
firm ell_star

In fact, the algorithm minimizes on [-1,s] and then takes the
max of the minimizer and zero. This results in better results
close to zero

"""
delta, c = pc.delta, pc.c
f = lambda t: delta * p_function(t) + c(s - t)
t_star = max(fminbound(f, -1, s), 0)
ell_star = s - t_star
return t_star, ell_star

The allocation of firms can be computed by recursively stepping through firms’ choices of their respective upstream
boundary, treating the previous firm’s upstream boundary as their own downstream boundary.
In doing so, we start with firm 1, who has downstream boundary 𝑠 = 1.

def compute_stages(pc, p_function):
s = 1.0
transaction_stages = [s]
while s > 0:

s, ell = optimal_choices(pc, p_function, s)
transaction_stages.append(s)

return np.array(transaction_stages)

Let’s try this at the default parameters.
The next figure shows the equilibrium price function, as well as the boundaries of firms as vertical lines

pc = ProductionChain()
p_star = compute_prices(pc)

transaction_stages = compute_stages(pc, p_star)

fig, ax = plt.subplots()

ax.plot(pc.grid, p_star(pc.grid))
ax.set_xlim(0.0, 1.0)
ax.set_ylim(0.0)
for s in transaction_stages:

ax.axvline(x=s, c="0.5")
plt.show()

Iteration converged in 2 steps

300 Chapter 15. Coase’s Theory of the Firm

Advanced Quantitative Economics with Python

Here’s the function ℓ∗, which shows how large a firm with downstream boundary 𝑠 chooses to be

ell_star = np.empty(pc.n)
for i, s in enumerate(pc.grid):

t, e = optimal_choices(pc, p_star, s)
ell_star[i] = e

fig, ax = plt.subplots()
ax.plot(pc.grid, ell_star, label="ℓ^*")
ax.legend(fontsize=14)
plt.show()

15.5. Implementation 301

Advanced Quantitative Economics with Python

Note that downstream firms choose to be larger, a point we return to below.

15.6 Exercises

Exercise 15.6.1
The number of firms is endogenously determined by the primitives.
What do you think will happen in terms of the number of firms as 𝛿 increases? Why?
Check your intuition by computing the number of firms at delta in (1.01, 1.05, 1.1).

Solution to Exercise 15.6.1
Here is one solution

for delta in (1.01, 1.05, 1.1):

pc = ProductionChain(delta=delta)
p_star = compute_prices(pc)
transaction_stages = compute_stages(pc, p_star)
num_firms = len(transaction_stages)
print(f"When delta={delta} there are {num_firms} firms")

Iteration converged in 2 steps
When delta=1.01 there are 64 firms

302 Chapter 15. Coase’s Theory of the Firm

Advanced Quantitative Economics with Python

Iteration converged in 2 steps
When delta=1.05 there are 41 firms

Iteration converged in 2 steps
When delta=1.1 there are 35 firms

Exercise 15.6.2
The value added of firm 𝑖 is 𝑣𝑖 ∶= 𝑝∗(𝑡𝑖−1) − 𝑝∗(𝑡𝑖).
One of the interesting predictions of the model is that value added is increasing with downstreamness, as are several other
measures of firm size.
Can you give any intution?
Try to verify this phenomenon (value added increasing with downstreamness) using the code above.

Solution to Exercise 15.6.2
Firm size increases with downstreamness because 𝑝∗, the equilibrium price function, is increasing and strictly convex.
This means that, for a given producer, the marginal cost of the input purchased from the producer just upstream from
itself in the chain increases as we go further downstream.
Hence downstream firms choose to do more in house than upstream firms — and are therefore larger.
The equilibrium price function is strictly convex due to both transaction costs and diminishing returns to management.
One way to put this is that firms are prevented from completely mitigating the costs associated with diminishing returns
to management — which induce convexity — by transaction costs. This is because transaction costs force firms to have
nontrivial size.
Here’s one way to compute and graph value added across firms

pc = ProductionChain()
p_star = compute_prices(pc)
stages = compute_stages(pc, p_star)

va = []

for i in range(len(stages) - 1):
va.append(p_star(stages[i]) - p_star(stages[i+1]))

fig, ax = plt.subplots()
ax.plot(va, label="value added by firm")
ax.set_xticks((5, 25))
ax.set_xticklabels(("downstream firms", "upstream firms"))
plt.show()

Iteration converged in 2 steps

15.6. Exercises 303

Advanced Quantitative Economics with Python

304 Chapter 15. Coase’s Theory of the Firm

Part IV

Dynamic Linear Economies

305

CHAPTER

SIXTEEN

RECURSIVE MODELS OF DYNAMIC LINEAR ECONOMIES

Contents

• Recursive Models of Dynamic Linear Economies

– A Suite of Models

– Econometrics

– Dynamic Demand Curves and Canonical Household Technologies

– Gorman Aggregation and Engel Curves

– Partial Equilibrium

– Equilibrium Investment Under Uncertainty

– A Rosen-Topel Housing Model

– Cattle Cycles

– Models of Occupational Choice and Pay

– Permanent Income Models

– Gorman Heterogeneous Households

– Non-Gorman Heterogeneous Households

“Mathematics is the art of giving the same name to different things” – Henri Poincare
“Complete market economies are all alike” – Robert E. Lucas, Jr., (1989)
“Every partial equilibrium model can be reinterpreted as a general equilibrium model.” – Anonymous

16.1 A Suite of Models

This lecture presents a class of linear-quadratic-Gaussian models of general economic equilibrium designed by Lars Peter
Hansen and Thomas J. Sargent [HS13].
The class of models is implemented in a Python class DLE that is part of quantecon.
Subsequent lectures use the DLE class to implement various instances that have appeared in the economics literature

1. Growth in Dynamic Linear Economies

2. Lucas Asset Pricing using DLE

307

Advanced Quantitative Economics with Python

3. IRFs in Hall Model

4. Permanent Income Using the DLE class

5. Rosen schooling model

6. Cattle cycles

7. Shock Non Invertibility

16.1.1 Overview of the Models

In saying that “complete markets are all alike”, Robert E. Lucas, Jr. was noting that all of them have
• a commodity space.
• a space dual to the commodity space in which prices reside.
• endowments of resources.
• peoples’ preferences over goods.
• physical technologies for transforming resources into goods.
• random processes that govern shocks to technologies and preferences and associated information flows.
• a single budget constraint per person.
• the existence of a representative consumer even when there are many people in the model.
• a concept of competitive equilibrium.
• theorems connecting competitive equilibrium allocations to allocations that would be chosen by a benevolent social
planner.

The models have no frictions such as …
• Enforcement difficulties
• Information asymmetries
• Other forms of transactions costs
• Externalities

The models extensively use the powerful ideas of
• Indexing commodities and their prices by time (John R. Hicks).
• Indexing commodities and their prices by chance (Kenneth Arrow).

Much of the imperialism of complete markets models comes from applying these two tricks.
The Hicks trick of indexing commodities by time is the idea that dynamics are a special case of statics.
The Arrow trick of indexing commodities by chance is the idea that analysis of trade under uncertainty is a special
case of the analysis of trade under certainty.
The [HS13] class of models specify the commodity space, preferences, technologies, stochastic shocks and information
flows in ways that allow the models to be analyzed completely using only the tools of linear time series models and
linear-quadratic optimal control described in the two lectures Linear State Space Models and Linear Quadratic Control.
There are costs and benefits associated with the simplifications and specializations needed to make a particular model fit
within the [HS13] class

• the costs are that linear-quadratic structures are sometimes too confining.

308 Chapter 16. Recursive Models of Dynamic Linear Economies

https://python-intro.quantecon.org/linear_models.html
https://python-intro.quantecon.org/lqcontrol.html

Advanced Quantitative Economics with Python

• benefits include computational speed, simplicity, and ability to analyze many model features analytically or nearly
analytically.

A variety of superficially different models are all instances of the [HS13] class of models
• Lucas asset pricing model
• Lucas-Prescott model of investment under uncertainty
• Asset pricing models with habit persistence
• Rosen-Topel equilibrium model of housing
• Rosen schooling models
• Rosen-Murphy-Scheinkman model of cattle cycles
• Hansen-Sargent-Tallarini model of robustness and asset pricing
• Many more …

The diversity of these models conceals an essential unity that illustrates the quotation by Robert E. Lucas, Jr., with which
we began this lecture.

16.1.2 Forecasting?

A consequence of a single budget constraint per person plus the Hicks-Arrow tricks is that households and firms need not
forecast.
But there exist equivalent structures called recursive competitive equilibria in which they do appear to need to forecast.
In these structures, to forecast, households and firms use:

• equilibrium pricing functions, and
• knowledge of the Markov structure of the economy’s state vector.

16.1.3 Theory and Econometrics

For an application of the [HS13] class of models, the outcome of theorizing is a stochastic process, i.e., a probability
distribution over sequences of prices and quantities, indexed by parameters describing preferences, technologies, and
information flows.
Another name for that object is a likelihood function, a key object of both frequentist and Bayesian statistics.
There are two important uses of an equilibrium stochastic process or likelihood function.
The first is to solve the direct problem.
The direct problem takes as inputs values of the parameters that define preferences, technologies, and information flows
and as an output characterizes or simulates random paths of quantities and prices.
The second use of an equilibrium stochastic process or likelihood function is to solve the inverse problem.
The inverse problem takes as an input a time series sample of observations on a subset of prices and quantities determined
by the model and from them makes inferences about the parameters that define the model’s preferences, technologies,
and information flows.

16.1. A Suite of Models 309

Advanced Quantitative Economics with Python

16.1.4 More Details

A [HS13] economy consists of lists of matrices that describe peoples’ household technologies, their preferences over
consumption services, their production technologies, and their information sets.
There are complete markets in history-contingent commodities.
Competitive equilibrium allocations and prices

• satisfy equations that are easy to write down and solve
• have representations that are convenient econometrically

Different example economies manifest themselves simply as different settings for various matrices.
[HS13] use these tools:

• A theory of recursive dynamic competitive economies
• Linear optimal control theory
• Recursive methods for estimating and interpreting vector autoregressions

The models are flexible enough to express alternative senses of a representative household
• A single ‘stand-in’ household of the type used to good effect by Edward C. Prescott.
• Heterogeneous households satisfying conditions for Gorman aggregation into a representative household.
• Heterogeneous household technologies that violate conditions for Gorman aggregation but are still susceptible to
aggregation into a single representative household via ‘non-Gorman’ or ‘mongrel’ aggregation’.

These three alternative types of aggregation have different consequences in terms of how prices and allocations can be
computed.
In particular, can prices and an aggregate allocation be computed before the equilibrium allocation to individual hetero-
geneous households is computed?

• Answers are “Yes” for Gorman aggregation, “No” for non-Gorman aggregation.
In summary, the insights and practical benefits from economics to be introduced in this lecture are

• Deeper understandings that come from recognizing common underlying structures.
• Speed and ease of computation that comes from unleashing a common suite of Python programs.

We’ll use the followingmathematical tools
• Stochastic Difference Equations (Linear).
• Duality: LQ Dynamic Programming and Linear Filtering are the same things mathematically.
• The Spectral Factorization Identity (for understanding vector autoregressions and non-Gorman aggregation).

So here is our roadmap.
We’ll describe sets of matrices that pin down

• Information
• Technologies
• Preferences

Then we’ll describe
• Equilibrium concept and computation
• Econometric representation and estimation

310 Chapter 16. Recursive Models of Dynamic Linear Economies

Advanced Quantitative Economics with Python

16.1.5 Stochastic Model of Information Flows and Outcomes

We’ll use stochastic linear difference equations to describe information flows and equilibrium outcomes.
The sequence {𝑤𝑡 ∶ 𝑡 = 1, 2, …} is said to be a martingale difference sequence adapted to {𝐽𝑡 ∶ 𝑡 = 0, 1, …} if
𝐸(𝑤𝑡+1|𝐽𝑡) = 0 for 𝑡 = 0, 1, … .
The sequence {𝑤𝑡 ∶ 𝑡 = 1, 2, …} is said to be conditionally homoskedastic if 𝐸(𝑤𝑡+1𝑤′

𝑡+1 ∣ 𝐽𝑡) = 𝐼 for 𝑡 = 0, 1, … .
We assume that the {𝑤𝑡 ∶ 𝑡 = 1, 2, …} process is conditionally homoskedastic.
Let {𝑥𝑡 ∶ 𝑡 = 1, 2, …} be a sequence of 𝑛-dimensional random vectors, i.e. an 𝑛-dimensional stochastic process.
The process {𝑥𝑡 ∶ 𝑡 = 1, 2, …} is constructed recursively using an initial random vector 𝑥0 ∼ 𝒩(̂𝑥0, Σ0) and a time-
invariant law of motion:

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑤𝑡+1

for 𝑡 = 0, 1, … where 𝐴 is an 𝑛 by 𝑛 matrix and 𝐶 is an 𝑛 by 𝑁 matrix.
Evidently, the distribution of 𝑥𝑡+1 conditional on 𝑥𝑡 is 𝒩(𝐴𝑥𝑡, 𝐶𝐶′).

16.1.6 Information Sets

Let 𝐽0 be generated by 𝑥0 and 𝐽𝑡 be generated by 𝑥0, 𝑤1, … , 𝑤𝑡, which means that 𝐽𝑡 consists of the set of all measurable
functions of {𝑥0, 𝑤1, … , 𝑤𝑡}.

16.1.7 Prediction Theory

The optimal forecast of 𝑥𝑡+1 given current information is

𝐸(𝑥𝑡+1 ∣ 𝐽𝑡) = 𝐴𝑥𝑡

and the one-step-ahead forecast error is

𝑥𝑡+1 − 𝐸(𝑥𝑡+1 ∣ 𝐽𝑡) = 𝐶𝑤𝑡+1

The covariance matrix of 𝑥𝑡+1 conditioned on 𝐽𝑡 is

𝐸(𝑥𝑡+1 − 𝐸(𝑥𝑡+1 ∣ 𝐽𝑡))(𝑥𝑡+1 − 𝐸(𝑥𝑡+1 ∣ 𝐽𝑡))′ = 𝐶𝐶′

A nonrecursive expression for 𝑥𝑡 as a function of 𝑥0, 𝑤1, 𝑤2, … , 𝑤𝑡 is

𝑥𝑡 = 𝐴𝑥𝑡−1 + 𝐶𝑤𝑡
= 𝐴2𝑥𝑡−2 + 𝐴𝐶𝑤𝑡−1 + 𝐶𝑤𝑡

= [
𝑡−1
∑
𝜏=0

𝐴𝜏𝐶𝑤𝑡−𝜏] + 𝐴𝑡𝑥0

Shift forward in time:

𝑥𝑡+𝑗 =
𝑗−1
∑
𝑠=0

𝐴𝑠𝐶𝑤𝑡+𝑗−𝑠 + 𝐴𝑗𝑥𝑡

Projecting on the information set {𝑥0, 𝑤𝑡, 𝑤𝑡−1, … , 𝑤1} gives

𝐸𝑡𝑥𝑡+𝑗 = 𝐴𝑗𝑥𝑡

16.1. A Suite of Models 311

Advanced Quantitative Economics with Python

where 𝐸𝑡(⋅) ≡ 𝐸[(⋅) ∣ 𝑥0, 𝑤𝑡, 𝑤𝑡−1, … , 𝑤1] = 𝐸(⋅) ∣ 𝐽𝑡, and 𝑥𝑡 is in 𝐽𝑡.

It is useful to obtain the covariance matrix of the 𝑗-step-ahead prediction error 𝑥𝑡+𝑗 − 𝐸𝑡𝑥𝑡+𝑗 = ∑𝑗−1
𝑠=0 𝐴𝑠𝐶𝑤𝑡−𝑠+𝑗.

Evidently,

𝐸𝑡(𝑥𝑡+𝑗 − 𝐸𝑡𝑥𝑡+𝑗)(𝑥𝑡+𝑗 − 𝐸𝑡𝑥𝑡+𝑗)′ =
𝑗−1
∑
𝑘=0

𝐴𝑘𝐶𝐶′𝐴𝑘′ ≡ 𝑣𝑗

𝑣𝑗 can be calculated recursively via

𝑣1 = 𝐶𝐶′

𝑣𝑗 = 𝐶𝐶′ + 𝐴𝑣𝑗−1𝐴′, 𝑗 ≥ 2

16.1.8 Orthogonal Decomposition

To decompose these covariances into parts attributable to the individual components of𝑤𝑡, we let 𝑖𝜏 be an𝑁 -dimensional
column vector of zeroes except in position 𝜏 , where there is a one. Define a matrix 𝜐𝑗,𝜏

𝜐𝑗,𝜏 =
𝑗−1
∑
𝑘=0

𝐴𝑘𝐶𝑖𝜏 𝑖′
𝜏𝐶′𝐴′𝑘.

Note that ∑𝑁
𝜏=1 𝑖𝜏 𝑖′

𝜏 = 𝐼 , so that we have
𝑁

∑
𝜏=1

𝜐𝑗,𝜏 = 𝜐𝑗

Evidently, the matrices {𝜐𝑗,𝜏 , 𝜏 = 1, … , 𝑁} give an orthogonal decomposition of the covariance matrix of 𝑗-step-ahead
prediction errors into the parts attributable to each of the components 𝜏 = 1, … , 𝑁 .

16.1.9 Taste and Technology Shocks

𝐸(𝑤𝑡 ∣ 𝐽𝑡−1) = 0 and 𝐸(𝑤𝑡𝑤′
𝑡 ∣ 𝐽𝑡−1) = 𝐼 for 𝑡 = 1, 2, …

𝑏𝑡 = 𝑈𝑏𝑧𝑡 and 𝑑𝑡 = 𝑈𝑑𝑧𝑡,

𝑈𝑏 and 𝑈𝑑 are matrices that select entries of 𝑧𝑡. The law of motion for {𝑧𝑡 ∶ 𝑡 = 0, 1, …} is

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1 for 𝑡 = 0, 1, …

where 𝑧0 is a given initial condition. The eigenvalues of the matrix 𝐴22 have absolute values that are less than or equal to
one.
Thus, in summary, our model of information and shocks is

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1
𝑏𝑡 = 𝑈𝑏𝑧𝑡
𝑑𝑡 = 𝑈𝑑𝑧𝑡.

We can now briefly summarize other components of our economies, in particular
• Production technologies
• Household technologies
• Household preferences

312 Chapter 16. Recursive Models of Dynamic Linear Economies

Advanced Quantitative Economics with Python

16.1.10 Production Technology

Where 𝑐𝑡 is a vector of consumption rates, 𝑘𝑡 is a vector of physical capital goods, 𝑔𝑡 is a vector intermediate productions
goods, 𝑑𝑡 is a vector of technology shocks, the production technology is

Φ𝑐𝑐𝑡 + Φ𝑔𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡
𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡

𝑔𝑡 ⋅ 𝑔𝑡 = ℓ2
𝑡

Here Φ𝑐, Φ𝑔, Φ𝑖, Γ, Δ𝑘, Θ𝑘 are all matrices conformable to the vectors they multiply and ℓ𝑡 is a disutility generating
resource supplied by the household.
For technical reasons that facilitate computations, we make the following.
Assumption: [Φ𝑐 Φ𝑔] is nonsingular.

16.1.11 Household Technology

Households confront a technology that allows them to devote consumption goods to construct a vector ℎ𝑡 of household
capital goods and a vector 𝑠𝑡 of utility generating house services

𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡
ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

where Λ, Π, Δℎ, Θℎ are matrices that pin down the household technology.
We make the following
Assumption: The absolute values of the eigenvalues of Δℎ are less than or equal to one.
Below, we’ll outline further assumptions that we shall occasionally impose.

16.1.12 Preferences

Where 𝑏𝑡 is a stochastic process of preference shocks that will play the role of demand shifters, the representative house-
hold orders stochastic processes of consumption services 𝑠𝑡 according to

(1
2)𝐸

∞
∑
𝑡=0

𝛽𝑡[(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + ℓ2
𝑡]∣𝐽0, 0 < 𝛽 < 1

We now proceed to give examples of production and household technologies that appear in various models that appear in
the literature.
First, we give examples of production Technologies

Φ𝑐𝑐𝑡 + Φ𝑔𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡

∣ 𝑔𝑡 ∣≤ ℓ𝑡

so we’ll be looking for specifications of the matrices Φ𝑐, Φ𝑔, Φ𝑖, Γ, Δ𝑘, Θ𝑘 that define them.

16.1. A Suite of Models 313

Advanced Quantitative Economics with Python

16.1.13 Endowment Economy

There is a single consumption good that cannot be stored over time.
In time period 𝑡, there is an endowment 𝑑𝑡 of this single good.
There is neither a capital stock, nor an intermediate good, nor a rate of investment.
So 𝑐𝑡 = 𝑑𝑡.
To implement this specification, we can choose𝐴22, 𝐶2, and𝑈𝑑 to make 𝑑𝑡 follow any of a variety of stochastic processes.
To satisfy our earlier rank assumption, we set:

𝑐𝑡 + 𝑖𝑡 = 𝑑1𝑡

𝑔𝑡 = 𝜙1𝑖𝑡

where 𝜙1 is a small positive number.
To implement this version, we set Δ𝑘 = Θ𝑘 = 0 and

Φ𝑐 = [1
0] , Φ𝑖 = [1

𝜙1
] , Φ𝑔 = [0

−1] , Γ = [0
0] , 𝑑𝑡 = [𝑑1𝑡

0]

We can use this specification to create a linear-quadratic version of Lucas’s (1978) asset pricing model.

16.1.14 Single-Period Adjustment Costs

There is a single consumption good, a single intermediate good, and a single investment good.
The technology is described by

𝑐𝑡 = 𝛾𝑘𝑡−1 + 𝑑1𝑡, 𝛾 > 0
𝜙1𝑖𝑡 = 𝑔𝑡 + 𝑑2𝑡, 𝜙1 > 0

ℓ2
𝑡 = 𝑔2

𝑡
𝑘𝑡 = 𝛿𝑘𝑘𝑡−1 + 𝑖𝑡, 0 < 𝛿𝑘 < 1

Set

Φ𝑐 = [1
0] , Φ𝑔 = [0

−1] , Φ𝑖 = [0
𝜙1

]

Γ = [𝛾
0] , Δ𝑘 = 𝛿𝑘, Θ𝑘 = 1

We set 𝐴22, 𝐶2 and 𝑈𝑑 to make (𝑑1𝑡, 𝑑2𝑡)′ = 𝑑𝑡 follow a desired stochastic process.
Now we describe some examples of preferences, which as we have seen are ordered by

− (1
2) 𝐸

∞
∑
𝑡=0

𝛽𝑡 [(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + (ℓ𝑡)2] ∣ 𝐽0 , 0 < 𝛽 < 1

where household services are produced via the household technology

ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡

and we make

314 Chapter 16. Recursive Models of Dynamic Linear Economies

Advanced Quantitative Economics with Python

Assumption: The absolute values of the eigenvalues of Δℎ are less than or equal to one.
Later we shall introduce canonical household technologies that satisfy an ‘invertibility’ requirement relating sequences
{𝑠𝑡} of services and {𝑐𝑡} of consumption flows.
And we’ll describe how to obtain a canonical representation of a household technology from one that is not canonical.
Here are some examples of household preferences.
Time Separable preferences

−1
2𝐸

∞
∑
𝑡=0

𝛽𝑡 [(𝑐𝑡 − 𝑏𝑡)2 + ℓ2
𝑡] ∣ 𝐽0 , 0 < 𝛽 < 1

Consumer Durables

ℎ𝑡 = 𝛿ℎℎ𝑡−1 + 𝑐𝑡 , 0 < 𝛿ℎ < 1

Services at 𝑡 are related to the stock of durables at the beginning of the period:

𝑠𝑡 = 𝜆ℎ𝑡−1 , 𝜆 > 0

Preferences are ordered by

−1
2𝐸

∞
∑
𝑡=0

𝛽𝑡 [(𝜆ℎ𝑡−1 − 𝑏𝑡)2 + ℓ2
𝑡] ∣ 𝐽0

Set Δℎ = 𝛿ℎ, Θℎ = 1, Λ = 𝜆, Π = 0.
Habit Persistence

−(1
2) 𝐸

∞
∑
𝑡=0

𝛽𝑡[(𝑐𝑡 − 𝜆(1 − 𝛿ℎ)
∞

∑
𝑗=0

𝛿𝑗
ℎ 𝑐𝑡−𝑗−1 − 𝑏𝑡)

2 + ℓ2
𝑡]∣𝐽0

0 < 𝛽 < 1 , 0 < 𝛿ℎ < 1 , 𝜆 > 0
Here the effective bliss point 𝑏𝑡 + 𝜆(1 − 𝛿ℎ) ∑∞

𝑗=0 𝛿𝑗
ℎ 𝑐𝑡−𝑗−1 shifts in response to a moving average of past consumption.

Initial Conditions
Preferences of this form require an initial condition for the geometric sum ∑∞

𝑗=0 𝛿𝑗
ℎ𝑐𝑡−𝑗−1 that we specify as an initial

condition for the ‘stock of household durables,’ ℎ−1.
Set

ℎ𝑡 = 𝛿ℎℎ𝑡−1 + (1 − 𝛿ℎ)𝑐𝑡 , 0 < 𝛿ℎ < 1

ℎ𝑡 = (1 − 𝛿ℎ)
𝑡

∑
𝑗=0

𝛿𝑗
ℎ 𝑐𝑡−𝑗 + 𝛿𝑡+1

ℎ ℎ−1

𝑠𝑡 = −𝜆ℎ𝑡−1 + 𝑐𝑡, 𝜆 > 0
To implement, set Λ = −𝜆, Π = 1, Δℎ = 𝛿ℎ, Θℎ = 1 − 𝛿ℎ.
Seasonal Habit Persistence

−(1
2) 𝐸

∞
∑
𝑡=0

𝛽𝑡[(𝑐𝑡 − 𝜆(1 − 𝛿ℎ)
∞

∑
𝑗=0

𝛿𝑗
ℎ 𝑐𝑡−4𝑗−4 − 𝑏𝑡)

2 + ℓ2
𝑡]

0 < 𝛽 < 1 , 0 < 𝛿ℎ < 1 , 𝜆 > 0

16.1. A Suite of Models 315

Advanced Quantitative Economics with Python

Here the effective bliss point 𝑏𝑡 +𝜆(1−𝛿ℎ) ∑∞
𝑗=0 𝛿𝑗

ℎ 𝑐𝑡−4𝑗−4 shifts in response to a moving average of past consumptions
of the same quarter.
To implement, set

ℎ̃𝑡 = 𝛿ℎℎ̃𝑡−4 + (1 − 𝛿ℎ)𝑐𝑡 , 0 < 𝛿ℎ < 1

This implies that

ℎ𝑡 =
⎡
⎢
⎢
⎣

ℎ̃𝑡
ℎ̃𝑡−1
ℎ̃𝑡−2
ℎ̃𝑡−3

⎤
⎥
⎥
⎦

=
⎡
⎢⎢
⎣

0 0 0 𝛿ℎ
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥
⎦

⎡
⎢
⎢
⎣

ℎ̃𝑡−1
ℎ̃𝑡−2
ℎ̃𝑡−3
ℎ̃𝑡−4

⎤
⎥
⎥
⎦

+
⎡
⎢⎢
⎣

(1 − 𝛿ℎ)
0
0
0

⎤
⎥⎥
⎦

𝑐𝑡

with consumption services

𝑠𝑡 = − [0 0 0 −𝜆] ℎ𝑡−1 + 𝑐𝑡 , 𝜆 > 0

Adjustment Costs.
Recall

−(1
2)𝐸

∞
∑
𝑡=0

𝛽𝑡[(𝑐𝑡 − 𝑏1𝑡)2 + 𝜆2(𝑐𝑡 − 𝑐𝑡−1)2 + ℓ2
𝑡] ∣ 𝐽0

0 < 𝛽 < 1 , 𝜆 > 0
To capture adjustment costs, set

ℎ𝑡 = 𝑐𝑡

𝑠𝑡 = [0
−𝜆] ℎ𝑡−1 + [1

𝜆] 𝑐𝑡

so that

𝑠1𝑡 = 𝑐𝑡

𝑠2𝑡 = 𝜆(𝑐𝑡 − 𝑐𝑡−1)
We set the first component 𝑏1𝑡 of 𝑏𝑡 to capture the stochastic bliss process and set the second component identically equal
to zero.
Thus, we set Δℎ = 0, Θℎ = 1

Λ = [0
−𝜆] , Π = [1

𝜆]

Multiple Consumption Goods

Λ = [0
0] and Π = [𝜋1 0

𝜋2 𝜋3
]

−1
2𝛽𝑡(Π𝑐𝑡 − 𝑏𝑡)′(Π𝑐𝑡 − 𝑏𝑡)

𝜇𝑡 = −𝛽𝑡[Π′Π 𝑐𝑡 − Π′ 𝑏𝑡]

𝑐𝑡 = −(Π′Π)−1𝛽−𝑡𝜇𝑡 + (Π′Π)−1Π′𝑏𝑡

316 Chapter 16. Recursive Models of Dynamic Linear Economies

Advanced Quantitative Economics with Python

This is called the Frisch demand function for consumption.
We can think of the vector 𝜇𝑡 as playing the role of prices, up to a common factor, for all dates and states.
The scale factor is determined by the choice of numeraire.
Notions of substitutes and complements can be defined in terms of these Frisch demand functions.
Two goods can be said to be substitutes if the cross-price effect is positive and to be complements if this effect is
negative.
Hence this classification is determined by the off-diagonal element of −(Π′Π)−1, which is equal to 𝜋2𝜋3/ det(Π′Π).
If 𝜋2 and 𝜋3 have the same sign, the goods are substitutes.
If they have opposite signs, the goods are complements.
To summarize, our economic structure consists of the matrices that define the following components:
Information and shocks

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1
𝑏𝑡 = 𝑈𝑏𝑧𝑡
𝑑𝑡 = 𝑈𝑑𝑧𝑡

Production Technology

Φ𝑐𝑐𝑡 + Φ𝑔𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡
𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡

𝑔𝑡 ⋅ 𝑔𝑡 = ℓ2
𝑡

Household Technology

𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡
ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

Preferences

(1
2)𝐸

∞
∑
𝑡=0

𝛽𝑡[(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + ℓ2
𝑡]∣𝐽0, 0 < 𝛽 < 1

Next steps: we move on to discuss two closely connected concepts
• A Planning Problem or Optimal Resource Allocation Problem
• Competitive Equilibrium

16.1.15 Optimal Resource Allocation

Imagine a planner who chooses sequences {𝑐𝑡, 𝑖𝑡, 𝑔𝑡}∞
𝑡=0 to maximize

−(1/2)𝐸
∞

∑
𝑡=0

𝛽𝑡[(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + 𝑔𝑡 ⋅ 𝑔𝑡]∣𝐽0

subject to the constraints

Φ𝑐𝑐𝑡 + Φ𝑔 𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡,
𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡,
ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡,
𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡,

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1, 𝑏𝑡 = 𝑈𝑏𝑧𝑡, and 𝑑𝑡 = 𝑈𝑑𝑧𝑡

16.1. A Suite of Models 317

Advanced Quantitative Economics with Python

and initial conditions for ℎ−1, 𝑘−1, and 𝑧0.
Throughout, we shall impose the following square summability conditions

𝐸
∞

∑
𝑡=0

𝛽𝑡ℎ𝑡 ⋅ ℎ𝑡 ∣ 𝐽0 < ∞ and 𝐸
∞

∑
𝑡=0

𝛽𝑡𝑘𝑡 ⋅ 𝑘𝑡 ∣ 𝐽0 < ∞

Define:

𝐿2
0 = [{𝑦𝑡} ∶ 𝑦𝑡 is a random variable in 𝐽𝑡 and 𝐸

∞
∑
𝑡=0

𝛽𝑡𝑦2
𝑡 ∣ 𝐽0 < +∞]

Thus, we require that each component of ℎ𝑡 and each component of 𝑘𝑡 belong to 𝐿2
0.

We shall compare and utilize two approaches to solving the planning problem
• Lagrangian formulation
• Dynamic programming

16.1.16 Lagrangian Formulation

Form the Lagrangian

ℒ = −𝐸
∞

∑
𝑡=0

𝛽𝑡[(1
2)[(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + 𝑔𝑡 ⋅ 𝑔𝑡]

+ 𝑀𝑑′
𝑡 ⋅ (Φ𝑐𝑐𝑡 + Φ𝑔𝑔𝑡 + Φ𝑖𝑖𝑡 − Γ𝑘𝑡−1 − 𝑑𝑡)

+ 𝑀𝑘′
𝑡 ⋅ (𝑘𝑡 − Δ𝑘𝑘𝑡−1 − Θ𝑘𝑖𝑡)

+ 𝑀ℎ′
𝑡 ⋅ (ℎ𝑡 − Δℎℎ𝑡−1 − Θℎ𝑐𝑡)

+ 𝑀𝑠′
𝑡 ⋅ (𝑠𝑡 − Λℎ𝑡−1 − Π𝑐𝑡)]∣𝐽0

The planner maximizes ℒ with respect to the quantities {𝑐𝑡, 𝑖𝑡, 𝑔𝑡}∞
𝑡=0 and minimizes with respect to the Lagrange mul-

tipliers 𝑀𝑑
𝑡 , 𝑀𝑘

𝑡 , 𝑀ℎ
𝑡 , 𝑀𝑠

𝑡 .
First-order necessary conditions for maximization with respect to 𝑐𝑡, 𝑔𝑡, ℎ𝑡, 𝑖𝑡, 𝑘𝑡, and 𝑠𝑡, respectively, are:

−Φ′
𝑐𝑀𝑑

𝑡 + Θ′
ℎ𝑀ℎ

𝑡 + Π′𝑀𝑠
𝑡 = 0,

− 𝑔𝑡 − Φ′
𝑔𝑀𝑑

𝑡 = 0,
−𝑀ℎ

𝑡 + 𝛽𝐸(Δ′
ℎ𝑀ℎ

𝑡+1 + Λ′𝑀𝑠
𝑡+1) ∣ 𝐽𝑡 = 0,

− Φ′
𝑖𝑀𝑑

𝑡 + Θ′
𝑘𝑀𝑘

𝑡 = 0,
−𝑀𝑘

𝑡 + 𝛽𝐸(Δ′
𝑘𝑀𝑘

𝑡+1 + Γ′𝑀𝑑
𝑡+1) ∣ 𝐽𝑡 = 0,

− 𝑠𝑡 + 𝑏𝑡 − 𝑀𝑠
𝑡 = 0

for 𝑡 = 0, 1, ….
In addition, we have the complementary slackness conditions (these recover the original transition equations) and also
transversality conditions

lim
𝑡→∞

𝛽𝑡𝐸[𝑀𝑘′
𝑡 𝑘𝑡] ∣ 𝐽0 = 0

lim
𝑡→∞

𝛽𝑡𝐸[𝑀ℎ′
𝑡 ℎ𝑡] ∣ 𝐽0 = 0

The system formed by the FONCs and the transition equations can be handed over to Python.

318 Chapter 16. Recursive Models of Dynamic Linear Economies

Advanced Quantitative Economics with Python

Python will solve the planning problem for fixed parameter values.
Here are the Python Ready Equations

−Φ′
𝑐𝑀𝑑

𝑡 + Θ′
ℎ𝑀ℎ

𝑡 + Π′𝑀𝑠
𝑡 = 0,

− 𝑔𝑡 − Φ′
𝑔𝑀𝑑

𝑡 = 0,
−𝑀ℎ

𝑡 + 𝛽𝐸(Δ′
ℎ𝑀ℎ

𝑡+1 + Λ′𝑀𝑠
𝑡+1) ∣ 𝐽𝑡 = 0,

− Φ′
𝑖𝑀𝑑

𝑡 + Θ′
𝑘𝑀𝑘

𝑡 = 0,
−𝑀𝑘

𝑡 + 𝛽𝐸(Δ′
𝑘𝑀𝑘

𝑡+1 + Γ′𝑀𝑑
𝑡+1) ∣ 𝐽𝑡 = 0,

− 𝑠𝑡 + 𝑏𝑡 − 𝑀𝑠
𝑡 = 0

Φ𝑐𝑐𝑡 + Φ𝑔 𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡,
𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡,
ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡,
𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡,

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1, 𝑏𝑡 = 𝑈𝑏𝑧𝑡, and 𝑑𝑡 = 𝑈𝑑𝑧𝑡

The Lagrange multipliers or shadow prices satisfy

𝑀𝑠
𝑡 = 𝑏𝑡 − 𝑠𝑡

𝑀ℎ
𝑡 = 𝐸[

∞
∑
𝜏=1

𝛽𝜏(Δ′
ℎ)𝜏−1Λ′𝑀𝑠

𝑡+𝜏 ∣ 𝐽𝑡]

𝑀𝑑
𝑡 = [Φ′

𝑐
Φ′

𝑔
]

−1
[Θ′

ℎ𝑀ℎ
𝑡 + Π′𝑀𝑠

𝑡
−𝑔𝑡

]

𝑀𝑘
𝑡 = 𝐸[

∞
∑
𝜏=1

𝛽𝜏(Δ′
𝑘)𝜏−1Γ′𝑀𝑑

𝑡+𝜏 ∣ 𝐽𝑡]

𝑀 𝑖
𝑡 = Θ′

𝑘𝑀𝑘
𝑡

Although it is possible to usematrix operator methods to solve the abovePython ready equations, that is not the approach
we’ll use.
Instead, we’ll use dynamic programming to get recursive representations for both quantities and shadow prices.

16.1.17 Dynamic Programming

Dynamic Programming always starts with the word let.
Thus, let 𝑉 (𝑥0) be the optimal value function for the planning problem as a function of the initial state vector 𝑥0.
(Thus, in essence, dynamic programming amounts to an application of a guess and verify method in which we begin
with a guess about the answer to the problem we want to solve. That’s why we start with let 𝑉 (𝑥0) be the (value of the)
answer to the problem, then establish and verify a bunch of conditions 𝑉 (𝑥0) has to satisfy if indeed it is the answer)
The optimal value function 𝑉 (𝑥) satisfies the Bellman equation

𝑉 (𝑥0) = max
𝑐0,𝑖0,𝑔0

[−.5[(𝑠0 − 𝑏0) ⋅ (𝑠0 − 𝑏0) + 𝑔0 ⋅ 𝑔0] + 𝛽𝐸𝑉 (𝑥1)]

subject to the linear constraints
Φ𝑐𝑐0 + Φ𝑔𝑔0 + Φ𝑖𝑖0 = Γ𝑘−1 + 𝑑0,

𝑘0 = Δ𝑘𝑘−1 + Θ𝑘𝑖0,
ℎ0 = Δℎℎ−1 + Θℎ𝑐0,
𝑠0 = Λℎ−1 + Π𝑐0,
𝑧1 = 𝐴22𝑧0 + 𝐶2𝑤1, 𝑏0 = 𝑈𝑏𝑧0 and 𝑑0 = 𝑈𝑑𝑧0

16.1. A Suite of Models 319

Advanced Quantitative Economics with Python

Because this is a linear-quadratic dynamic programming problem, it turns out that the value function has the form

𝑉 (𝑥) = 𝑥′𝑃𝑥 + 𝜌

Thus, we want to solve an instance of the following linear-quadratic dynamic programming problem:
Choose a contingency plan for {𝑥𝑡+1, 𝑢𝑡}∞

𝑡=0 to maximize

−𝐸
∞

∑
𝑡=0

𝛽𝑡[𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢′
𝑡𝑊 ′𝑥𝑡], 0 < 𝛽 < 1

subject to

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1, 𝑡 ≥ 0

where 𝑥0 is given; 𝑥𝑡 is an 𝑛 × 1 vector of state variables, and 𝑢𝑡 is a 𝑘 × 1 vector of control variables.
We assume 𝑤𝑡+1 is a martingale difference sequence with 𝐸𝑤𝑡𝑤′

𝑡 = 𝐼 , and that 𝐶 is a matrix conformable to 𝑥 and 𝑤.
The optimal value function 𝑉 (𝑥) satisfies the Bellman equation

𝑉 (𝑥𝑡) = max
𝑢𝑡

{−(𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢′
𝑡𝑊𝑥𝑡) + 𝛽𝐸𝑡𝑉 (𝑥𝑡+1)}

where maximization is subject to

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1, 𝑡 ≥ 0

𝑉 (𝑥𝑡) = −𝑥′
𝑡𝑃𝑥𝑡 − 𝜌

𝑃 satisfies

𝑃 = 𝑅 + 𝛽𝐴′𝑃𝐴 − (𝛽𝐴′𝑃𝐵 + 𝑊)(𝑄 + 𝛽𝐵′𝑃𝐵)−1(𝛽𝐵′𝑃𝐴 + 𝑊 ′)

This equation in 𝑃 is called the algebraic matrix Riccati equation.
The optimal decision rule is 𝑢𝑡 = −𝐹𝑥𝑡, where

𝐹 = (𝑄 + 𝛽𝐵′𝑃𝐵)−1(𝛽𝐵′𝑃𝐴 + 𝑊 ′)

The optimum decision rule for 𝑢𝑡 is independent of the parameters 𝐶, and so of the noise statistics.
Iterating on the Bellman operator leads to

𝑉𝑗+1(𝑥𝑡) = max
𝑢𝑡

{−(𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢′
𝑡𝑊𝑥𝑡) + 𝛽𝐸𝑡𝑉𝑗(𝑥𝑡+1)}

𝑉𝑗(𝑥𝑡) = −𝑥′
𝑡𝑃𝑗𝑥𝑡 − 𝜌𝑗

where 𝑃𝑗 and 𝜌𝑗 satisfy the equations

𝑃𝑗+1 = 𝑅 + 𝛽𝐴′𝑃𝑗𝐴 − (𝛽𝐴′𝑃𝑗𝐵 + 𝑊)(𝑄 + 𝛽𝐵′𝑃𝑗𝐵)−1(𝛽𝐵′𝑃𝑗𝐴 + 𝑊 ′)
𝜌𝑗+1 = 𝛽𝜌𝑗 + 𝛽 trace 𝑃𝑗𝐶𝐶′

We can now state the planning problem as a dynamic programming problem

max
{𝑢𝑡,𝑥𝑡+1}

−𝐸
∞

∑
𝑡=0

𝛽𝑡[𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 + 2𝑢′
𝑡𝑊 ′𝑥𝑡], 0 < 𝛽 < 1

320 Chapter 16. Recursive Models of Dynamic Linear Economies

Advanced Quantitative Economics with Python

where maximization is subject to

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1, 𝑡 ≥ 0

𝑥𝑡 = ⎡⎢
⎣

ℎ𝑡−1
𝑘𝑡−1
𝑧𝑡

⎤⎥
⎦

, 𝑢𝑡 = 𝑖𝑡

where

𝐴 = ⎡⎢
⎣

Δℎ Θℎ𝑈𝑐[Φ𝑐 Φ𝑔]−1Γ Θℎ𝑈𝑐[Φ𝑐 Φ𝑔]−1𝑈𝑑
0 Δ𝑘 0
0 0 𝐴22

⎤⎥
⎦

𝐵 = ⎡⎢
⎣

−Θℎ𝑈𝑐[Φ𝑐 Φ𝑔]−1Φ𝑖
Θ𝑘
0

⎤⎥
⎦

, 𝐶 = ⎡⎢
⎣

0
0

𝐶2

⎤⎥
⎦

[𝑥𝑡
𝑢𝑡

]
′
𝑆 [𝑥𝑡

𝑢𝑡
] = [𝑥𝑡

𝑢𝑡
]

′
[𝑅 𝑊
𝑊 ′ 𝑄] [𝑥𝑡

𝑢𝑡
]

𝑆 = (𝐺′𝐺 + 𝐻′𝐻)/2
𝐻 = [Λ ⋮ Π𝑈𝑐[Φ𝑐 Φ𝑔]−1Γ ⋮ Π𝑈𝑐[Φ𝑐 Φ𝑔]−1𝑈𝑑 − 𝑈𝑏 ⋮ −Π𝑈𝑐[Φ𝑐 Φ𝑔]−1Φ𝑖]

𝐺 = 𝑈𝑔[Φ𝑐 Φ𝑔]−1[0 ⋮ Γ ⋮ 𝑈𝑑 ⋮ −Φ𝑖].
Lagrange multipliers as gradient of value function
A useful fact is that Lagrange multipliers equal gradients of the planner’s value function

ℳ𝑘
𝑡 = 𝑀𝑘𝑥𝑡 and 𝑀ℎ

𝑡 = 𝑀ℎ𝑥𝑡 where
𝑀𝑘 = 2𝛽[0 𝐼 0]𝑃𝐴𝑜

𝑀ℎ = 2𝛽[𝐼 0 0]𝑃𝐴𝑜

ℳ𝑠
𝑡 = 𝑀𝑠𝑥𝑡 where 𝑀𝑠 = (𝑆𝑏 − 𝑆𝑠) and 𝑆𝑏 = [0 0 𝑈𝑏]

ℳ𝑑
𝑡 = 𝑀𝑑𝑥𝑡 where 𝑀𝑑 = [Φ′

𝑐
Φ′

𝑔
]

−1
[Θ′

ℎ𝑀ℎ + Π′𝑀𝑠
−𝑆𝑔

]

ℳ𝑐
𝑡 = 𝑀𝑐𝑥𝑡 where 𝑀𝑐 = Θ′

ℎ𝑀ℎ + Π′𝑀𝑠

ℳ𝑖
𝑡 = 𝑀𝑖𝑥𝑡 where 𝑀𝑖 = Θ′

𝑘𝑀𝑘

We will use this fact and these equations to compute competitive equilibrium prices.

16.1.18 Other mathematical infrastructure

Let’s start with describing the commodity space and pricing functional for our competitive equilibrium.
For the commodity space, we use

𝐿2
0 = [{𝑦𝑡} ∶ 𝑦𝑡 is a random variable in 𝐽𝑡 and 𝐸

∞
∑
𝑡=0

𝛽𝑡𝑦2
𝑡 ∣ 𝐽0 < +∞]

For pricing functionals, we express values as inner products

𝜋(𝑐) = 𝐸
∞

∑
𝑡=0

𝛽𝑡𝑝0
𝑡 ⋅ 𝑐𝑡 ∣ 𝐽0

where 𝑝0
𝑡 belongs to 𝐿2

0.
With these objects in our toolkit, we move on to state the problem of a Representative Household in a competitive
equilibrium.

16.1. A Suite of Models 321

Advanced Quantitative Economics with Python

16.1.19 Representative Household

The representative household owns endowment process and initial stocks of ℎ and 𝑘 and chooses stochastic processes for
{𝑐𝑡, 𝑠𝑡, ℎ𝑡, ℓ𝑡}∞

𝑡=0, each element of which is in 𝐿2
0, to maximize

− 1
2 𝐸0

∞
∑
𝑡=0

𝛽𝑡 [(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + ℓ2
𝑡]

subject to

𝐸
∞

∑
𝑡=0

𝛽𝑡 𝑝0
𝑡 ⋅ 𝑐𝑡 ∣ 𝐽0 = 𝐸

∞
∑
𝑡=0

𝛽𝑡 (𝑤0
𝑡 ℓ𝑡 + 𝛼0

𝑡 ⋅ 𝑑𝑡) ∣ 𝐽0 + 𝑣0 ⋅ 𝑘−1

𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡

ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡, ℎ−1, 𝑘−1 given

We now describe the problems faced by two types of firms called type I and type II.

16.1.20 Type I Firm

A type I firm rents capital and labor and endowments and produces 𝑐𝑡, 𝑖𝑡.
It chooses stochastic processes for {𝑐𝑡, 𝑖𝑡, 𝑘𝑡, ℓ𝑡, 𝑔𝑡, 𝑑𝑡}, each element of which is in 𝐿2

0, to maximize

𝐸0
∞

∑
𝑡=0

𝛽𝑡 (𝑝0
𝑡 ⋅ 𝑐𝑡 + 𝑞0

𝑡 ⋅ 𝑖𝑡 − 𝑟0
𝑡 ⋅ 𝑘𝑡−1 − 𝑤0

𝑡 ℓ𝑡 − 𝛼0
𝑡 ⋅ 𝑑𝑡)

subject to

Φ𝑐 𝑐𝑡 + Φ𝑔 𝑔𝑡 + Φ𝑖 𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡

− ℓ2
𝑡 + 𝑔𝑡 ⋅ 𝑔𝑡 = 0

16.1.21 Type II Firm

A firm of type II acquires capital via investment and then rents stocks of capital to the 𝑐, 𝑖-producing type I firm.
A type II firm is a price taker facing the vector 𝑣0 and the stochastic processes {𝑟0

𝑡 , 𝑞0
𝑡 }.

The firm chooses 𝑘−1 and stochastic processes for {𝑘𝑡, 𝑖𝑡}∞
𝑡=0 to maximize

𝐸
∞

∑
𝑡=0

𝛽𝑡(𝑟0
𝑡 ⋅ 𝑘𝑡−1 − 𝑞0

𝑡 ⋅ 𝑖𝑡) ∣ 𝐽0 − 𝑣0 ⋅ 𝑘−1

subject to

𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡

322 Chapter 16. Recursive Models of Dynamic Linear Economies

Advanced Quantitative Economics with Python

16.1.22 Competitive Equilibrium: Definition

We can now state the following.
Definition: A competitive equilibrium is a price system [𝑣0, {𝑝0

𝑡 , 𝑤0
𝑡 , 𝛼0

𝑡 , 𝑞0
𝑡 , 𝑟0

𝑡 }∞
𝑡=0] and an allocation

{𝑐𝑡, 𝑖𝑡, 𝑘𝑡, ℎ𝑡, 𝑔𝑡, 𝑑𝑡}∞
𝑡=0 that satisfy the following conditions:

• Each component of the price system and the allocation resides in the space 𝐿2
0.

• Given the price system and given ℎ−1, 𝑘−1, the allocation solves the representative household’s problem and the
problems of the two types of firms.

Versions of the two classical welfare theorems prevail under our assumptions.
We exploit that fact in our algorithm for computing a competitive equilibrium.
Step 1: Solve the planning problem by using dynamic programming.
The allocation (i.e., quantities) that solve the planning problem are the competitive equilibrium quantities.
Step 2: use the following formulas to compute the equilibrium price system

𝑝0
𝑡 = [Π′𝑀𝑠

𝑡 + Θ′
ℎ𝑀ℎ

𝑡]/𝜇𝑤
0 = 𝑀𝑐

𝑡 /𝜇𝑤
0

𝑤0
𝑡 =∣ 𝑆𝑔𝑥𝑡 ∣ /𝜇𝑤

0

𝑟0
𝑡 = Γ′𝑀𝑑

𝑡 /𝜇𝑤
0

𝑞0
𝑡 = Θ′

𝑘𝑀𝑘
𝑡 /𝜇𝑤

0 = 𝑀 𝑖
𝑡 /𝜇𝑤

0

𝛼0
𝑡 = 𝑀𝑑

𝑡 /𝜇𝑤
0

𝑣0 = Γ′𝑀𝑑
0 /𝜇𝑤

0 + Δ′
𝑘𝑀𝑘

0 /𝜇𝑤
0

Verification: With this price system, values can be assigned to the Lagrange multipliers for each of our three classes of
agents that cause all first-order necessary conditions to be satisfied at these prices and at the quantities associated with the
optimum of the planning problem.

16.1.23 Asset pricing

An important use of an equilibrium pricing system is to do asset pricing.
Thus, imagine that we are presented a dividend stream: {𝑦𝑡} ∈ 𝐿2

0 and want to compute the value of a perpetual claim
to this stream.
To value this asset we simply take price times quantity and add to get an asset value: 𝑎0 = 𝐸 ∑∞

𝑡=0 𝛽𝑡 𝑝0
𝑡 ⋅ 𝑦𝑡 ∣ 𝐽0.

To compute 𝑎𝑜 we proceed as follows.
We let

𝑦𝑡 = 𝑈𝑎 𝑥𝑡

𝑎0 = 𝐸
∞

∑
𝑡=0

𝛽𝑡 𝑥′
𝑡 𝑍𝑎𝑥𝑡 ∣ 𝐽0

𝑍𝑎 = 𝑈 ′
𝑎𝑀𝑐/𝜇𝑤

0

We have the following convenient formulas:

𝑎0 = 𝑥′
0 𝜇𝑎 𝑥0 + 𝜎𝑎

16.1. A Suite of Models 323

Advanced Quantitative Economics with Python

𝜇𝑎 =
∞

∑
𝜏=0

𝛽𝜏 (𝐴𝑜′)𝜏 𝑍𝑎 𝐴𝑜𝜏

𝜎𝑎 = 𝛽
1 − 𝛽 trace(𝑍𝑎

∞
∑
𝜏=0

𝛽𝜏 (𝐴𝑜)𝜏 𝐶𝐶′(𝐴𝑜′)𝜏)

16.1.24 Re-Opening Markets

We have assumed that all trading occurs once-and-for-all at time 𝑡 = 0.
If we were to re-open markets at some time 𝑡 > 0 at time 𝑡 wealth levels implicitly defined by time 0 trades, we would
obtain the same equilibrium allocation (i.e., quantities) and the following time 𝑡 price system

𝐿2
𝑡 = [{𝑦𝑠}∞

𝑠=𝑡 ∶ 𝑦𝑠 is a random variable in 𝐽𝑠 for 𝑠 ≥ 𝑡

and 𝐸
∞

∑
𝑠=𝑡

𝛽𝑠−𝑡 𝑦2
𝑠 ∣ 𝐽𝑡 < +∞].

𝑝𝑡
𝑠 = 𝑀𝑐𝑥𝑠/[̄𝑒𝑗𝑀𝑐𝑥𝑡], 𝑠 ≥ 𝑡

𝑤𝑡
𝑠 =∣ 𝑆𝑔𝑥𝑠|/[̄𝑒𝑗𝑀𝑐𝑥𝑡], 𝑠 ≥ 𝑡

𝑟𝑡
𝑠 = Γ′𝑀𝑑𝑥𝑠/[̄𝑒𝑗𝑀𝑐𝑥𝑡], 𝑠 ≥ 𝑡

𝑞𝑡
𝑠 = 𝑀𝑖𝑥𝑠/[̄𝑒𝑗 𝑀𝑐𝑥𝑡], 𝑠 ≥ 𝑡

𝛼𝑡
𝑠 = 𝑀𝑑𝑥𝑠/[̄𝑒𝑗 𝑀𝑐𝑥𝑡], 𝑠 ≥ 𝑡

𝑣𝑡 = [Γ′𝑀𝑑 + Δ′
𝑘𝑀𝑘]𝑥𝑡/ [̄𝑒𝑗 𝑀𝑐𝑥𝑡]

16.2 Econometrics

Up to now, we have described how to solve the direct problem that maps model parameters into an (equilibrium) stochas-
tic process of prices and quantities.
Recall the inverse problem of inferring model parameters from a single realization of a time series of some of the prices
and quantities.
Another name for the inverse problem is econometrics.
An advantage of the [HS13] structure is that it comes with a self-contained theory of econometrics.
It is really just a tale of two state-space representations.
Here they are:
Original State-Space Representation:

𝑥𝑡+1 = 𝐴𝑜𝑥𝑡 + 𝐶𝑤𝑡+1
𝑦𝑡 = 𝐺𝑥𝑡 + 𝑣𝑡

where 𝑣𝑡 is a martingale difference sequence of measurement errors that satisfies 𝐸𝑣𝑡𝑣′
𝑡 = 𝑅, 𝐸𝑤𝑡+1𝑣′

𝑠 = 0 for all
𝑡 + 1 ≥ 𝑠 and

𝑥0 ∼ 𝒩(̂𝑥0, Σ0)

324 Chapter 16. Recursive Models of Dynamic Linear Economies

Advanced Quantitative Economics with Python

Innovations Representation:

̂𝑥𝑡+1 = 𝐴𝑜 ̂𝑥𝑡 + 𝐾𝑡𝑎𝑡
𝑦𝑡 = 𝐺 ̂𝑥𝑡 + 𝑎𝑡,

where 𝑎𝑡 = 𝑦𝑡 − 𝐸[𝑦𝑡|𝑦𝑡−1], 𝐸𝑎𝑡𝑎′
𝑡 ≡ Ω𝑡 = 𝐺Σ𝑡𝐺′ + 𝑅.

Compare numbers of shocks in the two representations:
• 𝑛𝑤 + 𝑛𝑦 versus 𝑛𝑦

Compare spaces spanned
• 𝐻(𝑦𝑡) ⊂ 𝐻(𝑤𝑡, 𝑣𝑡)
• 𝐻(𝑦𝑡) = 𝐻(𝑎𝑡)

Kalman Filter:.
Kalman gain:

𝐾𝑡 = 𝐴𝑜Σ𝑡𝐺′(𝐺Σ𝑡𝐺′ + 𝑅)−1

Riccati Difference Equation:

Σ𝑡+1 = 𝐴𝑜Σ𝑡𝐴𝑜′ + 𝐶𝐶′

− 𝐴𝑜Σ𝑡𝐺′(𝐺Σ𝑡𝐺′ + 𝑅)−1𝐺Σ𝑡𝐴𝑜′

Innovations Representation as Whitener
Whitening Filter:

𝑎𝑡 = 𝑦𝑡 − 𝐺 ̂𝑥𝑡
̂𝑥𝑡+1 = 𝐴𝑜 ̂𝑥𝑡 + 𝐾𝑡𝑎𝑡

can be used recursively to construct a record of innovations {𝑎𝑡}𝑇
𝑡=0 from an (̂𝑥0, Σ0) and a record of observations

{𝑦𝑡}𝑇
𝑡=0.

Limiting Time-Invariant Innovations Representation

Σ = 𝐴𝑜Σ𝐴𝑜′ + 𝐶𝐶′

− 𝐴𝑜Σ𝐺′(𝐺Σ𝐺′ + 𝑅)−1𝐺Σ𝐴𝑜′

𝐾 = 𝐴𝑜Σ𝑡𝐺′(𝐺Σ𝐺′ + 𝑅)−1

̂𝑥𝑡+1 = 𝐴𝑜 ̂𝑥𝑡 + 𝐾𝑎𝑡
𝑦𝑡 = 𝐺 ̂𝑥𝑡 + 𝑎𝑡

where 𝐸𝑎𝑡𝑎′
𝑡 ≡ Ω = 𝐺Σ𝐺′ + 𝑅.

16.2.1 Factorization of Likelihood Function

Sample of observations {𝑦𝑠}𝑇
𝑠=0 on a (𝑛𝑦 × 1) vector.

𝑓(𝑦𝑇 , 𝑦𝑇 −1, … , 𝑦0) = 𝑓𝑇 (𝑦𝑇 |𝑦𝑇 −1, … , 𝑦0)𝑓𝑇 −1(𝑦𝑇 −1|𝑦𝑇 −2, … , 𝑦0) ⋯ 𝑓1(𝑦1|𝑦0)𝑓0(𝑦0)
= 𝑔𝑇 (𝑎𝑇)𝑔𝑇 −1(𝑎𝑇 −1) … 𝑔1(𝑎1)𝑓0(𝑦0).

Gaussian Log-Likelihood:

−.5
𝑇

∑
𝑡=0

{𝑛𝑦 ln(2𝜋) + ln |Ω𝑡| + 𝑎′
𝑡Ω−1

𝑡 𝑎𝑡}

16.2. Econometrics 325

Advanced Quantitative Economics with Python

16.2.2 Covariance Generating Functions

Autocovariance: 𝐶𝑥(𝜏) = 𝐸𝑥𝑡𝑥′
𝑡−𝜏 .

Generating Function: 𝑆𝑥(𝑧) = ∑∞
𝜏=−∞ 𝐶𝑥(𝜏)𝑧𝜏 , 𝑧 ∈ 𝐶.

16.2.3 Spectral Factorization Identity

Original state-space representation has too many shocks and implies:

𝑆𝑦(𝑧) = 𝐺(𝑧𝐼 − 𝐴𝑜)−1𝐶𝐶′(𝑧−1𝐼 − (𝐴𝑜)′)−1𝐺′ + 𝑅

Innovations representation has as many shocks as dimension of 𝑦𝑡 and implies

𝑆𝑦(𝑧) = [𝐺(𝑧𝐼 − 𝐴𝑜)−1𝐾 + 𝐼][𝐺Σ𝐺′ + 𝑅][𝐾′(𝑧−1𝐼 − 𝐴𝑜′)−1𝐺′ + 𝐼]

Equating these two leads to:

𝐺(𝑧𝐼 − 𝐴𝑜)−1𝐶𝐶′(𝑧−1𝐼 − 𝐴𝑜′)−1𝐺′ + 𝑅 =
[𝐺(𝑧𝐼 − 𝐴𝑜)−1𝐾 + 𝐼][𝐺Σ𝐺′ + 𝑅][𝐾′(𝑧−1𝐼 − 𝐴𝑜′)−1𝐺′ + 𝐼].

Key Insight: The zeros of the polynomial det[𝐺(𝑧𝐼 − 𝐴𝑜)−1𝐾 + 𝐼] all lie inside the unit circle, which means that 𝑎𝑡
lies in the space spanned by square summable linear combinations of 𝑦𝑡.

𝐻(𝑎𝑡) = 𝐻(𝑦𝑡)

Key Property: Invertibility

16.2.4 Wold and Vector Autoregressive Representations

Let’s start with some lag operator arithmetic.
The lag operator 𝐿 and the inverse lag operator 𝐿−1 each map an infinite sequence into an infinite sequence according to
the transformation rules

𝐿𝑥𝑡 ≡ 𝑥𝑡−1

𝐿−1𝑥𝑡 ≡ 𝑥𝑡+1

AWold moving average representation for {𝑦𝑡} is

𝑦𝑡 = [𝐺(𝐼 − 𝐴𝑜𝐿)−1𝐾𝐿 + 𝐼]𝑎𝑡

Applying the inverse of the operator on the right side and using

[𝐺(𝐼 − 𝐴𝑜𝐿)−1𝐾𝐿 + 𝐼]−1 = 𝐼 − 𝐺[𝐼 − (𝐴𝑜 − 𝐾𝐺)𝐿]−1𝐾𝐿

gives the vector autoregressive representation

𝑦𝑡 =
∞

∑
𝑗=1

𝐺(𝐴𝑜 − 𝐾𝐺)𝑗−1𝐾𝑦𝑡−𝑗 + 𝑎𝑡

326 Chapter 16. Recursive Models of Dynamic Linear Economies

Advanced Quantitative Economics with Python

16.3 Dynamic Demand Curves and Canonical Household Technolo-
gies

16.3.1 Canonical Household Technologies

ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡
𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡
𝑏𝑡 = 𝑈𝑏𝑧𝑡

Definition: A household service technology (Δℎ, Θℎ, Π, Λ, 𝑈𝑏) is said to be canonical if
• Π is nonsingular, and
• the absolute values of the eigenvalues of (Δℎ − ΘℎΠ−1Λ) are strictly less than 1/√𝛽.

Key invertibility property: A canonical household service technology maps a service process {𝑠𝑡} in 𝐿2
0 into a corre-

sponding consumption process {𝑐𝑡} for which the implied household capital stock process {ℎ𝑡} is also in 𝐿2
0.

An inverse household technology:

𝑐𝑡 = −Π−1Λℎ𝑡−1 + Π−1𝑠𝑡
ℎ𝑡 = (Δℎ − ΘℎΠ−1Λ)ℎ𝑡−1 + ΘℎΠ−1𝑠𝑡

The restriction on the eigenvalues of the matrix (Δℎ − ΘℎΠ−1Λ) keeps the household capital stock {ℎ𝑡} in 𝐿2
0.

16.3.2 Dynamic Demand Functions

𝜌0
𝑡 ≡ Π−1′[𝑝0

𝑡 − Θ′
ℎ𝐸𝑡

∞
∑
𝜏=1

𝛽𝜏(Δ′
ℎ − Λ′Π−1′Θ′

ℎ)𝜏−1Λ′Π−1′𝑝0
𝑡+𝜏]

𝑠𝑖,𝑡 = Λℎ𝑖,𝑡−1
ℎ𝑖,𝑡 = Δℎℎ𝑖,𝑡−1

where ℎ𝑖,−1 = ℎ−1.

𝑊0 = 𝐸0
∞

∑
𝑡=0

𝛽𝑡(𝑤0
𝑡 ℓ𝑡 + 𝛼0

𝑡 ⋅ 𝑑𝑡) + 𝑣0 ⋅ 𝑘−1

𝜇𝑤
0 = 𝐸0 ∑∞

𝑡=0 𝛽𝑡𝜌0
𝑡 ⋅ (𝑏𝑡 − 𝑠𝑖,𝑡) − 𝑊0

𝐸0 ∑∞
𝑡=0 𝛽𝑡𝜌0

𝑡 ⋅ 𝜌0
𝑡

𝑐𝑡 = −Π−1Λℎ𝑡−1 + Π−1𝑏𝑡 − Π−1𝜇𝑤
0 𝐸𝑡{Π′ −1 − Π′ −1Θ′

ℎ
[𝐼 − (Δ′

ℎ − Λ′Π′ −1Θ′
ℎ)𝛽𝐿−1]−1Λ′Π′−1𝛽𝐿−1}𝑝0

𝑡
ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

This system expresses consumption demands at date 𝑡 as functions of: (i) time-𝑡 conditional expectations of future scaled
Arrow-Debreu prices {𝑝0

𝑡+𝑠}∞
𝑠=0; (ii) the stochastic process for the household’s endowment {𝑑𝑡} and preference shock

{𝑏𝑡}, as mediated through the multiplier 𝜇𝑤
0 and wealth 𝑊0; and (iii) past values of consumption, as mediated through

the state variable ℎ𝑡−1.

16.3. Dynamic Demand Curves and Canonical Household Technologies 327

Advanced Quantitative Economics with Python

16.4 Gorman Aggregation and Engel Curves

We shall explore how the dynamic demand schedule for consumption goods opens up the possibility of satisfyingGorman’s
(1953) conditions for aggregation in a heterogeneous consumer model.
The first equation of our demand system is an Engel curve for consumption that is linear in the marginal utility 𝜇2

0 of
individual wealth with a coefficient on 𝜇𝑤

0 that depends only on prices.
The multiplier 𝜇𝑤

0 depends on wealth in an affine relationship, so that consumption is linear in wealth.
In a model with multiple consumers who have the same household technologies (Δℎ, Θℎ, Λ, Π) but possibly different
preference shock processes and initial values of household capital stocks, the coefficient on the marginal utility of wealth
is the same for all consumers.
Gorman showed that when Engel curves satisfy this property, there exists a unique community or aggregate preference
ordering over aggregate consumption that is independent of the distribution of wealth.

16.4.1 Re-Opened Markets

𝜌𝑡
𝑡 ≡ Π−1′[𝑝𝑡

𝑡 − Θ′
ℎ𝐸𝑡

∞
∑
𝜏=1

𝛽𝜏(Δ′
ℎ − Λ′Π−1′Θ′

ℎ)𝜏−1Λ′Π−1′𝑝𝑡
𝑡+𝜏]

𝑠𝑖,𝑡 = Λℎ𝑖,𝑡−1
ℎ𝑖,𝑡 = Δℎℎ𝑖,𝑡−1,

where now ℎ𝑖,𝑡−1 = ℎ𝑡−1. Define time 𝑡 wealth 𝑊𝑡

𝑊𝑡 = 𝐸𝑡
∞

∑
𝑗=0

𝛽𝑗(𝑤𝑡
𝑡+𝑗ℓ𝑡+𝑗 + 𝛼𝑡

𝑡+𝑗 ⋅ 𝑑𝑡+𝑗) + 𝑣𝑡 ⋅ 𝑘𝑡−1

𝜇𝑤
𝑡 =

𝐸𝑡 ∑∞
𝑗=0 𝛽𝑗𝜌𝑡

𝑡+𝑗 ⋅ (𝑏𝑡+𝑗 − 𝑠𝑖,𝑡+𝑗) − 𝑊𝑡

𝐸𝑡 ∑∞
𝑡=0 𝛽𝑗𝜌𝑡

𝑡+𝑗 ⋅ 𝜌𝑡
𝑡+𝑗

𝑐𝑡 = −Π−1Λℎ𝑡−1 + Π−1𝑏𝑡 − Π−1𝜇𝑤
𝑡 𝐸𝑡{Π′ −1 − Π′ −1Θ′

ℎ
[𝐼 − (Δ′

ℎ − Λ′Π′ −1Θ′
ℎ)𝛽𝐿−1]−1Λ′Π′−1𝛽𝐿−1}𝑝𝑡

𝑡
ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

16.4.2 Dynamic Demand

Define a time 𝑡 continuation of a sequence {𝑧𝑡}∞
𝑡=0 as the sequence {𝑧𝜏}∞

𝜏=𝑡. The demand system indicates that the time
𝑡 vector of demands for 𝑐𝑡 is influenced by:
Through the multiplier 𝜇𝑤

𝑡 , the time 𝑡 continuation of the preference shock process {𝑏𝑡} and the time 𝑡 continuation of
{𝑠𝑖,𝑡}.
The time 𝑡 − 1 level of household durables ℎ𝑡−1.
Everything that affects the household’s time 𝑡 wealth, including its stock of physical capital 𝑘𝑡−1 and its value 𝑣𝑡, the
time 𝑡 continuation of the factor prices {𝑤𝑡, 𝛼𝑡}, the household’s continuation endowment process, and the household’s
continuation plan for {ℓ𝑡}.
The time 𝑡 continuation of the vector of prices {𝑝𝑡

𝑡}.

328 Chapter 16. Recursive Models of Dynamic Linear Economies

Advanced Quantitative Economics with Python

16.4.3 Attaining a Canonical Household Technology

Apply the following version of a factorization identity:

[Π + 𝛽1/2𝐿−1Λ(𝐼 − 𝛽1/2𝐿−1Δℎ)−1Θℎ]′[Π + 𝛽1/2𝐿Λ(𝐼 − 𝛽1/2𝐿Δℎ)−1Θℎ]
= [Π̂ + 𝛽1/2𝐿−1Λ̂(𝐼 − 𝛽1/2𝐿−1Δℎ)−1Θℎ]′[Π̂ + 𝛽1/2𝐿Λ̂(𝐼 − 𝛽1/2𝐿Δℎ)−1Θℎ]

The factorization identity guarantees that the [Λ̂, Π̂] representation satisfies both requirements for a canonical represen-
tation.

16.5 Partial Equilibrium

Now we’ll provide quick overviews of examples of economies that fit within our framework
We provide details for a number of these examples in subsequent lectures

1. Growth in Dynamic Linear Economies

2. Lucas Asset Pricing using DLE

3. IRFs in Hall Model

4. Permanent Income Using the DLE class

5. Rosen schooling model

6. Cattle cycles

7. Shock Non Invertibility

We’ll start with an example of a partial equilibrium in which we posit demand and supply curves
Suppose that we want to capture the dynamic demand curve:

𝑐𝑡 = −Π−1Λℎ𝑡−1 + Π−1𝑏𝑡 − Π−1𝜇𝑤
0 𝐸𝑡{Π′ −1 − Π′ −1Θ′

ℎ
[𝐼 − (Δ′

ℎ − Λ′Π′ −1Θ′
ℎ)𝛽𝐿−1]−1Λ′Π′−1𝛽𝐿−1}𝑝𝑡

ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

From material described earlier in this lecture, we know how to reverse engineer preferences that generate this demand
system

• note how the demand equations are cast in terms of the matrices in our standard preference representation
Now let’s turn to supply.
A representative firm takes as given and beyond its control the stochastic process {𝑝𝑡}∞

𝑡=0.
The firm sells its output 𝑐𝑡 in a competitive market each period.
Only spot markets convene at each date 𝑡 ≥ 0.
The firm also faces an exogenous process of cost disturbances 𝑑𝑡.
The firm chooses stochastic processes {𝑐𝑡, 𝑔𝑡, 𝑖𝑡, 𝑘𝑡}∞

𝑡=0 to maximize

𝐸0
∞

∑
𝑡=0

𝛽𝑡{𝑝𝑡 ⋅ 𝑐𝑡 − 𝑔𝑡 ⋅ 𝑔𝑡/2}

subject to given 𝑘−1 and

Φ𝑐𝑐𝑡 + Φ𝑖𝑖𝑡 + Φ𝑔𝑔𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡
𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡.

16.5. Partial Equilibrium 329

Advanced Quantitative Economics with Python

16.6 Equilibrium Investment Under Uncertainty

A representative firm maximizes

𝐸
∞

∑
𝑡=0

𝛽𝑡{𝑝𝑡𝑐𝑡 − 𝑔2
𝑡 /2}

subject to the technology

𝑐𝑡 = 𝛾𝑘𝑡−1
𝑘𝑡 = 𝛿𝑘𝑘𝑡−1 + 𝑖𝑡
𝑔𝑡 = 𝑓1𝑖𝑡 + 𝑓2𝑑𝑡

where 𝑑𝑡 is a cost shifter, 𝛾 > 0, and 𝑓1 > 0 is a cost parameter and 𝑓2 = 1. Demand is governed by

𝑝𝑡 = 𝛼0 − 𝛼1𝑐𝑡 + 𝑢𝑡

where 𝑢𝑡 is a demand shifter with mean zero and 𝛼0, 𝛼1 are positive parameters.
Assume that 𝑢𝑡, 𝑑𝑡 are uncorrelated first-order autoregressive processes.

16.7 A Rosen-Topel Housing Model

𝑅𝑡 = 𝑏𝑡 + 𝛼ℎ𝑡

𝑝𝑡 = 𝐸𝑡
∞

∑
𝜏=0

(𝛽𝛿ℎ)𝜏𝑅𝑡+𝜏

where ℎ𝑡 is the stock of housing at time 𝑡 𝑅𝑡 is the rental rate for housing, 𝑝𝑡 is the price of new houses, and 𝑏𝑡 is a
demand shifter; 𝛼 < 0 is a demand parameter, and 𝛿ℎ is a depreciation factor for houses.
We cast this demand specification within our class of models by letting the stock of houses ℎ𝑡 evolve according to

ℎ𝑡 = 𝛿ℎℎ𝑡−1 + 𝑐𝑡, 𝛿ℎ ∈ (0, 1)

where 𝑐𝑡 is the rate of production of new houses.
Houses produce services 𝑠𝑡 according to 𝑠𝑡 = �̄�ℎ𝑡 or 𝑠𝑡 = 𝜆ℎ𝑡−1 + 𝜋𝑐𝑡, where 𝜆 = �̄�𝛿ℎ, 𝜋 = �̄�.
We can take �̄�𝜌0

𝑡 = 𝑅𝑡 as the rental rate on housing at time 𝑡, measured in units of time 𝑡 consumption (housing).
Demand for housing services is

𝑠𝑡 = 𝑏𝑡 − 𝜇0𝜌0
𝑡

where the price of new houses 𝑝𝑡 is related to 𝜌0
𝑡 by 𝜌0

𝑡 = 𝜋−1[𝑝𝑡 − 𝛽𝛿ℎ𝐸𝑡𝑝𝑡+1].

16.8 Cattle Cycles

Rosen, Murphy, and Scheinkman (1994). Let 𝑝𝑡 be the price of freshly slaughtered beef,𝑚𝑡 the feeding cost of preparing
an animal for slaughter, ℎ̃𝑡 the one-period holding cost for amature animal, 𝛾1ℎ̃𝑡 the one-period holding cost for a yearling,
and 𝛾0ℎ̃𝑡 the one-period holding cost for a calf.

The cost processes {ℎ̃𝑡, 𝑚𝑡}∞
𝑡=0 are exogenous, while the stochastic process {𝑝𝑡}∞

𝑡=0 is determined by a rational expec-
tations equilibrium. Let ̃𝑥𝑡 be the breeding stock, and ̃𝑦𝑡 be the total stock of animals.

330 Chapter 16. Recursive Models of Dynamic Linear Economies

Advanced Quantitative Economics with Python

The law of motion for cattle stocks is

̃𝑥𝑡 = (1 − 𝛿) ̃𝑥𝑡−1 + 𝑔 ̃𝑥𝑡−3 − 𝑐𝑡

where 𝑐𝑡 is a rate of slaughtering. The total head-count of cattle

̃𝑦𝑡 = ̃𝑥𝑡 + 𝑔 ̃𝑥𝑡−1 + 𝑔 ̃𝑥𝑡−2

is the sum of adults, calves, and yearlings, respectively.
A representative farmer chooses {𝑐𝑡, ̃𝑥𝑡} to maximize

𝐸0
∞

∑
𝑡=0

𝛽𝑡{𝑝𝑡𝑐𝑡 − ℎ̃𝑡 ̃𝑥𝑡 − (𝛾0ℎ̃𝑡)(𝑔 ̃𝑥𝑡−1) − (𝛾1ℎ̃𝑡)(𝑔 ̃𝑥𝑡−2) − 𝑚𝑡𝑐𝑡

− Ψ(̃𝑥𝑡, ̃𝑥𝑡−1, ̃𝑥𝑡−2, 𝑐𝑡)}
where

Ψ = 𝜓1
2 ̃𝑥2

𝑡 + 𝜓2
2 ̃𝑥2

𝑡−1 + 𝜓3
2 ̃𝑥2

𝑡−2 + 𝜓4
2 𝑐2

𝑡

Demand is governed by

𝑐𝑡 = 𝛼0 − 𝛼1𝑝𝑡 + ̃𝑑𝑡

where 𝛼0 > 0, 𝛼1 > 0, and { ̃𝑑𝑡}∞
𝑡=0 is a stochastic process with mean zero representing a demand shifter.

For more details see Cattle cycles

16.9 Models of Occupational Choice and Pay

We’ll describe the following pair of schooling models that view education as a time-to-build process:
• Rosen schooling model for engineers
• Two-occupation model

16.9.1 Market for Engineers

Ryoo and Rosen’s (2004) [RR04] model consists of the following equations:
first, a demand curve for engineers

𝑤𝑡 = −𝛼𝑑𝑁𝑡 + 𝜖1𝑡 , 𝛼𝑑 > 0

second, a time-to-build structure of the education process

𝑁𝑡+𝑘 = 𝛿𝑁𝑁𝑡+𝑘−1 + 𝑛𝑡 , 0 < 𝛿𝑁 < 1

third, a definition of the discounted present value of each new engineering student

𝑣𝑡 = 𝛽𝑘𝐸𝑡
∞

∑
𝑗=0

(𝛽𝛿𝑁)𝑗𝑤𝑡+𝑘+𝑗;

and fourth, a supply curve of new students driven by 𝑣𝑡

𝑛𝑡 = 𝛼𝑠𝑣𝑡 + 𝜖2𝑡 , 𝛼𝑠 > 0

16.9. Models of Occupational Choice and Pay 331

Advanced Quantitative Economics with Python

Here {𝜖1𝑡, 𝜖2𝑡} are stochastic processes of labor demand and supply shocks.
Definition: A partial equilibrium is a stochastic process {𝑤𝑡, 𝑁𝑡, 𝑣𝑡, 𝑛𝑡}∞

𝑡=0 satisfying these four equations, and initial
conditions 𝑁−1, 𝑛−𝑠, 𝑠 = 1, … , −𝑘.
We sweep the time-to-build structure and the demand for engineers into the household technology and putting the supply
of new engineers into the technology for producing goods.

𝑠𝑡 = [𝜆1 0 … 0]
⎡
⎢⎢
⎣

ℎ1𝑡−1
ℎ2𝑡−1

⋮
ℎ𝑘+1,𝑡−1

⎤
⎥⎥
⎦

+ 0 ⋅ 𝑐𝑡

⎡
⎢
⎢
⎢
⎣

ℎ1𝑡
ℎ2𝑡
⋮

ℎ𝑘,𝑡
ℎ𝑘+1,𝑡

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝛿𝑁 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ ⋯ 0 1
0 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

ℎ1𝑡−1
ℎ2𝑡−1

⋮
ℎ𝑘,𝑡−1

ℎ𝑘+1,𝑡−1

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

0
0
⋮
0
1

⎤
⎥
⎥
⎥
⎦

𝑐𝑡

This specification sets Rosen’s𝑁𝑡 = ℎ1𝑡−1, 𝑛𝑡 = 𝑐𝑡, ℎ𝜏+1,𝑡−1 = 𝑛𝑡−𝜏 , 𝜏 = 1, … , 𝑘, and uses the home-produced service
to capture the demand for labor. Here 𝜆1 embodies Rosen’s demand parameter 𝛼𝑑.

• The supply of new workers becomes our consumption.
• The dynamic demand curve becomes Rosen’s dynamic supply curve for new workers.

Remark: This has an Imai-Keane flavor.
For more details and Python code see Rosen schooling model.

16.9.2 Skilled and Unskilled Workers

First, a demand curve for labor

[𝑤𝑢𝑡
𝑤𝑠𝑡

] = 𝛼𝑑 [𝑁𝑢𝑡
𝑁𝑠𝑡

] + 𝜖1𝑡

where 𝛼𝑑 is a (2 × 2) matrix of demand parameters and 𝜖1𝑡 is a vector of demand shifters second, time-to-train specifi-
cations for skilled and unskilled labor, respectively:

𝑁𝑠𝑡+𝑘 = 𝛿𝑁𝑁𝑠𝑡+𝑘−1 + 𝑛𝑠𝑡
𝑁𝑢𝑡 = 𝛿𝑁𝑁𝑢𝑡−1 + 𝑛𝑢𝑡;

where 𝑁𝑠𝑡, 𝑁𝑢𝑡 are stocks of the two types of labor, and 𝑛𝑠𝑡, 𝑛𝑢𝑡 are entry rates into the two occupations.
third, definitions of discounted present values of new entrants to the skilled and unskilled occupations, respectively:

𝑣𝑠𝑡 = 𝐸𝑡𝛽𝑘
∞

∑
𝑗=0

(𝛽𝛿𝑁)𝑗𝑤𝑠𝑡+𝑘+𝑗

𝑣𝑢𝑡 = 𝐸𝑡
∞

∑
𝑗=0

(𝛽𝛿𝑁)𝑗𝑤𝑢𝑡+𝑗

where 𝑤𝑢𝑡, 𝑤𝑠𝑡 are wage rates for the two occupations; and fourth, supply curves for new entrants:

[𝑛𝑠𝑡
𝑛𝑢𝑡

] = 𝛼𝑠 [𝑣𝑢𝑡
𝑣𝑠𝑡

] + 𝜖2𝑡

Short Cut
As an alternative, Siow simply used the equalizing differences condition

𝑣𝑢𝑡 = 𝑣𝑠𝑡

332 Chapter 16. Recursive Models of Dynamic Linear Economies

Advanced Quantitative Economics with Python

16.10 Permanent Income Models

We’ll describe a class of permanent income models that feature
• Many consumption goods and services
• A single capital good with 𝑅𝛽 = 1
• The physical production technology

𝜙𝑐 ⋅ 𝑐𝑡 + 𝑖𝑡 = 𝛾𝑘𝑡−1 + 𝑒𝑡
𝑘𝑡 = 𝑘𝑡−1 + 𝑖𝑡

𝜙𝑖𝑖𝑡 − 𝑔𝑡 = 0
Implication One:
Equality of Present Values of Moving Average Coefficients of 𝑐 and 𝑒

𝑘𝑡−1 = 𝛽
∞

∑
𝑗=0

𝛽𝑗(𝜙𝑐 ⋅ 𝑐𝑡+𝑗 − 𝑒𝑡+𝑗) ⇒

𝑘𝑡−1 = 𝛽
∞

∑
𝑗=0

𝛽𝑗𝐸(𝜙𝑐 ⋅ 𝑐𝑡+𝑗 − 𝑒𝑡+𝑗)|𝐽𝑡 ⇒

∞
∑
𝑗=0

𝛽𝑗(𝜙𝑐)′𝜒𝑗 =
∞

∑
𝑗=0

𝛽𝑗𝜖𝑗

where 𝜒𝑗𝑤𝑡 is the response of 𝑐𝑡+𝑗 to 𝑤𝑡 and 𝜖𝑗𝑤𝑡 is the response of endowment 𝑒𝑡+𝑗 to 𝑤𝑡:
Implication Two:
Martingales

ℳ𝑘
𝑡 = 𝐸(ℳ𝑘

𝑡+1|𝐽𝑡)
ℳ𝑒

𝑡 = 𝐸(ℳ𝑒
𝑡+1|𝐽𝑡)

and

ℳ𝑐
𝑡 = (Φ𝑐)′ℳ𝑑

𝑡 = 𝜙𝑐𝑀𝑒
𝑡

For more details see Permanent Income Using the DLE class

Testing Permanent Income Models:
We have two types of implications of permanent income models:

• Equality of present values of moving average coefficients.
• Martingale ℳ𝑘

𝑡 .
These have been tested in work by Hansen, Sargent, and Roberts (1991) [SHR91] and by Attanasio and Pavoni (2011)
[AP11].

16.10. Permanent Income Models 333

Advanced Quantitative Economics with Python

16.11 Gorman Heterogeneous Households

We now assume that there is a finite number of households, each with its own household technology and preferences over
consumption services.
Household 𝑗 orders preferences over consumption processes according to

− (1
2) 𝐸

∞
∑
𝑡=0

𝛽𝑡 [(𝑠𝑗𝑡 − 𝑏𝑗𝑡) ⋅ (𝑠𝑗𝑡 − 𝑏𝑗𝑡) + ℓ2
𝑗𝑡] ∣ 𝐽0

𝑠𝑗𝑡 = Λ ℎ𝑗,𝑡−1 + Π 𝑐𝑗𝑡

ℎ𝑗𝑡 = Δℎ ℎ𝑗,𝑡−1 + Θℎ 𝑐𝑗𝑡

and ℎ𝑗,−1 is given

𝑏𝑗𝑡 = 𝑈𝑏𝑗𝑧𝑡

𝐸
∞

∑
𝑡=0

𝛽𝑡 𝑝0
𝑡 ⋅ 𝑐𝑗𝑡 ∣ 𝐽0 = 𝐸

∞
∑
𝑡=0

𝛽𝑡 (𝑤0
𝑡 ℓ𝑗𝑡 + 𝛼0

𝑡 ⋅ 𝑑𝑗𝑡) ∣ 𝐽0 + 𝑣0 ⋅ 𝑘𝑗,−1,

where 𝑘𝑗,−1 is given. The 𝑗th consumer owns an endowment process 𝑑𝑗𝑡, governed by the stochastic process 𝑑𝑗𝑡 = 𝑈𝑑𝑗 𝑧𝑡.
We refer to this as a setting with Gorman heterogeneous households.
This specification confines heterogeneity among consumers to:

• differences in the preference processes {𝑏𝑗𝑡}, represented by different selections of 𝑈𝑏𝑗

• differences in the endowment processes {𝑑𝑗𝑡}, represented by different selections of 𝑈𝑑𝑗

• differences in ℎ𝑗,−1 and
• differences in 𝑘𝑗,−1

The matrices Λ, Π, Δℎ, Θℎ do not depend on 𝑗.
This makes everybody’s demand system have the form described earlier, with different 𝜇𝑤

𝑗0’s (reflecting different wealth
levels) and different 𝑏𝑗𝑡 preference shock processes and initial conditions for household capital stocks.
Punchline: there exists a representative consumer.
We can use the representative consumer to compute a competitive equilibrium aggregate allocation and price system.
With the equilibrium aggregate allocation and price system in hand, we can then compute allocations to each household.
Computing Allocations to Individuals:
Set

ℓ𝑗𝑡 = (𝜇𝑤
0𝑗/𝜇𝑤

0𝑎)ℓ𝑎𝑡

Then solve the following equation for 𝜇𝑤
0𝑗:

𝜇𝑤
0𝑗𝐸0

∞
∑
𝑡=0

𝛽𝑡{𝜌0
𝑡 ⋅ 𝜌0

𝑡 + (𝑤0
𝑡 /𝜇𝑤

0𝑎)ℓ𝑎𝑡} = 𝐸0
∞

∑
𝑡=0

𝛽𝑡{𝜌0
𝑡 ⋅ (𝑏𝑗𝑡 − 𝑠𝑖

𝑗𝑡) − 𝛼0
𝑡 ⋅ 𝑑𝑗𝑡} − 𝑣0𝑘𝑗,−1

𝑠𝑗𝑡 − 𝑏𝑗𝑡 = 𝜇𝑤
0𝑗𝜌0

𝑡

𝑐𝑗𝑡 = −Π−1Λℎ𝑗,𝑡−1 + Π−1𝑠𝑗𝑡
ℎ𝑗𝑡 = (Δℎ − ΘℎΠ−1Λ)ℎ𝑗,𝑡−1 + Π−1Θℎ𝑠𝑗𝑡

Here ℎ𝑗,−1 given.

334 Chapter 16. Recursive Models of Dynamic Linear Economies

Advanced Quantitative Economics with Python

16.12 Non-Gorman Heterogeneous Households

We now describe a less tractable type of heterogeneity across households that we dub Non-Gorman heterogeneity.
Here is the specification:
Preferences and Household Technologies:

−1
2𝐸

∞
∑
𝑡=0

𝛽𝑡 [(𝑠𝑖𝑡 − 𝑏𝑖𝑡) ⋅ (𝑠𝑖𝑡 − 𝑏𝑖𝑡) + ℓ2
𝑖𝑡] ∣ 𝐽0

𝑠𝑖𝑡 = Λ𝑖ℎ𝑖𝑡−1 + Π𝑖 𝑐𝑖𝑡
ℎ𝑖𝑡 = Δℎ𝑖

ℎ𝑖𝑡−1 + Θℎ𝑖
𝑐𝑖𝑡 , 𝑖 = 1, 2.

𝑏𝑖𝑡 = 𝑈𝑏𝑖𝑧𝑡

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1

Production Technology

Φ𝑐(𝑐1𝑡 + 𝑐2𝑡) + Φ𝑔𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑1𝑡 + 𝑑2𝑡

𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡

𝑔𝑡 ⋅ 𝑔𝑡 = ℓ2
𝑡 , ℓ𝑡 = ℓ1𝑡 + ℓ2𝑡

𝑑𝑖𝑡 = 𝑈𝑑𝑖
𝑧𝑡, 𝑖 = 1, 2

Pareto Problem:

− 1
2 𝜆𝐸0

∞
∑
𝑡=0

𝛽𝑡[(𝑠1𝑡 − 𝑏1𝑡) ⋅ (𝑠1𝑡 − 𝑏1𝑡) + ℓ2
1𝑡]

− 1
2 (1 − 𝜆)𝐸0

∞
∑
𝑡=0

𝛽𝑡[(𝑠2𝑡 − 𝑏2𝑡) ⋅ (𝑠2𝑡 − 𝑏2𝑡) + ℓ2
2𝑡]

Mongrel Aggregation: Static
There is what we call a kind ofmongrel aggregation in this setting.
We first describe the idea within a simple static setting in which there is a single consumer static inverse demand with
implied preferences:

𝑐𝑡 = Π−1𝑏𝑡 − 𝜇0Π−1Π−1′𝑝𝑡

An inverse demand curve is

𝑝𝑡 = 𝜇−1
0 Π′𝑏𝑡 − 𝜇−1

0 Π′Π𝑐𝑡

Integrating the marginal utility vector shows that preferences can be taken to be

(−2𝜇0)−1(Π𝑐𝑡 − 𝑏𝑡) ⋅ (Π𝑐𝑡 − 𝑏𝑡)

Key Insight: Factor the inverse of a ‘covariance matrix’.
Now assume that there are two consumers, 𝑖 = 1, 2, with demand curves

𝑐𝑖𝑡 = Π−1
𝑖 𝑏𝑖𝑡 − 𝜇0𝑖Π−1

𝑖 Π−1′
𝑖 𝑝𝑡

16.12. Non-Gorman Heterogeneous Households 335

Advanced Quantitative Economics with Python

𝑐1𝑡 + 𝑐2𝑡 = (Π−1
1 𝑏1𝑡 + Π−1

2 𝑏2𝑡) − (𝜇01Π−1
1 Π−1′

1 + 𝜇02Π2Π−1′
2)𝑝𝑡

Setting 𝑐1𝑡 + 𝑐2𝑡 = 𝑐𝑡 and solving for 𝑝𝑡 gives

𝑝𝑡 = (𝜇01Π−1
1 Π−1′

1 + 𝜇02Π−1
2 Π−1′

2)−1(Π−1
1 𝑏1𝑡 + Π−1

2 𝑏2𝑡)
− (𝜇01Π−1

1 Π−1′
1 + 𝜇02Π−1

2 Π−1′
2)−1𝑐𝑡

Punchline: choose Π associated with the aggregate ordering to satisfy

𝜇−1
0 Π′Π = (𝜇01Π−1

1 Π−1′
2 + 𝜇02Π−1

2 Π−1′
2)−1

Dynamic Analogue:
We now describe how to extend mongrel aggregation to a dynamic setting.
The key comparison is

• Static: factor a covariance matrix-like object
• Dynamic: factor a spectral-density matrix-like object

Programming Problem for Dynamic Mongrel Aggregation:
Our strategy for deducing the mongrel preference ordering over 𝑐𝑡 = 𝑐1𝑡 + 𝑐2𝑡 is to solve the programming problem:
choose {𝑐1𝑡, 𝑐2𝑡} to maximize the criterion

∞
∑
𝑡=0

𝛽𝑡[𝜆(𝑠1𝑡 − 𝑏1𝑡) ⋅ (𝑠1𝑡 − 𝑏1𝑡) + (1 − 𝜆)(𝑠2𝑡 − 𝑏2𝑡) ⋅ (𝑠2𝑡 − 𝑏2𝑡)]

subject to

ℎ𝑗𝑡 = Δℎ𝑗 ℎ𝑗𝑡−1 + Θℎ𝑗 𝑐𝑗𝑡, 𝑗 = 1, 2
𝑠𝑗𝑡 = Δ𝑗ℎ𝑗𝑡−1 + Π𝑗𝑐𝑗𝑡 , 𝑗 = 1, 2

𝑐1𝑡 + 𝑐2𝑡 = 𝑐𝑡

subject to (ℎ1,−1, ℎ2,−1) given and {𝑏1𝑡}, {𝑏2𝑡}, {𝑐𝑡} being known and fixed sequences.
Substituting the {𝑐1𝑡, 𝑐2𝑡} sequences that solve this problem as functions of {𝑏1𝑡, 𝑏2𝑡, 𝑐𝑡} into the objective determines
a mongrel preference ordering over {𝑐𝑡} = {𝑐1𝑡 + 𝑐2𝑡}.
In solving this problem, it is convenient to proceed by using Fourier transforms. For details, please see [HS13] where
they deploy a
Secret Weapon: Another application of the spectral factorization identity.
Concluding remark: The [HS13] class of models described in this lecture are all complete markets models. We have
exploited the fact that complete market models are all alike to allow us to define a class that gives the same name to
different things in the spirit of Henri Poincare.
Could we create such a class for incomplete markets models?
That would be nice, but before trying it would be wise to contemplate the remainder of a statement by Robert E. Lucas,
Jr., with which we began this lecture.

“Complete market economies are all alike but each incomplete market economy is incomplete in its own
individual way.” Robert E. Lucas, Jr., (1989)

336 Chapter 16. Recursive Models of Dynamic Linear Economies

CHAPTER

SEVENTEEN

GROWTH IN DYNAMIC LINEAR ECONOMIES

Contents

• Growth in Dynamic Linear Economies

– Common Structure

– A Planning Problem

– Example Economies

This is another member of a suite of lectures that use the quantecon DLE class to instantiate models within the [HS13]
class of models described in detail in Recursive Models of Dynamic Linear Economies.
In addition to what’s included in Anaconda, this lecture uses the quantecon library.

!pip install --upgrade quantecon

This lecture describes several complete market economies having a common linear-quadratic-Gaussian structure.
Three examples of such economies show how the DLE class can be used to compute equilibria of such economies in
Python and to illustrate how different versions of these economies can or cannot generate sustained growth.
We require the following imports

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from quantecon import DLE

17.1 Common Structure

Our example economies have the following features
• Information flows are governed by an exogenous stochastic process 𝑧𝑡 that follows

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1

where 𝑤𝑡+1 is a martingale difference sequence.
• Preference shocks 𝑏𝑡 and technology shocks 𝑑𝑡 are linear functions of 𝑧𝑡

𝑏𝑡 = 𝑈𝑏𝑧𝑡

337

Advanced Quantitative Economics with Python

𝑑𝑡 = 𝑈𝑑𝑧𝑡

• Consumption and physical investment goods are produced using the following technology

Φ𝑐𝑐𝑡 + Φ𝑔𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡

𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡

𝑔𝑡 ⋅ 𝑔𝑡 = 𝑙2𝑡
where 𝑐𝑡 is a vector of consumption goods, 𝑔𝑡 is a vector of intermediate goods, 𝑖𝑡 is a vector of investment goods,
𝑘𝑡 is a vector of physical capital goods, and 𝑙𝑡 is the amount of labor supplied by the representative household.

• Preferences of a representative household are described by

−1
2𝔼

∞
∑
𝑡=0

𝛽𝑡[(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + 𝑙2𝑡], 0 < 𝛽 < 1

𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡

ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

where 𝑠𝑡 is a vector of consumption services, and ℎ𝑡 is a vector of household capital stocks.
Thus, an instance of this class of economies is described by the matrices

{𝐴22, 𝐶2, 𝑈𝑏, 𝑈𝑑, Φ𝑐, Φ𝑔, Φ𝑖, Γ, Δ𝑘, Θ𝑘, Λ, Π, Δℎ, Θℎ}

and the scalar 𝛽.

17.2 A Planning Problem

The first welfare theorem asserts that a competitive equilibrium allocation solves the following planning problem.
Choose {𝑐𝑡, 𝑠𝑡, 𝑖𝑡, ℎ𝑡, 𝑘𝑡, 𝑔𝑡}∞

𝑡=0 to maximize

−1
2𝔼

∞
∑
𝑡=0

𝛽𝑡[(𝑠𝑡 − 𝑏𝑡) ⋅ (𝑠𝑡 − 𝑏𝑡) + 𝑔𝑡 ⋅ 𝑔𝑡]

subject to the linear constraints

Φ𝑐𝑐𝑡 + Φ𝑔𝑔𝑡 + Φ𝑖𝑖𝑡 = Γ𝑘𝑡−1 + 𝑑𝑡

𝑘𝑡 = Δ𝑘𝑘𝑡−1 + Θ𝑘𝑖𝑡

ℎ𝑡 = Δℎℎ𝑡−1 + Θℎ𝑐𝑡

𝑠𝑡 = Λℎ𝑡−1 + Π𝑐𝑡

and

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1

𝑏𝑡 = 𝑈𝑏𝑧𝑡

𝑑𝑡 = 𝑈𝑑𝑧𝑡

338 Chapter 17. Growth in Dynamic Linear Economies

Advanced Quantitative Economics with Python

The DLE class in Python maps this planning problem into a linear-quadratic dynamic programming problem and then
solves it by using QuantEcon’s LQ class.
(See Section 5.5 of Hansen & Sargent (2013) [HS13] for a full description of how to map these economies into an LQ
setting, and how to use the solution to the LQ problem to construct the output matrices in order to simulate the economies)
The state for the LQ problem is

𝑥𝑡 = ⎡⎢
⎣

ℎ𝑡−1
𝑘𝑡−1
𝑧𝑡

⎤⎥
⎦

and the control variable is 𝑢𝑡 = 𝑖𝑡.
Once the LQ problem has been solved, the law of motion for the state is

𝑥𝑡+1 = (𝐴 − 𝐵𝐹)𝑥𝑡 + 𝐶𝑤𝑡+1

where the optimal control law is 𝑢𝑡 = −𝐹𝑥𝑡.
Letting 𝐴𝑜 = 𝐴 − 𝐵𝐹 we write this law of motion as

𝑥𝑡+1 = 𝐴𝑜𝑥𝑡 + 𝐶𝑤𝑡+1

17.3 Example Economies

Each of the example economies shown here will share a number of components. In particular, for each we will consider
preferences of the form

−1
2𝔼

∞
∑
𝑡=0

𝛽𝑡[(𝑠𝑡 − 𝑏𝑡)2 + 𝑙2𝑡], 0 < 𝛽 < 1

𝑠𝑡 = 𝜆ℎ𝑡−1 + 𝜋𝑐𝑡

ℎ𝑡 = 𝛿ℎℎ𝑡−1 + 𝜃ℎ𝑐𝑡

𝑏𝑡 = 𝑈𝑏𝑧𝑡

Technology of the form

𝑐𝑡 + 𝑖𝑡 = 𝛾1𝑘𝑡−1 + 𝑑1𝑡

𝑘𝑡 = 𝛿𝑘𝑘𝑡−1 + 𝑖𝑡

𝑔𝑡 = 𝜙1𝑖𝑡 , 𝜙1 > 0

[𝑑1𝑡
0] = 𝑈𝑑𝑧𝑡

And information of the form

𝑧𝑡+1 = ⎡⎢
⎣

1 0 0
0 0.8 0
0 0 0.5

⎤⎥
⎦

𝑧𝑡 + ⎡⎢
⎣

0 0
1 0
0 1

⎤⎥
⎦

𝑤𝑡+1

𝑈𝑏 = [30 0 0]

𝑈𝑑 = [5 1 0
0 0 0]

We shall vary {𝜆, 𝜋, 𝛿ℎ, 𝜃ℎ, 𝛾1, 𝛿𝑘, 𝜙1} and the initial state 𝑥0 across the three economies.

17.3. Example Economies 339

Advanced Quantitative Economics with Python

17.3.1 Example 1: Hall (1978)

First, we set parameters such that consumption follows a random walk. In particular, we set

𝜆 = 0, 𝜋 = 1, 𝛾1 = 0.1, 𝜙1 = 0.00001, 𝛿𝑘 = 0.95, 𝛽 = 1
1.05

(In this economy 𝛿ℎ and 𝜃ℎ are arbitrary as household capital does not enter the equation for consumption services We
set them to values that will become useful in Example 3)
It is worth noting that this choice of parameter values ensures that 𝛽(𝛾1 + 𝛿𝑘) = 1.
For simulations of this economy, we choose an initial condition of

𝑥0 = [5 150 1 0 0]′

Parameter Matrices
γ_1 = 0.1
ϕ_1 = 1e-5

ϕ_c, ϕ_g, ϕ_i, γ, δ_k, θ_k = (np.array([[1], [0]]),
np.array([[0], [1]]),
np.array([[1], [-ϕ_1]]),
np.array([[γ_1], [0]]),
np.array([[.95]]),
np.array([[1]]))

β, l_λ, π_h, δ_h, θ_h = (np.array([[1 / 1.05]]),
np.array([[0]]),
np.array([[1]]),
np.array([[.9]]),
np.array([[1]]) - np.array([[.9]]))

a22, c2, ub, ud = (np.array([[1, 0, 0],
[0, 0.8, 0],
[0, 0, 0.5]]),

np.array([[0, 0],
[1, 0],
[0, 1]]),

np.array([[30, 0, 0]]),
np.array([[5, 1, 0],

[0, 0, 0]]))

Initial condition
x0 = np.array([[5], [150], [1], [0], [0]])

info1 = (a22, c2, ub, ud)
tech1 = (ϕ_c, ϕ_g, ϕ_i, γ, δ_k, θ_k)
pref1 = (β, l_λ, π_h, δ_h, θ_h)

These parameter values are used to define an economy of the DLE class.

econ1 = DLE(info1, tech1, pref1)

We can then simulate the economy for a chosen length of time, from our initial state vector 𝑥0

econ1.compute_sequence(x0, ts_length=300)

340 Chapter 17. Growth in Dynamic Linear Economies

Advanced Quantitative Economics with Python

The economy stores the simulated values for each variable. Below we plot consumption and investment

This is the right panel of Fig 5.7.1 from p.105 of HS2013
plt.plot(econ1.c[0], label='Cons.')
plt.plot(econ1.i[0], label='Inv.')
plt.legend()
plt.show()

Inspection of the plot shows that the sample paths of consumption and investment drift in ways that suggest that each has
or nearly has a random walk or unit root component.
This is confirmed by checking the eigenvalues of 𝐴𝑜

econ1.endo, econ1.exo

(array([0.9, 1.]), array([1. , 0.8, 0.5]))

The endogenous eigenvalue that appears to be unity reflects the random walk character of consumption in Hall’s model.
• Actually, the largest endogenous eigenvalue is very slightly below 1.
• This outcome comes from the small adjustment cost 𝜙1.

econ1.endo[1]

0.9999999999904767

The fact that the largest endogenous eigenvalue is strictly less than unity in modulus means that it is possible to compute
the non-stochastic steady state of consumption, investment and capital.

17.3. Example Economies 341

Advanced Quantitative Economics with Python

econ1.compute_steadystate()
np.set_printoptions(precision=3, suppress=True)
print(econ1.css, econ1.iss, econ1.kss)

[[4.999]] [[-0.001]] [[-0.023]]

However, the near-unity endogenous eigenvalue means that these steady state values are of little relevance.

17.3.2 Example 2: Altered Growth Condition

We generate our next economy by making two alterations to the parameters of Example 1.
• First, we raise 𝜙1 from 0.00001 to 1.

– This will lower the endogenous eigenvalue that is close to 1, causing the economy to head more quickly to the
vicinity of its non-stochastic steady-state.

• Second, we raise 𝛾1 from 0.1 to 0.15.
– This has the effect of raising the optimal steady-state value of capital.

We also start the economy off from an initial condition with a lower capital stock

𝑥0 = [5 20 1 0 0]′

Therefore, we need to define the following new parameters

γ2 = 0.15
γ22 = np.array([[γ2], [0]])

ϕ_12 = 1
ϕ_i2 = np.array([[1], [-ϕ_12]])

tech2 = (ϕ_c, ϕ_g, ϕ_i2, γ22, δ_k, θ_k)

x02 = np.array([[5], [20], [1], [0], [0]])

Creating the DLE class and then simulating gives the following plot for consumption and investment

econ2 = DLE(info1, tech2, pref1)

econ2.compute_sequence(x02, ts_length=300)

plt.plot(econ2.c[0], label='Cons.')
plt.plot(econ2.i[0], label='Inv.')
plt.legend()
plt.show()

342 Chapter 17. Growth in Dynamic Linear Economies

Advanced Quantitative Economics with Python

Simulating our new economy shows that consumption grows quickly in the early stages of the sample.
However, it then settles down around the new non-stochastic steady-state level of consumption of 17.5, which we find as
follows

econ2.compute_steadystate()
print(econ2.css, econ2.iss, econ2.kss)

[[17.5]] [[6.25]] [[125.]]

The economy converges faster to this level than in Example 1 because the largest endogenous eigenvalue of 𝐴𝑜 is now
significantly lower than 1.

econ2.endo, econ2.exo

(array([0.9 , 0.952]), array([1. , 0.8, 0.5]))

17.3. Example Economies 343

Advanced Quantitative Economics with Python

17.3.3 Example 3: A Jones-Manuelli (1990) Economy

For our third economy, we choose parameter values with the aim of generating sustained growth in consumption, invest-
ment and capital.
To do this, we set parameters so that Jones and Manuelli’s “growth condition” is just satisfied.
In our notation, just satisfying the growth condition is actually equivalent to setting 𝛽(𝛾1 + 𝛿𝑘) = 1, the condition that
was necessary for consumption to be a random walk in Hall’s model.
Thus, we lower 𝛾1 back to 0.1.
In our model, this is a necessary but not sufficient condition for growth.
To generate growth we set preference parameters to reflect habit persistence.
In particular, we set 𝜆 = −1, 𝛿ℎ = 0.9 and 𝜃ℎ = 1 − 𝛿ℎ = 0.1.
This makes preferences assume the form

−1
2𝔼

∞
∑
𝑡=0

𝛽𝑡[(𝑐𝑡 − 𝑏𝑡 − (1 − 𝛿ℎ)
∞

∑
𝑗=0

𝛿𝑗
ℎ𝑐𝑡−𝑗−1)2 + 𝑙2𝑡]

These preferences reflect habit persistence
• the effective “bliss point” 𝑏𝑡 + (1 − 𝛿ℎ) ∑∞

𝑗=0 𝛿𝑗
ℎ𝑐𝑡−𝑗−1 now shifts in response to a moving average of past con-

sumption
Since 𝛿ℎ and 𝜃ℎ were defined earlier, the only change we need to make from the parameters of Example 1 is to define the
new value of 𝜆.

l_λ2 = np.array([[-1]])
pref2 = (β, l_λ2, π_h, δ_h, θ_h)

econ3 = DLE(info1, tech1, pref2)

We simulate this economy from the original state vector

econ3.compute_sequence(x0, ts_length=300)

This is the right panel of Fig 5.10.1 from p.110 of HS2013
plt.plot(econ3.c[0], label='Cons.')
plt.plot(econ3.i[0], label='Inv.')
plt.legend()
plt.show()

344 Chapter 17. Growth in Dynamic Linear Economies

Advanced Quantitative Economics with Python

Thus, adding habit persistence to the Hall model of Example 1 is enough to generate sustained growth in our economy.
The eigenvalues of 𝐴𝑜 in this new economy are

econ3.endo, econ3.exo

(array([1.+0.j, 1.-0.j]), array([1. , 0.8, 0.5]))

We now have two unit endogenous eigenvalues. One stems from satisfying the growth condition (as in Example 1).
The other unit eigenvalue results from setting 𝜆 = −1.
To show the importance of both of these for generating growth, we consider the following experiments.

17.3.4 Example 3.1: Varying Sensitivity

Next we raise 𝜆 to -0.7

l_λ3 = np.array([[-0.7]])
pref3 = (β, l_λ3, π_h, δ_h, θ_h)

econ4 = DLE(info1, tech1, pref3)

econ4.compute_sequence(x0, ts_length=300)

plt.plot(econ4.c[0], label='Cons.')
plt.plot(econ4.i[0], label='Inv.')
plt.legend()
plt.show()

17.3. Example Economies 345

Advanced Quantitative Economics with Python

We no longer achieve sustained growth if 𝜆 is raised from -1 to -0.7.
This is related to the fact that one of the endogenous eigenvalues is now less than 1.

econ4.endo, econ4.exo

(array([0.97, 1.]), array([1. , 0.8, 0.5]))

17.3.5 Example 3.2: More Impatience

Next let’s lower 𝛽 to 0.94

β_2 = np.array([[0.94]])
pref4 = (β_2, l_λ, π_h, δ_h, θ_h)

econ5 = DLE(info1, tech1, pref4)

econ5.compute_sequence(x0, ts_length=300)

plt.plot(econ5.c[0], label='Cons.')
plt.plot(econ5.i[0], label='Inv.')
plt.legend()
plt.show()

346 Chapter 17. Growth in Dynamic Linear Economies

Advanced Quantitative Economics with Python

Growth also fails if we lower 𝛽, since we now have 𝛽(𝛾1 + 𝛿𝑘) < 1.
Consumption and investment explode downwards, as a lower value of 𝛽 causes the representative consumer to front-load
consumption.
This explosive path shows up in the second endogenous eigenvalue now being larger than one.

econ5.endo, econ5.exo

(array([0.9 , 1.013]), array([1. , 0.8, 0.5]))

17.3. Example Economies 347

Advanced Quantitative Economics with Python

348 Chapter 17. Growth in Dynamic Linear Economies

CHAPTER

EIGHTEEN

LUCAS ASSET PRICING USING DLE

Contents

• Lucas Asset Pricing Using DLE

– Asset Pricing Equations

– Asset Pricing Simulations

This is one of a suite of lectures that use the quantecon DLE class to instantiate models within the [HS13] class of models
described in detail in Recursive Models of Dynamic Linear Economies.
In addition to what’s in Anaconda, this lecture uses the quantecon library

!pip install --upgrade quantecon

This lecture uses the DLE class to price payout streams that are linear functions of the economy’s state vector, as well as
risk-free assets that pay out one unit of the first consumption good with certainty.
We assume basic knowledge of the class of economic environments that fall within the domain of the DLE class.
Many details about the basic environment are contained in the lecture Growth in Dynamic Linear Economies.
We’ll also need the following imports

import numpy as np
import matplotlib.pyplot as plt
from quantecon import DLE
%matplotlib inline

We use a linear-quadratic version of an economy that Lucas (1978) [Luc78] used to develop an equilibrium theory of
asset prices:
Preferences

−1
2𝔼

∞
∑
𝑡=0

𝛽𝑡[(𝑐𝑡 − 𝑏𝑡)2 + 𝑙2𝑡]|𝐽0

𝑠𝑡 = 𝑐𝑡

𝑏𝑡 = 𝑈𝑏𝑧𝑡

Technology

𝑐𝑡 = 𝑑1𝑡

349

Advanced Quantitative Economics with Python

𝑘𝑡 = 𝛿𝑘𝑘𝑡−1 + 𝑖𝑡

𝑔𝑡 = 𝜙1𝑖𝑡 , 𝜙1 > 0

[𝑑1𝑡
0] = 𝑈𝑑𝑧𝑡

Information

𝑧𝑡+1 = ⎡⎢
⎣

1 0 0
0 0.8 0
0 0 0.5

⎤⎥
⎦

𝑧𝑡 + ⎡⎢
⎣

0 0
1 0
0 1

⎤⎥
⎦

𝑤𝑡+1

𝑈𝑏 = [30 0 0]

𝑈𝑑 = [5 1 0
0 0 0]

𝑥0 = [5 150 1 0 0]′

18.1 Asset Pricing Equations

[HS13] show that the time t value of a permanent claim to a stream 𝑦𝑠 = 𝑈𝑎𝑥𝑠 , 𝑠 ≥ 𝑡 is:

𝑎𝑡 = (𝑥′
𝑡𝜇𝑎𝑥𝑡 + 𝜎𝑎)/(̄𝑒1𝑀𝑐𝑥𝑡)

with

𝜇𝑎 =
∞

∑
𝜏=0

𝛽𝜏(𝐴𝑜′)𝜏𝑍𝑎𝐴𝑜𝜏

𝜎𝑎 = 𝛽
1 − 𝛽 trace(𝑍𝑎

∞
∑
𝜏=0

𝛽𝜏(𝐴𝑜)𝜏𝐶𝐶 ′(𝐴𝑜′)𝜏)

where

𝑍𝑎 = 𝑈 ′
𝑎𝑀𝑐

The use of ̄𝑒1 indicates that the first consumption good is the numeraire.

18.2 Asset Pricing Simulations

gam = 0
γ = np.array([[gam], [0]])
ϕ_c = np.array([[1], [0]])
ϕ_g = np.array([[0], [1]])
ϕ_1 = 1e-4
ϕ_i = np.array([[0], [-ϕ_1]])
δ_k = np.array([[.95]])
θ_k = np.array([[1]])
β = np.array([[1 / 1.05]])
ud = np.array([[5, 1, 0],

[0, 0, 0]])
a22 = np.array([[1, 0, 0],

(continues on next page)

350 Chapter 18. Lucas Asset Pricing Using DLE

Advanced Quantitative Economics with Python

(continued from previous page)

[0, 0.8, 0],
[0, 0, 0.5]])

c2 = np.array([[0, 1, 0],
[0, 0, 1]]).T

l_λ = np.array([[0]])
π_h = np.array([[1]])
δ_h = np.array([[.9]])
θ_h = np.array([[1]]) - δ_h
ub = np.array([[30, 0, 0]])
x0 = np.array([[5, 150, 1, 0, 0]]).T

info1 = (a22, c2, ub, ud)
tech1 = (ϕ_c, ϕ_g, ϕ_i, γ, δ_k, θ_k)
pref1 = (β, l_λ, π_h, δ_h, θ_h)

econ1 = DLE(info1, tech1, pref1)

After specifying a “Pay” matrix, we simulate the economy.
The particular choice of “Pay” used below means that we are pricing a perpetual claim on the endowment process 𝑑1𝑡

econ1.compute_sequence(x0, ts_length=100, Pay=np.array([econ1.Sd[0, :]]))

The graph below plots the price of this claim over time:

Fig 7.12.1 from p.147 of HS2013
plt.plot(econ1.Pay_Price, label='Price of Tree')
plt.legend()
plt.show()

18.2. Asset Pricing Simulations 351

Advanced Quantitative Economics with Python

The next plot displays the realized gross rate of return on this “Lucas tree” as well as on a risk-free one-period bond:

Left panel of Fig 7.12.2 from p.148 of HS2013
plt.plot(econ1.Pay_Gross, label='Tree')
plt.plot(econ1.R1_Gross, label='Risk-Free')
plt.legend()
plt.show()

352 Chapter 18. Lucas Asset Pricing Using DLE

Advanced Quantitative Economics with Python

np.corrcoef(econ1.Pay_Gross[1:, 0], econ1.R1_Gross[1:, 0])

array([[1. , -0.53991284],
[-0.53991284, 1.]])

Above we have also calculated the correlation coefficient between these two returns.
To give an idea of how the term structure of interest rates moves in this economy, the next plot displays the net rates of
return on one-period and five-period risk-free bonds:

Right panel of Fig 7.12.2 from p.148 of HS2013
plt.plot(econ1.R1_Net, label='One-Period')
plt.plot(econ1.R5_Net, label='Five-Period')
plt.legend()
plt.show()

18.2. Asset Pricing Simulations 353

Advanced Quantitative Economics with Python

From the above plot, we can see the tendency of the term structure to slope up when rates are low and to slope down when
rates are high.
Comparing it to the previous plot of the price of the “Lucas tree”, we can also see that net rates of return are low when
the price of the tree is high, and vice versa.
We now plot the realized gross rate of return on a “Lucas tree” as well as on a risk-free one-period bond when the
autoregressive parameter for the endowment process is reduced to 0.4:

a22_2 = np.array([[1, 0, 0],
[0, 0.4, 0],
[0, 0, 0.5]])

info2 = (a22_2, c2, ub, ud)

econ2 = DLE(info2, tech1, pref1)
econ2.compute_sequence(x0, ts_length=100, Pay=np.array([econ2.Sd[0, :]]))

Left panel of Fig 7.12.3 from p.148 of HS2013
plt.plot(econ2.Pay_Gross, label='Tree')
plt.plot(econ2.R1_Gross, label='Risk-Free')
plt.legend()
plt.show()

354 Chapter 18. Lucas Asset Pricing Using DLE

Advanced Quantitative Economics with Python

np.corrcoef(econ2.Pay_Gross[1:, 0], econ2.R1_Gross[1:, 0])

array([[1. , -0.71936186],
[-0.71936186, 1.]])

The correlation between these two gross rates is now more negative.
Next, we again plot the net rates of return on one-period and five-period risk-free bonds:

Right panel of Fig 7.12.3 from p.148 of HS2013
plt.plot(econ2.R1_Net, label='One-Period')
plt.plot(econ2.R5_Net, label='Five-Period')
plt.legend()
plt.show()

18.2. Asset Pricing Simulations 355

Advanced Quantitative Economics with Python

We can see the tendency of the term structure to slope up when rates are low (and down when rates are high) has been
accentuated relative to the first instance of our economy.

356 Chapter 18. Lucas Asset Pricing Using DLE

CHAPTER

NINETEEN

IRFS IN HALL MODELS

Contents

• IRFs in Hall Models

– Example 1: Hall (1978)

– Example 2: Higher Adjustment Costs

– Example 3: Durable Consumption Goods

This is another member of a suite of lectures that use the quantecon DLE class to instantiate models within the [HS13]
class of models described in detail in Recursive Models of Dynamic Linear Economies.
In addition to what’s in Anaconda, this lecture uses the quantecon library.

!pip install --upgrade quantecon

We’ll make these imports:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from quantecon import DLE

This lecture shows how the DLE class can be used to create impulse response functions for three related economies,
starting from Hall (1978) [Hal78].
Knowledge of the basic economic environment is assumed.
See the lecture “Growth in Dynamic Linear Economies” for more details.

19.1 Example 1: Hall (1978)

First, we set parameters to make consumption (almost) follow a random walk.
We set

𝜆 = 0, 𝜋 = 1, 𝛾1 = 0.1, 𝜙1 = 0.00001, 𝛿𝑘 = 0.95, 𝛽 = 1
1.05

(In this example 𝛿ℎ and 𝜃ℎ are arbitrary as household capital does not enter the equation for consumption services.
We set them to values that will become useful in Example 3)

357

Advanced Quantitative Economics with Python

It is worth noting that this choice of parameter values ensures that 𝛽(𝛾1 + 𝛿𝑘) = 1.
For simulations of this economy, we choose an initial condition of:

𝑥0 = [5 150 1 0 0]′

γ_1 = 0.1
γ = np.array([[γ_1], [0]])
ϕ_c = np.array([[1], [0]])
ϕ_g = np.array([[0], [1]])
ϕ_1 = 1e-5
ϕ_i = np.array([[1], [-ϕ_1]])
δ_k = np.array([[.95]])
θ_k = np.array([[1]])
β = np.array([[1 / 1.05]])
l_λ = np.array([[0]])
π_h = np.array([[1]])
δ_h = np.array([[.9]])
θ_h = np.array([[1]])
a22 = np.array([[1, 0, 0],

[0, 0.8, 0],
[0, 0, 0.5]])

c2 = np.array([[0, 0],
[1, 0],
[0, 1]])

ud = np.array([[5, 1, 0],
[0, 0, 0]])

ub = np.array([[30, 0, 0]])
x0 = np.array([[5], [150], [1], [0], [0]])

info1 = (a22, c2, ub, ud)
tech1 = (ϕ_c, ϕ_g, ϕ_i, γ, δ_k, θ_k)
pref1 = (β, l_λ, π_h, δ_h, θ_h)

These parameter values are used to define an economy of the DLE class.
We can then simulate the economy for a chosen length of time, from our initial state vector 𝑥0.
The economy stores the simulated values for each variable. Below we plot consumption and investment:

econ1 = DLE(info1, tech1, pref1)
econ1.compute_sequence(x0, ts_length=300)

This is the right panel of Fig 5.7.1 from p.105 of HS2013
plt.plot(econ1.c[0], label='Cons.')
plt.plot(econ1.i[0], label='Inv.')
plt.legend()
plt.show()

358 Chapter 19. IRFs in Hall Models

Advanced Quantitative Economics with Python

The DLE class can be used to create impulse response functions for each of the endogenous variables:
{𝑐𝑡, 𝑠𝑡, ℎ𝑡, 𝑖𝑡, 𝑘𝑡, 𝑔𝑡}.
If no selector vector for the shock is specified, the default choice is to give IRFs to the first shock in 𝑤𝑡+1.
Below we plot the impulse response functions of investment and consumption to an endowment innovation (the first shock)
in the Hall model:

econ1.irf(ts_length=40, shock=None)
This is the left panel of Fig 5.7.1 from p.105 of HS2013
plt.plot(econ1.c_irf, label='Cons.')
plt.plot(econ1.i_irf, label='Inv.')
plt.legend()
plt.show()

19.1. Example 1: Hall (1978) 359

Advanced Quantitative Economics with Python

It can be seen that the endowment shock has permanent effects on the level of both consumption and investment, consistent
with the endogenous unit eigenvalue in this economy.
Investment is much more responsive to the endowment shock at shorter time horizons.

19.2 Example 2: Higher Adjustment Costs

We generate our next economy by making only one change to the parameters of Example 1: we raise the parameter
associated with the cost of adjusting capital,𝜙1, from 0.00001 to 0.2.
This will lower the endogenous eigenvalue that is unity in Example 1 to a value slightly below 1.

ϕ_12 = 0.2
ϕ_i2 = np.array([[1], [-ϕ_12]])
tech2 = (ϕ_c, ϕ_g, ϕ_i2, γ, δ_k, θ_k)

econ2 = DLE(info1, tech2, pref1)
econ2.compute_sequence(x0, ts_length = 300)

This is the right panel of Fig 5.8.1 from p.106 of HS2013
plt.plot(econ2.c[0], label='Cons.')
plt.plot(econ2.i[0], label='Inv.')
plt.legend()
plt.show()

360 Chapter 19. IRFs in Hall Models

Advanced Quantitative Economics with Python

econ2.irf(ts_length=40,shock=None)
This is the left panel of Fig 5.8.1 from p.106 of HS2013
plt.plot(econ2.c_irf,label='Cons.')
plt.plot(econ2.i_irf,label='Inv.')
plt.legend()
plt.show()

19.2. Example 2: Higher Adjustment Costs 361

Advanced Quantitative Economics with Python

econ2.endo

array([0.9 , 0.99657126])

econ2.compute_steadystate()
print(econ2.css, econ2.iss, econ2.kss)

[[5.]] [[2.92940472e-12]] [[5.85879555e-11]]

The first graph shows that there seems to be a downward trend in both consumption and investment.
This is a consequence of the decrease in the largest endogenous eigenvalue from unity in the earlier economy, caused by
the higher adjustment cost.
The present economy has a nonstochastic steady state value of 5 for consumption and 0 for both capital and investment.
Because the largest endogenous eigenvalue is still close to 1, the economy heads only slowly towards these mean values.
The impulse response functions now show that an endowment shock does not have a permanent effect on the levels of
either consumption or investment.

362 Chapter 19. IRFs in Hall Models

Advanced Quantitative Economics with Python

19.3 Example 3: Durable Consumption Goods

We generate our third economy by raising 𝜙1 further, to 1.0. We also raise the production function parameter from 0.1
to 0.15 (which raises the non-stochastic steady state value of capital above zero).
We also change the specification of preferences to make the consumption good durable.
Specifically, we allow for a single durable household good obeying:

ℎ𝑡 = 𝛿ℎℎ𝑡−1 + 𝑐𝑡 , 0 < 𝛿ℎ < 1

Services are related to the stock of durables at the beginning of the period:

𝑠𝑡 = 𝜆ℎ𝑡−1 , 𝜆 > 0

And preferences are ordered by:

−1
2𝔼

∞
∑
𝑡=0

𝛽𝑡[(𝜆ℎ𝑡−1 − 𝑏𝑡)2 + 𝑙2𝑡]|𝐽0

To implement this, we set 𝜆 = 0.1 and 𝜋 = 0 (we have already set 𝜃ℎ = 1 and 𝛿ℎ = 0.9).
We start from an initial condition that makes consumption begin near around its non-stochastic steady state.

ϕ_13 = 1
ϕ_i3 = np.array([[1], [-ϕ_13]])

γ_12 = 0.15
γ_2 = np.array([[γ_12], [0]])

l_λ2 = np.array([[0.1]])
π_h2 = np.array([[0]])

x01 = np.array([[150], [100], [1], [0], [0]])

tech3 = (ϕ_c, ϕ_g, ϕ_i3, γ_2, δ_k, θ_k)
pref2 = (β, l_λ2, π_h2, δ_h, θ_h)

econ3 = DLE(info1, tech3, pref2)
econ3.compute_sequence(x01, ts_length=300)

This is the right panel of Fig 5.11.1 from p.111 of HS2013
plt.plot(econ3.c[0], label='Cons.')
plt.plot(econ3.i[0], label='Inv.')
plt.legend()
plt.show()

19.3. Example 3: Durable Consumption Goods 363

Advanced Quantitative Economics with Python

In contrast to Hall’s original model of Example 1, it is now investment that is much smoother than consumption.
This illustrates how making consumption goods durable tends to undo the strong consumption smoothing result that Hall
obtained.

econ3.irf(ts_length=40, shock=None)
This is the left panel of Fig 5.11.1 from p.111 of HS2013
plt.plot(econ3.c_irf, label='Cons.')
plt.plot(econ3.i_irf, label='Inv.')
plt.legend()
plt.show()

364 Chapter 19. IRFs in Hall Models

Advanced Quantitative Economics with Python

The impulse response functions confirm that consumption is now much more responsive to an endowment shock (and
investment less so) than in Example 1.
As in Example 2, the endowment shock has permanent effects on neither variable.

19.3. Example 3: Durable Consumption Goods 365

Advanced Quantitative Economics with Python

366 Chapter 19. IRFs in Hall Models

CHAPTER

TWENTY

PERMANENT INCOME MODEL USING THE DLE CLASS

Contents

• Permanent Income Model using the DLE Class

– The Permanent Income Model

This lecture is part of a suite of lectures that use the quantecon DLE class to instantiate models within the [HS13] class
of models described in detail in Recursive Models of Dynamic Linear Economies.
In addition to what’s included in Anaconda, this lecture uses the quantecon library.

!pip install --upgrade quantecon

This lecture adds a third solution method for the linear-quadratic-Gaussian permanent income model with 𝛽𝑅 = 1, com-
plementing the other two solution methods described in Optimal Savings I: The Permanent Income Model and Optimal
Savings II: LQ Techniques and this Jupyter notebook.
The additional solution method uses the DLE class.
In this way, we map the permanent income model into the framework of Hansen & Sargent (2013) “Recursive Models
of Dynamic Linear Economies” [HS13].
We’ll also require the following imports

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from quantecon import DLE

np.set_printoptions(suppress=True, precision=4)

20.1 The Permanent Income Model

The LQ permanent income model is an example of a savings problem.
A consumer has preferences over consumption streams that are ordered by the utility functional

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) (20.1)

367

https://python-intro.quantecon.org/perm_income.html
https://python-intro.quantecon.org/perm_income_cons.html
https://python-intro.quantecon.org/perm_income_cons.html
http://nbviewer.jupyter.org/github/QuantEcon/QuantEcon.notebooks/blob/master/permanent_income.ipynb

Advanced Quantitative Economics with Python

where 𝐸𝑡 is the mathematical expectation conditioned on the consumer’s time 𝑡 information, 𝑐𝑡 is time 𝑡 consumption,
𝑢(𝑐) is a strictly concave one-period utility function, and 𝛽 ∈ (0, 1) is a discount factor.
The LQ model gets its name partly from assuming that the utility function 𝑢 is quadratic:

𝑢(𝑐) = −.5(𝑐 − 𝛾)2

where 𝛾 > 0 is a bliss level of consumption.
The consumer maximizes the utility functional (20.1) by choosing a consumption, borrowing plan {𝑐𝑡, 𝑏𝑡+1}∞

𝑡=0 subject
to the sequence of budget constraints

𝑐𝑡 + 𝑏𝑡 = 𝑅−1𝑏𝑡+1 + 𝑦𝑡, 𝑡 ≥ 0 (20.2)

where 𝑦𝑡 is an exogenous stationary endowment process, 𝑅 is a constant gross risk-free interest rate, 𝑏𝑡 is one-period
risk-free debt maturing at 𝑡, and 𝑏0 is a given initial condition.
We shall assume that 𝑅−1 = 𝛽.
Equation (20.2) is linear.
We use another set of linear equations to model the endowment process.
In particular, we assume that the endowment process has the state-space representation

𝑧𝑡+1 = 𝐴22𝑧𝑡 + 𝐶2𝑤𝑡+1
𝑦𝑡 = 𝑈𝑦𝑧𝑡

(20.3)

where 𝑤𝑡+1 is an IID process with mean zero and identity contemporaneous covariance matrix, 𝐴22 is a stable matrix,
its eigenvalues being strictly below unity in modulus, and 𝑈𝑦 is a selection vector that identifies 𝑦 with a particular linear
combination of the 𝑧𝑡.
We impose the following condition on the consumption, borrowing plan:

𝐸0
∞

∑
𝑡=0

𝛽𝑡𝑏2
𝑡 < +∞ (20.4)

This condition suffices to rule out Ponzi schemes.
(We impose this condition to rule out a borrow-more-and-more plan that would allow the household to enjoy bliss con-
sumption forever)
The state vector confronting the household at 𝑡 is

𝑥𝑡 = [𝑧𝑡
𝑏𝑡

]

where 𝑏𝑡 is its one-period debt falling due at the beginning of period 𝑡 and 𝑧𝑡 contains all variables useful for forecasting
its future endowment.
We assume that {𝑦𝑡} follows a second order univariate autoregressive process:

𝑦𝑡+1 = 𝛼 + 𝜌1𝑦𝑡 + 𝜌2𝑦𝑡−1 + 𝜎𝑤𝑡+1

368 Chapter 20. Permanent Income Model using the DLE Class

Advanced Quantitative Economics with Python

20.1.1 Solution with the DLE Class

One way of solving this model is to map the problem into the framework outlined in Section 4.8 of [HS13] by setting up
our technology, information and preference matrices as follows:

Technology: 𝜙𝑐 = [1
0] , 𝜙𝑔 = [0

1] , 𝜙𝑖 = [−1
−0.00001], Γ = [−1

0], Δ𝑘 = 0, Θ𝑘 = 𝑅.

Information: 𝐴22 = ⎡⎢
⎣

1 0 0
𝛼 𝜌1 𝜌2
0 1 0

⎤⎥
⎦
, 𝐶2 = ⎡⎢

⎣

0
𝜎
0

⎤⎥
⎦
, 𝑈𝑏 = [𝛾 0 0], 𝑈𝑑 = [0 1 0

0 0 0].

Preferences: Λ = 0, Π = 1, Δℎ = 0, Θℎ = 0.
We set parameters
𝛼 = 10, 𝛽 = 0.95, 𝜌1 = 0.9, 𝜌2 = 0, 𝜎 = 1
(The value of 𝛾 does not affect the optimal decision rule)
The chosen matrices mean that the household’s technology is:

𝑐𝑡 + 𝑘𝑡−1 = 𝑖𝑡 + 𝑦𝑡

𝑘𝑡
𝑅 = 𝑖𝑡

𝑙2𝑡 = (0.00001)2𝑖𝑡

Combining the first two of these gives the budget constraint of the permanent income model, where 𝑘𝑡 = 𝑏𝑡+1.
The third equation is a very small penalty on debt-accumulation to rule out Ponzi schemes.
We set up this instance of the DLE class below:

α, β, ρ_1, ρ_2, σ = 10, 0.95, 0.9, 0, 1

γ = np.array([[-1], [0]])
ϕ_c = np.array([[1], [0]])
ϕ_g = np.array([[0], [1]])
ϕ_1 = 1e-5
ϕ_i = np.array([[-1], [-ϕ_1]])
δ_k = np.array([[0]])
θ_k = np.array([[1 / β]])
β = np.array([[β]])
l_λ = np.array([[0]])
π_h = np.array([[1]])
δ_h = np.array([[0]])
θ_h = np.array([[0]])

a22 = np.array([[1, 0, 0],
[α, ρ_1, ρ_2],
[0, 1, 0]])

c2 = np.array([[0], [σ], [0]])
ud = np.array([[0, 1, 0],

[0, 0, 0]])
ub = np.array([[100, 0, 0]])

x0 = np.array([[0], [0], [1], [0], [0]])

(continues on next page)

20.1. The Permanent Income Model 369

Advanced Quantitative Economics with Python

(continued from previous page)

info1 = (a22, c2, ub, ud)
tech1 = (ϕ_c, ϕ_g, ϕ_i, γ, δ_k, θ_k)
pref1 = (β, l_λ, π_h, δ_h, θ_h)
econ1 = DLE(info1, tech1, pref1)

To check the solution of this model with that from the LQ problem, we select the 𝑆𝑐 matrix from the DLE class.
The solution to the DLE economy has:

𝑐𝑡 = 𝑆𝑐𝑥𝑡

econ1.Sc

array([[0. , -0.05 , 65.5172, 0.3448, 0.]])

The state vector in the DLE class is:

𝑥𝑡 = ⎡⎢
⎣

ℎ𝑡−1
𝑘𝑡−1
𝑧𝑡

⎤⎥
⎦

where 𝑘𝑡−1 = 𝑏𝑡 is set up to be 𝑏𝑡 in the permanent income model.

The state vector in the LQ problem is [𝑧𝑡
𝑏𝑡

].

Consequently, the relevant elements of econ1.Sc are the same as in −𝐹 occur when we apply other approaches to the
same model in the lecture Optimal Savings II: LQ Techniques and this Jupyter notebook.
The plot below quickly replicates the first two figures of that lecture and that notebook to confirm that the solutions are
the same

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))

for i in range(25):
econ1.compute_sequence(x0, ts_length=150)
ax1.plot(econ1.c[0], c='g')
ax1.plot(econ1.d[0], c='b')

ax1.plot(econ1.c[0], label='Consumption', c='g')
ax1.plot(econ1.d[0], label='Income', c='b')
ax1.legend()

for i in range(25):
econ1.compute_sequence(x0, ts_length=150)
ax2.plot(econ1.k[0], color='r')

ax2.plot(econ1.k[0], label='Debt', c='r')
ax2.legend()
plt.show()

370 Chapter 20. Permanent Income Model using the DLE Class

https://python-intro.quantecon.org/perm_income_cons.html
http://nbviewer.jupyter.org/github/QuantEcon/QuantEcon.notebooks/blob/master/permanent_income.ipynb

Advanced Quantitative Economics with Python

20.1. The Permanent Income Model 371

Advanced Quantitative Economics with Python

372 Chapter 20. Permanent Income Model using the DLE Class

CHAPTER

TWENTYONE

ROSEN SCHOOLING MODEL

Contents

• Rosen Schooling Model

– A One-Occupation Model

– Mapping into HS2013 Framework

This lecture is yet another part of a suite of lectures that use the quantecon DLE class to instantiate models within the
[HS13] class of models described in detail in Recursive Models of Dynamic Linear Economies.
In addition to what’s included in Anaconda, this lecture uses the quantecon library

!pip install --upgrade quantecon

We’ll also need the following imports:

import numpy as np
import matplotlib.pyplot as plt
from collections import namedtuple
from quantecon import DLE
%matplotlib inline

21.1 A One-Occupation Model

Ryoo and Rosen’s (2004) [RR04] partial equilibrium model determines
• a stock of “Engineers” 𝑁𝑡

• a number of new entrants in engineering school, 𝑛𝑡

• the wage rate of engineers, 𝑤𝑡

It takes k periods of schooling to become an engineer.
The model consists of the following equations:

• a demand curve for engineers:

𝑤𝑡 = −𝛼𝑑𝑁𝑡 + 𝜖𝑑𝑡

• a time-to-build structure of the education process:

373

Advanced Quantitative Economics with Python

𝑁𝑡+𝑘 = 𝛿𝑁𝑁𝑡+𝑘−1 + 𝑛𝑡

• a definition of the discounted present value of each new engineering student:

𝑣𝑡 = 𝛽𝑘𝔼
∞

∑
𝑗=0

(𝛽𝛿𝑁)𝑗𝑤𝑡+𝑘+𝑗

• a supply curve of new students driven by present value 𝑣𝑡:

𝑛𝑡 = 𝛼𝑠𝑣𝑡 + 𝜖𝑠𝑡

21.2 Mapping into HS2013 Framework

We represent this model in the [HS13] framework by
• sweeping the time-to-build structure and the demand for engineers into the household technology, and
• putting the supply of engineers into the technology for producing goods

21.2.1 Preferences

Π = 0, Λ = [𝛼𝑑 0 ⋯ 0] , Δℎ =
⎡
⎢
⎢
⎢
⎣

𝛿𝑁 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ ⋯ 0 1
0 0 0 ⋯ 0

⎤
⎥
⎥
⎥
⎦

, Θℎ =
⎡
⎢
⎢
⎢
⎣

0
0
⋮
0
1

⎤
⎥
⎥
⎥
⎦

where Λ is a k+1 x 1 matrix, Δℎ is a k_1 x k+1 matrix, and Θℎ is a k+1 x 1 matrix.
This specification sets 𝑁𝑡 = ℎ1𝑡−1, 𝑛𝑡 = 𝑐𝑡, ℎ𝜏+1,𝑡−1 = 𝑛𝑡−(𝑘−𝜏) for 𝜏 = 1, ..., 𝑘.
Below we set things up so that the number of years of education, 𝑘, can be varied.

21.2.2 Technology

To capture Ryoo and Rosen’s [RR04] supply curve, we use the physical technology:

𝑐𝑡 = 𝑖𝑡 + 𝑑1𝑡

𝜓1𝑖𝑡 = 𝑔𝑡

where 𝜓1 is inversely proportional to 𝛼𝑠.

21.2.3 Information

Because we want 𝑏𝑡 = 𝜖𝑑𝑡 and 𝑑1𝑡 = 𝜖𝑠𝑡, we set

𝐴22 = ⎡⎢
⎣

1 0 0
0 𝜌𝑠 0
0 0 𝜌𝑑

⎤⎥
⎦

, 𝐶2 = ⎡⎢
⎣

0 0
1 0
0 1

⎤⎥
⎦

, 𝑈𝑏 = [30 0 1] , 𝑈𝑑 = [10 1 0
0 0 0]

where 𝜌𝑠 and 𝜌𝑑 describe the persistence of the supply and demand shocks

374 Chapter 21. Rosen Schooling Model

Advanced Quantitative Economics with Python

Information = namedtuple('Information', ['a22', 'c2','ub','ud'])
Technology = namedtuple('Technology', ['ϕ_c', 'ϕ_g', 'ϕ_i', 'γ', 'δ_k', 'θ_k'])
Preferences = namedtuple('Preferences', ['β', 'l_λ', 'π_h', 'δ_h', 'θ_h'])

21.2.4 Effects of Changes in Education Technology and Demand

We now study how changing
• the number of years of education required to become an engineer and
• the slope of the demand curve

affects responses to demand shocks.
To begin, we set 𝑘 = 4 and 𝛼𝑑 = 0.1

k = 4 # Number of periods of schooling required to become an engineer

β = np.array([[1 / 1.05]])
α_d = np.array([[0.1]])
α_s = 1
ε_1 = 1e-7
λ_1 = np.full((1, k), ε_1)
Use of ε_1 is trick to aquire detectability, see HS2013 p. 228 footnote 4
l_λ = np.hstack((α_d, λ_1))
π_h = np.array([[0]])

δ_n = np.array([[0.95]])
d1 = np.vstack((δ_n, np.zeros((k - 1, 1))))
d2 = np.hstack((d1, np.eye(k)))
δ_h = np.vstack((d2, np.zeros((1, k + 1))))

θ_h = np.vstack((np.zeros((k, 1)),
np.ones((1, 1))))

ψ_1 = 1 / α_s

ϕ_c = np.array([[1], [0]])
ϕ_g = np.array([[0], [-1]])
ϕ_i = np.array([[-1], [ψ_1]])
γ = np.array([[0], [0]])

δ_k = np.array([[0]])
θ_k = np.array([[0]])

ρ_s = 0.8
ρ_d = 0.8

a22 = np.array([[1, 0, 0],
[0, ρ_s, 0],
[0, 0, ρ_d]])

c2 = np.array([[0, 0], [10, 0], [0, 10]])
ub = np.array([[30, 0, 1]])
ud = np.array([[10, 1, 0], [0, 0, 0]])

(continues on next page)

21.2. Mapping into HS2013 Framework 375

Advanced Quantitative Economics with Python

(continued from previous page)

info1 = Information(a22, c2, ub, ud)
tech1 = Technology(ϕ_c, ϕ_g, ϕ_i, γ, δ_k, θ_k)
pref1 = Preferences(β, l_λ, π_h, δ_h, θ_h)

econ1 = DLE(info1, tech1, pref1)

We create three other instances by:
1. Raising 𝛼𝑑 to 2
2. Raising 𝑘 to 7
3. Raising 𝑘 to 10

α_d = np.array([[2]])
l_λ = np.hstack((α_d, λ_1))
pref2 = Preferences(β, l_λ, π_h, δ_h, θ_h)
econ2 = DLE(info1, tech1, pref2)

α_d = np.array([[0.1]])

k = 7
λ_1 = np.full((1, k), ε_1)
l_λ = np.hstack((α_d, λ_1))
d1 = np.vstack((δ_n, np.zeros((k - 1, 1))))
d2 = np.hstack((d1, np.eye(k)))
δ_h = np.vstack((d2, np.zeros((1, k+1))))
θ_h = np.vstack((np.zeros((k, 1)),

np.ones((1, 1))))

Pref3 = Preferences(β, l_λ, π_h, δ_h, θ_h)
econ3 = DLE(info1, tech1, Pref3)

k = 10
λ_1 = np.full((1, k), ε_1)
l_λ = np.hstack((α_d, λ_1))
d1 = np.vstack((δ_n, np.zeros((k - 1, 1))))
d2 = np.hstack((d1, np.eye(k)))
δ_h = np.vstack((d2, np.zeros((1, k + 1))))
θ_h = np.vstack((np.zeros((k, 1)),

np.ones((1, 1))))

pref4 = Preferences(β, l_λ, π_h, δ_h, θ_h)
econ4 = DLE(info1, tech1, pref4)

shock_demand = np.array([[0], [1]])

econ1.irf(ts_length=25, shock=shock_demand)
econ2.irf(ts_length=25, shock=shock_demand)
econ3.irf(ts_length=25, shock=shock_demand)
econ4.irf(ts_length=25, shock=shock_demand)

The first figure plots the impulse response of 𝑛𝑡 (on the left) and𝑁𝑡 (on the right) to a positive demand shock, for𝛼𝑑 = 0.1
and 𝛼𝑑 = 2.
When 𝛼𝑑 = 2, the number of new students 𝑛𝑡 rises initially, but the response then turns negative.
A positive demand shock raises wages, drawing new students into the profession.

376 Chapter 21. Rosen Schooling Model

Advanced Quantitative Economics with Python

However, these new students raise 𝑁𝑡.
The higher is 𝛼𝑑, the larger the effect of this rise in 𝑁𝑡 on wages.
This counteracts the demand shock’s positive effect on wages, reducing the number of new students in subsequent periods.
Consequently, when 𝛼𝑑 is lower, the effect of a demand shock on 𝑁𝑡 is larger

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(econ1.c_irf,label='$\\alpha_d = 0.1$')
ax1.plot(econ2.c_irf,label='$\\alpha_d = 2$')
ax1.legend()
ax1.set_title('Response of n_t to a demand shock')

ax2.plot(econ1.h_irf[:, 0], label='$\\alpha_d = 0.1$')
ax2.plot(econ2.h_irf[:, 0], label='$\\alpha_d = 24$')
ax2.legend()
ax2.set_title('Response of N_t to a demand shock')
plt.show()

The next figure plots the impulse response of 𝑛𝑡 (on the left) and 𝑁𝑡 (on the right) to a positive demand shock, for 𝑘 = 4,
𝑘 = 7 and 𝑘 = 10 (with 𝛼𝑑 = 0.1)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(econ1.c_irf, label='$k=4$')
ax1.plot(econ3.c_irf, label='$k=7$')
ax1.plot(econ4.c_irf, label='$k=10$')
ax1.legend()
ax1.set_title('Response of n_t to a demand shock')

ax2.plot(econ1.h_irf[:,0], label='$k=4$')
ax2.plot(econ3.h_irf[:,0], label='$k=7$')
ax2.plot(econ4.h_irf[:,0], label='$k=10$')
ax2.legend()
ax2.set_title('Response of N_t to a demand shock')
plt.show()

21.2. Mapping into HS2013 Framework 377

Advanced Quantitative Economics with Python

Both panels in the above figure show that raising 𝑘 lowers the effect of a positive demand shock on entry into the engi-
neering profession.
Increasing the number of periods of schooling lowers the number of new students in response to a demand shock.
This occurs because with longer required schooling, new students ultimately benefit less from the impact of that shock on
wages.

378 Chapter 21. Rosen Schooling Model

CHAPTER

TWENTYTWO

CATTLE CYCLES

Contents

• Cattle Cycles

– The Model

– Mapping into HS2013 Framework

This is another member of a suite of lectures that use the quantecon DLE class to instantiate models within the [HS13]
class of models described in detail in Recursive Models of Dynamic Linear Economies.
In addition to what’s in Anaconda, this lecture uses the quantecon library.

!pip install --upgrade quantecon

This lecture uses the DLE class to construct instances of the “Cattle Cycles” model of Rosen, Murphy and Scheinkman
(1994) [RMS94].
That paper constructs a rational expectations equilibrium model to understand sources of recurrent cycles in US cattle
stocks and prices.
We make the following imports:

import numpy as np
import matplotlib.pyplot as plt
from collections import namedtuple
from quantecon import DLE
from math import sqrt
%matplotlib inline

22.1 The Model

The model features a static linear demand curve and a “time-to-grow” structure for cattle.
Let 𝑝𝑡 be the price of slaughtered beef, 𝑚𝑡 the cost of preparing an animal for slaughter, ℎ𝑡 the holding cost for a mature
animal, 𝛾1ℎ𝑡 the holding cost for a yearling, and 𝛾0ℎ𝑡 the holding cost for a calf.
The cost processes {ℎ𝑡, 𝑚𝑡}∞

𝑡=0 are exogenous, while the price process {𝑝𝑡}∞
𝑡=0 is determined within a rational expecta-

tions equilibrium.
Let 𝑥𝑡 be the breeding stock, and 𝑦𝑡 be the total stock of cattle.

379

Advanced Quantitative Economics with Python

The law of motion for the breeding stock is

𝑥𝑡 = (1 − 𝛿)𝑥𝑡−1 + 𝑔𝑥𝑡−3 − 𝑐𝑡

where 𝑔 < 1 is the number of calves that each member of the breeding stock has each year, and 𝑐𝑡 is the number of cattle
slaughtered.
The total headcount of cattle is

𝑦𝑡 = 𝑥𝑡 + 𝑔𝑥𝑡−1 + 𝑔𝑥𝑡−2

This equation states that the total number of cattle equals the sum of adults, calves and yearlings, respectively.
A representative farmer chooses {𝑐𝑡, 𝑥𝑡} to maximize:

𝔼0
∞

∑
𝑡=0

𝛽𝑡{𝑝𝑡𝑐𝑡 − ℎ𝑡𝑥𝑡 − 𝛾0ℎ𝑡(𝑔𝑥𝑡−1) − 𝛾1ℎ𝑡(𝑔𝑥𝑡−2) − 𝑚𝑡𝑐𝑡 − 𝜓1
2 𝑥2

𝑡 − 𝜓2
2 𝑥2

𝑡−1 − 𝜓3
2 𝑥2

𝑡−3 − 𝜓4
2 𝑐2

𝑡 }

subject to the law of motion for 𝑥𝑡, taking as given the stochastic laws of motion for the exogenous processes, the equi-
librium price process, and the initial state [𝑥−1, 𝑥−2, 𝑥−3].
Remark The 𝜓𝑗 parameters are very small quadratic costs that are included for technical reasons to make well posed and
well behaved the linear quadratic dynamic programming problem solved by the fictitious planner who in effect chooses
equilibrium quantities and shadow prices.

Demand for beef is government by 𝑐𝑡 = 𝑎0 − 𝑎1𝑝𝑡 + ̃𝑑𝑡 where ̃𝑑𝑡 is a stochastic process with mean zero, representing a
demand shifter.

22.2 Mapping into HS2013 Framework

22.2.1 Preferences

We set Λ = 0, Δℎ = 0, Θℎ = 0, Π = 𝛼− 1
2

1 and 𝑏𝑡 = Π ̃𝑑𝑡 + Π𝛼0.
With these settings, the FOC for the household’s problem becomes the demand curve of the “Cattle Cycles” model.

22.2.2 Technology

To capture the law of motion for cattle, we set

Δ𝑘 = ⎡⎢
⎣

(1 − 𝛿) 0 𝑔
1 0 0
0 1 0

⎤⎥
⎦

, Θ𝑘 = ⎡⎢
⎣

1
0
0

⎤⎥
⎦

(where 𝑖𝑡 = −𝑐𝑡).
To capture the production of cattle, we set

Φ𝑐 =
⎡
⎢
⎢
⎢
⎣

1
𝑓1
0
0

−𝑓7

⎤
⎥
⎥
⎥
⎦

, Φ𝑔 =
⎡
⎢
⎢
⎢
⎣

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎦

, Φ𝑖 =
⎡
⎢
⎢
⎢
⎣

1
0
0
0
0

⎤
⎥
⎥
⎥
⎦

, Γ =
⎡
⎢
⎢
⎢
⎣

0 0 0
𝑓1(1 − 𝛿) 0 𝑔𝑓1

𝑓3 0 0
0 𝑓5 0
0 0 0

⎤
⎥
⎥
⎥
⎦

380 Chapter 22. Cattle Cycles

Advanced Quantitative Economics with Python

22.2.3 Information

We set

𝐴22 =
⎡
⎢⎢
⎣

1 0 0 0
0 𝜌1 0 0
0 0 𝜌2 0
0 0 0 𝜌3

⎤
⎥⎥
⎦

, 𝐶2 =
⎡
⎢⎢
⎣

0 0 0
1 0 0
0 1 0
0 0 15

⎤
⎥⎥
⎦

, 𝑈𝑏 = [Π𝛼0 0 0 Π] , 𝑈𝑑 =
⎡
⎢
⎢
⎢
⎣

0
𝑓2𝑈ℎ
𝑓4𝑈ℎ
𝑓6𝑈ℎ
𝑓8𝑈ℎ

⎤
⎥
⎥
⎥
⎦

To map this into our class, we set 𝑓2
1 = Ψ1

2 , 𝑓2
2 = Ψ2

2 , 𝑓2
3 = Ψ3

2 , 2𝑓1𝑓2 = 1, 2𝑓3𝑓4 = 𝛾0𝑔, 2𝑓5𝑓6 = 𝛾1𝑔.

We define namedtuples in this way as it allows us to check, for example,
what matrices are associated with a particular technology.

Information = namedtuple('Information', ['a22', 'c2', 'ub', 'ud'])
Technology = namedtuple('Technology', ['ϕ_c', 'ϕ_g', 'ϕ_i', 'γ', 'δ_k', 'θ_k'])
Preferences = namedtuple('Preferences', ['β', 'l_λ', 'π_h', 'δ_h', 'θ_h'])

We set parameters to those used by [RMS94]

β = np.array([[0.909]])
lλ = np.array([[0]])

a1 = 0.5
πh = np.array([[1 / (sqrt(a1))]])
δh = np.array([[0]])
θh = np.array([[0]])

δ = 0.1
g = 0.85
f1 = 0.001
f3 = 0.001
f5 = 0.001
f7 = 0.001

ϕc = np.array([[1], [f1], [0], [0], [-f7]])

ϕg = np.array([[0, 0, 0, 0],
[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1,0],
[0, 0, 0, 1]])

ϕi = np.array([[1], [0], [0], [0], [0]])

γ = np.array([[0, 0, 0],
[f1 * (1 - δ), 0, g * f1],
[f3, 0, 0],
[0, f5, 0],
[0, 0, 0]])

δk = np.array([[1 - δ, 0, g],
[1, 0, 0],
[0, 1, 0]])

θk = np.array([[1], [0], [0]])

(continues on next page)

22.2. Mapping into HS2013 Framework 381

Advanced Quantitative Economics with Python

(continued from previous page)

ρ1 = 0
ρ2 = 0
ρ3 = 0.6
a0 = 500
γ0 = 0.4
γ1 = 0.7
f2 = 1 / (2 * f1)
f4 = γ0 * g / (2 * f3)
f6 = γ1 * g / (2 * f5)
f8 = 1 / (2 * f7)

a22 = np.array([[1, 0, 0, 0],
[0, ρ1, 0, 0],
[0, 0, ρ2, 0],
[0, 0, 0, ρ3]])

c2 = np.array([[0, 0, 0],
[1, 0, 0],
[0, 1, 0],
[0, 0, 15]])

πh_scalar = πh.item()
ub = np.array([[πh_scalar * a0, 0, 0, πh_scalar]])
uh = np.array([[50, 1, 0, 0]])
um = np.array([[100, 0, 1, 0]])
ud = np.vstack(([0, 0, 0, 0],

f2 * uh, f4 * uh, f6 * uh, f8 * um))

Notice that we have set 𝜌1 = 𝜌2 = 0, so ℎ𝑡 and 𝑚𝑡 consist of a constant and a white noise component.
We set up the economy using tuples for information, technology and preference matrices below.
We also construct two extra information matrices, corresponding to cases when 𝜌3 = 1 and 𝜌3 = 0 (as opposed to the
baseline case of 𝜌3 = 0.6).

info1 = Information(a22, c2, ub, ud)
tech1 = Technology(ϕc, ϕg, ϕi, γ, δk, θk)
pref1 = Preferences(β, lλ, πh, δh, θh)

ρ3_2 = 1
a22_2 = np.array([[1, 0, 0, 0],

[0, ρ1, 0, 0],
[0, 0, ρ2, 0],
[0, 0, 0, ρ3_2]])

info2 = Information(a22_2, c2, ub, ud)

ρ3_3 = 0
a22_3 = np.array([[1, 0, 0, 0],

[0, ρ1, 0, 0],
[0, 0, ρ2, 0],
[0, 0, 0, ρ3_3]])

info3 = Information(a22_3, c2, ub, ud)

(continues on next page)

382 Chapter 22. Cattle Cycles

Advanced Quantitative Economics with Python

(continued from previous page)

Example of how we can look at the matrices associated with a given namedtuple
info1.a22

array([[1. , 0. , 0. , 0.],
[0. , 0. , 0. , 0.],
[0. , 0. , 0. , 0.],
[0. , 0. , 0. , 0.6]])

Use tuples to define DLE class
econ1 = DLE(info1, tech1, pref1)
econ2 = DLE(info2, tech1, pref1)
econ3 = DLE(info3, tech1, pref1)

Calculate steady-state in baseline case and use to set the initial condition
econ1.compute_steadystate(nnc=4)
x0 = econ1.zz

econ1.compute_sequence(x0, ts_length=100)

[RMS94] use the model to understand the sources of recurrent cycles in total cattle stocks.
Plotting 𝑦𝑡 for a simulation of their model shows its ability to generate cycles in quantities

Calculation of y_t
totalstock = econ1.k[0] + g * econ1.k[1] + g * econ1.k[2]
fig, ax = plt.subplots()
ax.plot(totalstock)
ax.set_xlim((-1, 100))
ax.set_title('Total number of cattle')
plt.show()

22.2. Mapping into HS2013 Framework 383

Advanced Quantitative Economics with Python

In their Figure 3, [RMS94] plot the impulse response functions of consumption and the breeding stock of cattle to the
demand shock, ̃𝑑𝑡, under the three different values of 𝜌3.
We replicate their Figure 3 below

shock_demand = np.array([[0], [0], [1]])

econ1.irf(ts_length=25, shock=shock_demand)
econ2.irf(ts_length=25, shock=shock_demand)
econ3.irf(ts_length=25, shock=shock_demand)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(econ1.c_irf, label=r'$\rho=0.6$')
ax1.plot(econ2.c_irf, label=r'$\rho=1$')
ax1.plot(econ3.c_irf, label=r'$\rho=0$')
ax1.set_title('Consumption response to demand shock')
ax1.legend()

ax2.plot(econ1.k_irf[:, 0], label=r'$\rho=0.6$')
ax2.plot(econ2.k_irf[:, 0], label=r'$\rho=1$')
ax2.plot(econ3.k_irf[:, 0], label=r'$\rho=0$')
ax2.set_title('Breeding stock response to demand shock')
ax2.legend()
plt.show()

384 Chapter 22. Cattle Cycles

Advanced Quantitative Economics with Python

The above figures show how consumption patterns differ markedly, depending on the persistence of the demand shock:
• If it is purely transitory (𝜌3 = 0) then consumption rises immediately but is later reduced to build stocks up again.
• If it is permanent (𝜌3 = 1), then consumption falls immediately, in order to build up stocks to satisfy the permanent
rise in future demand.

In Figure 4 of their paper, [RMS94] plot the response to a demand shock of the breeding stock and the total stock, for
𝜌3 = 0 and 𝜌3 = 0.6.
We replicate their Figure 4 below

total1_irf = econ1.k_irf[:, 0] + g * econ1.k_irf[:, 1] + g * econ1.k_irf[:, 2]
total3_irf = econ3.k_irf[:, 0] + g * econ3.k_irf[:, 1] + g * econ3.k_irf[:, 2]

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(econ1.k_irf[:, 0], label='Breeding Stock')
ax1.plot(total1_irf, label='Total Stock')
ax1.set_title(r'$\rho=0.6$')

ax2.plot(econ3.k_irf[:, 0], label='Breeding Stock')
ax2.plot(total3_irf, label='Total Stock')
ax2.set_title(r'$\rho=0$')
plt.show()

The fact that 𝑦𝑡 is a weighted moving average of 𝑥𝑡 creates a humped shape response of the total stock in response to
demand shocks, contributing to the cyclicality seen in the first graph of this lecture.

22.2. Mapping into HS2013 Framework 385

Advanced Quantitative Economics with Python

386 Chapter 22. Cattle Cycles

CHAPTER

TWENTYTHREE

SHOCK NON INVERTIBILITY

Contents

• Shock Non Invertibility

– Overview

– Model

– Code

23.1 Overview

This is another member of a suite of lectures that use the quantecon DLE class to instantiate models within the [HS13]
class of models described in Recursive Models of Dynamic Linear Economies.
In addition to what’s in Anaconda, this lecture uses the quantecon library.

!pip install --upgrade quantecon

We’ll make these imports:

import numpy as np
import quantecon as qe
import matplotlib.pyplot as plt
from quantecon import DLE
from math import sqrt
%matplotlib inline

This lecture describes an early contribution to what is now often called a news and noise issue.
In particular, it analyzes a shock-invertibility issue that is endemic within a class of permanent income models.
Technically, the invertibility problem indicates a situation in which histories of the shocks in an econometrician’s autore-
gressive or Wold moving average representation span a smaller information space than do the shocks that are seen by the
agents inside the econometrician’s model.
An econometrician who is unaware of the problem would misinterpret shocks and likely responses to them.
A shock-invertibility that is technically close to the one studied here is discussed by Eric Leeper, ToddWalker, and Susan
Yang [LWY13] in their analysis of fiscal foresight.

387

Advanced Quantitative Economics with Python

A distinct shock-invertibility issue is present in the special LQ consumption smoothing model in this quantecon lecture
Information and Consumption Smoothing.

23.2 Model

We consider the following modification of Robert Hall’s (1978) model [Hal78] in which the endowment process is the
sum of two orthogonal autoregressive processes:
Preferences

−1
2𝔼

∞
∑
𝑡=0

𝛽𝑡[(𝑐𝑡 − 𝑏𝑡)2 + 𝑙2𝑡]|𝐽0

𝑠𝑡 = 𝑐𝑡

𝑏𝑡 = 𝑈𝑏𝑧𝑡

Technology

𝑐𝑡 + 𝑖𝑡 = 𝛾𝑘𝑡−1 + 𝑑𝑡

𝑘𝑡 = 𝛿𝑘𝑘𝑡−1 + 𝑖𝑡

𝑔𝑡 = 𝜙1𝑖𝑡 , 𝜙1 > 0

𝑔𝑡 ⋅ 𝑔𝑡 = 𝑙2𝑡
Information

𝑧𝑡+1 =

⎡
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 0
0 0.9 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎥
⎦

𝑧𝑡 +

⎡
⎢
⎢
⎢
⎢
⎣

0 0
1 0
0 4
0 0
0 0
0 0

⎤
⎥
⎥
⎥
⎥
⎦

𝑤𝑡+1

𝑈𝑏 = [30 0 0 0 0 0]

𝑈𝑑 = [5 1 1 0.8 0.6 0.4
0 0 0 0 0 0]

The preference shock is constant at 30, while the endowment process is the sum of a constant and two orthogonal processes.
Specifically:

𝑑𝑡 = 5 + 𝑑1𝑡 + 𝑑2𝑡

𝑑1𝑡 = 0.9𝑑1𝑡−1 + 𝑤1𝑡

𝑑2𝑡 = 4𝑤2𝑡 + 0.8(4𝑤2𝑡−1) + 0.6(4𝑤2𝑡−2) + 0.4(4𝑤2𝑡−3)
𝑑1𝑡 is a first-order AR process, while 𝑑2𝑡 is a third-order pure moving average process.

388 Chapter 23. Shock Non Invertibility

Advanced Quantitative Economics with Python

γ_1 = 0.05
γ = np.array([[γ_1], [0]])
ϕ_c = np.array([[1], [0]])
ϕ_g = np.array([[0], [1]])
ϕ_1 = 0.00001
ϕ_i = np.array([[1], [-ϕ_1]])
δ_k = np.array([[1]])
θ_k = np.array([[1]])
β = np.array([[1 / 1.05]])
l_λ = np.array([[0]])
π_h = np.array([[1]])
δ_h = np.array([[.9]])
θ_h = np.array([[1]]) - δ_h
ud = np.array([[5, 1, 1, 0.8, 0.6, 0.4],

[0, 0, 0, 0, 0, 0]])
a22 = np.zeros((6, 6))
Chase's great trick
a22[[0, 1, 3, 4, 5], [0, 1, 2, 3, 4]] = np.array([1.0, 0.9, 1.0, 1.0, 1.0])
c2 = np.zeros((6, 2))
c2[[1, 2], [0, 1]] = np.array([1.0, 4.0])
ub = np.array([[30, 0, 0, 0, 0, 0]])
x0 = np.array([[5], [150], [1], [0], [0], [0], [0], [0]])

info1 = (a22, c2, ub, ud)
tech1 = (ϕ_c, ϕ_g, ϕ_i, γ, δ_k, θ_k)
pref1 = (β, l_λ, π_h, δ_h, θ_h)

econ1 = DLE(info1, tech1, pref1)

We define the household’s net of interest deficit as 𝑐𝑡 − 𝑑𝑡.
Hall’s model imposes “expected present-value budget balance” in the sense that

𝔼
∞

∑
𝑗=0

𝛽𝑗(𝑐𝑡+𝑗 − 𝑑𝑡+𝑗)|𝐽𝑡 = 𝛽−1𝑘𝑡−1 ∀𝑡

Define a moving average representation of (𝑐𝑡, 𝑐𝑡 − 𝑑𝑡) in terms of the 𝑤𝑡s to be:

[𝑐𝑡
𝑐𝑡 − 𝑑𝑡

] = [𝜎1(𝐿)
𝜎2(𝐿)] 𝑤𝑡

Hall’s model imposes the restriction 𝜎2(𝛽) = [0 0].
• The consumer who lives inside this model observes histories of both components of the endowment process 𝑑1𝑡
and 𝑑2𝑡.

• The econometrician has data on the history of the pair [𝑐𝑡, 𝑑𝑡], but not directly on the history of 𝑤𝑡’s.
• The econometrician obtains a Wold representation for the process [𝑐𝑡, 𝑐𝑡 − 𝑑𝑡]:

[𝑐𝑡
𝑐𝑡 − 𝑑𝑡

] = [𝜎∗
1(𝐿)

𝜎∗
2(𝐿)] 𝑢𝑡

A representation with equivalent shocks would be recovered by estimating a bivariate vector autoregression for 𝑐𝑡, 𝑐𝑡 −𝑑𝑡.
The Appendix of chapter 8 of [HS13] explains why the impulse response functions in the Wold representation estimated
by the econometrician do not resemble the impulse response functions that depict the response of consumption and the
net-of-interest deficit to innovations 𝑤𝑡 to the consumer’s information.
Technically, 𝜎2(𝛽) = [0 0] implies that the history of 𝑢𝑡s spans a smaller linear space than does the history of 𝑤𝑡s.

23.2. Model 389

Advanced Quantitative Economics with Python

This means that 𝑢𝑡 will typically be a distributed lag of 𝑤𝑡 that is not concentrated at zero lag:

𝑢𝑡 =
∞

∑
𝑗=0

𝛼𝑗𝑤𝑡−𝑗

Thus, the econometrician’s news 𝑢𝑡 typically responds belatedly to the consumer’s news 𝑤𝑡.

23.3 Code

We will construct Figures from Chapter 8 Appendix E of [HS13] to illustrate these ideas:

This is Fig 8.E.1 from p.188 of HS2013

econ1.irf(ts_length=40, shock=None)

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(econ1.c_irf, label='Consumption')
ax1.plot(econ1.c_irf - econ1.d_irf[:,0].reshape(40,1), label='Deficit')
ax1.legend()
ax1.set_title('Response to w_{1t}')

shock2 = np.array([[0], [1]])
econ1.irf(ts_length=40, shock=shock2)

ax2.plot(econ1.c_irf, label='Consumption')
ax2.plot(econ1.c_irf - econ1.d_irf[:,0].reshape(40, 1), label='Deficit')
ax2.legend()
ax2.set_title('Response to w_{2t}')
plt.show()

The above figure displays the impulse response of consumption and the net-of-interest deficit to the innovations 𝑤𝑡 to the
consumer’s non-financial income or endowment process.
Consumption displays the characteristic “random walk” response with respect to each innovation.
Each endowment innovation leads to a temporary surplus followed by a permanent net-of-interest deficit.
The temporary surplus just offsets the permanent deficit in terms of expected present value.

390 Chapter 23. Shock Non Invertibility

Advanced Quantitative Economics with Python

G_HS = np.vstack([econ1.Sc, econ1.Sc-econ1.Sd[0, :].reshape(1, 8)])
H_HS = 1e-8 * np.eye(2) # Set very small so there is no measurement error
lss_hs = qe.LinearStateSpace(econ1.A0, econ1.C, G_HS, H_HS)

hs_kal = qe.Kalman(lss_hs)
w_lss = hs_kal.whitener_lss()
ma_coefs = hs_kal.stationary_coefficients(50, 'ma')

This is Fig 8.E.2 from p.189 of HS2013

ma_coefs = ma_coefs
jj = 50
y1_w1 = np.empty(jj)
y2_w1 = np.empty(jj)
y1_w2 = np.empty(jj)
y2_w2 = np.empty(jj)

for t in range(jj):
y1_w1[t] = ma_coefs[t][0, 0]
y1_w2[t] = ma_coefs[t][0, 1]
y2_w1[t] = ma_coefs[t][1, 0]
y2_w2[t] = ma_coefs[t][1, 1]

This scales the impulse responses to match those in the book
y1_w1 = sqrt(hs_kal.stationary_innovation_covar()[0, 0]) * y1_w1
y2_w1 = sqrt(hs_kal.stationary_innovation_covar()[0, 0]) * y2_w1
y1_w2 = sqrt(hs_kal.stationary_innovation_covar()[1, 1]) * y1_w2
y2_w2 = sqrt(hs_kal.stationary_innovation_covar()[1, 1]) * y2_w2

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(y1_w1, label='Consumption')
ax1.plot(y2_w1, label='Deficit')
ax1.legend()
ax1.set_title('Response to u_{1t}')

ax2.plot(y1_w2, label='Consumption')
ax2.plot(y2_w2, label='Deficit')
ax2.legend()
ax2.set_title('Response to u_{2t}')
plt.show()

The above figure displays the impulse response of consumption and the deficit to the innovations in the econometrician’s

23.3. Code 391

Advanced Quantitative Economics with Python

Wold representation
• this is the object that would be recovered from a high order vector autoregression on the econometrician’s obser-
vations.

Consumption responds only to the first innovation
• this is indicative of the Granger causality imposed on the [𝑐𝑡, 𝑐𝑡−𝑑𝑡] process by Hall’s model: consumption Granger
causes 𝑐𝑡 − 𝑑𝑡, with no reverse causality.

This is Fig 8.E.3 from p.189 of HS2013

jj = 20
irf_wlss = w_lss.impulse_response(jj)
ycoefs = irf_wlss[1]
Pull out the shocks
a1_w1 = np.empty(jj)
a1_w2 = np.empty(jj)
a2_w1 = np.empty(jj)
a2_w2 = np.empty(jj)

for t in range(jj):
a1_w1[t] = ycoefs[t][0, 0]
a1_w2[t] = ycoefs[t][0, 1]
a2_w1[t] = ycoefs[t][1, 0]
a2_w2[t] = ycoefs[t][1, 1]

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 4))
ax1.plot(a1_w1, label='Consumption innov.')
ax1.plot(a2_w1, label='Deficit innov.')
ax1.set_title('Response to w_{1t}')
ax1.legend()
ax2.plot(a1_w2, label='Consumption innov.')
ax2.plot(a2_w2, label='Deficit innov.')
ax2.legend()
ax2.set_title('Response to w_{2t}')
plt.show()

The above figure displays the impulse responses of 𝑢𝑡 to 𝑤𝑡, as depicted in:

𝑢𝑡 =
∞

∑
𝑗=0

𝛼𝑗𝑤𝑡−𝑗

392 Chapter 23. Shock Non Invertibility

Advanced Quantitative Economics with Python

While the responses of the innovations to consumption are concentrated at lag zero for both components of 𝑤𝑡, the
responses of the innovations to (𝑐𝑡 − 𝑑𝑡) are spread over time (especially in response to 𝑤1𝑡).
Thus, the innovations to (𝑐𝑡 − 𝑑𝑡) as revealed by the vector autoregression depend on what the economic agent views as
“old news”.

23.3. Code 393

Advanced Quantitative Economics with Python

394 Chapter 23. Shock Non Invertibility

Part V

Risk, Model Uncertainty, and Robustness

395

CHAPTER

TWENTYFOUR

RISK AND MODEL UNCERTAINTY

24.1 Overview

As an introduction to one possible approach to modeling Knightian uncertainty, this lecture describes static represen-
tations of five classes of preferences over risky prospects.
These preference specifications allow us to distinguish risk from uncertainty along lines proposed by [Kni21].
All five preference specifications incorporate risk aversion, meaning displeasure from risks governed by well known
probability distributions.
Two of them also incorporate uncertainty aversion, meaning dislike of not knowing a probability distribution.
The preference orderings are

• Expected utility preferences
• Constraint preferences
• Multiplier preferences
• Risk-sensitive preferences
• Ex post Bayesian expected utility preferences

This labeling scheme is taken from [HS01].
Constraint and multiplier preferences express aversion to not knowing a unique probabiity distribution that desribes ran-
dom outcomes.
Expected utility, risk-sensitive, and ex post Bayesian expected utility preferences all attribute a unique known probability
distribution to a decision maker.
We present things in a simple before-and-after one-period setting.
In addition to learning about these preference orderings, this lecture also describes some interesting code for computing
and graphing some representations of indifference curves, utility functions, and related objects.
Staring at these indifference curves provides insights into the different preferences.
Watch for the presence of a kink at the 45 degree line for the constraint preference indifference curves.
We begin with some that we’ll use to create some graphs.

Package imports
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
plt.rcParams["figure.figsize"] = (11, 5)

(continues on next page)

397

Advanced Quantitative Economics with Python

(continued from previous page)

from matplotlib import rc, cm
from mpl_toolkits.mplot3d import Axes3D
from scipy import optimize, stats
from scipy.io import loadmat
from matplotlib.collections import LineCollection
from matplotlib.colors import ListedColormap, BoundaryNorm
from numba import njit

24.2 Basic objects

Basic ingredients are
• a set of states of the world
• plans describing outcomes as functions of the state of the world,
• a utility function mapping outcomes into utilities
• either a probability distribution or a set of probability distributions over states of the world; and
• a way of measuring a discrepancy between two probability distributions.

In more detail, we’ll work with the following setting.
• A finite set of possible states 𝐼 = {𝑖 = 1, … , 𝐼}.
• A (consumption) plan is a function 𝑐 ∶ 𝐼 → ℝ.
• 𝑢 ∶ ℝ → ℝ is a utility function.

• 𝜋 is an 𝐼 × 1 vector of nonnegative probabilities over states, with 𝜋𝑖 ≥ 0, ∑𝐼
𝑖=1 𝜋𝑖 = 1.

• Relative entropy ent(𝜋, ̂𝜋) of a probability vector ̂𝜋 with respect to a probability vector 𝜋 is the expected value of
the logarithm of the likelihood ratio 𝑚𝑖 ≐ (�̂�𝑖

𝜋𝑖
) under distribution ̂𝜋 defined as:

ent(𝜋, ̂𝜋) =
𝐼

∑
𝑖=1

̂𝜋𝑖 log(
̂𝜋𝑖

𝜋𝑖
) =

𝐼
∑
𝑖=1

𝜋𝑖(
̂𝜋𝑖

𝜋𝑖
) log(̂𝜋𝑖

𝜋𝑖
)

or

ent(𝜋, ̂𝜋) =
𝐼

∑
𝑖=1

𝜋𝑖𝑚𝑖 log𝑚𝑖.

Remark: A likelihood ratio 𝑚𝑖 is a discrete random variable. For any discrete random variable {𝑥𝑖}𝐼
𝑖=1, the expected

value of 𝑥 under the ̂𝜋𝑖 distribution can be represented as the expected value under the 𝜋 distribution of the product of
𝑥𝑖 times the `shock’ 𝑚𝑖:

̂𝐸𝑥 =
𝐼

∑
𝑖=1

𝑥𝑖 ̂𝜋𝑖 =
𝐼

∑
𝑖=1

𝑚𝑖𝑥𝑖𝜋𝑖 = 𝐸𝑚𝑥,

where ̂𝐸 is the mathematical expectation under the ̂𝜋 distribution and 𝐸 is the expectation under the 𝜋 distribution.
Evidently,

̂𝐸1 = 𝐸𝑚 = 1

398 Chapter 24. Risk and Model Uncertainty

Advanced Quantitative Economics with Python

and relative entropy is

𝐸𝑚 log𝑚 = ̂𝐸 log𝑚.

In the three figures below, we plot relative entropy from several perspectives.
Our first figure depicts entropy as a function of ̂𝜋1 when 𝐼 = 2 and 𝜋1 = .5.
When 𝜋1 ∈ (0, 1), entropy is finite for both ̂𝜋1 = 0 and ̂𝜋1 = 1 because lim𝑥→0 𝑥 log𝑥 = 0
However, when 𝜋1 = 0 or 𝜋1 = 1, entropy is infinite.

Fig. 24.1: Figure 1

The heat maps in the next two figures vary both ̂𝜋1 and 𝜋1.
The following figure plots entropy.

24.2. Basic objects 399

Advanced Quantitative Economics with Python

The next figure plots the logarithm of entropy.

3.8205752275831846

/tmp/ipykernel_6440/3759713737.py:2: RuntimeWarning: divide by zero encountered in␣
↪log
plt.pcolormesh(x, y, np.log(ent_vals_mat.T), shading='gouraud', cmap='seismic')

400 Chapter 24. Risk and Model Uncertainty

Advanced Quantitative Economics with Python

24.3 Five preference specifications

We describe five types of preferences over plans.
• Expected utility preferences
• Constraint preferences
• Multiplier preferences
• Risk-sensitive preferences
• Ex post Bayesian expected utility preferences

Expected utility, risk-sensitive, and ex post Bayesian prefernces are each cast in terms of a unique probability distribution,
so they can express risk-aversion, but not model ambiguity aversion.
Multiplier and constraint prefernces both express aversion to concerns about model misppecification, i.e., model uncer-
tainty; both are cast in terms of a set or sets of probability distributions.

• The set of distributions expresses the decision maker’s ambiguity about the probability model.

24.3. Five preference specifications 401

Advanced Quantitative Economics with Python

• Minimization over probability distributions expresses his aversion to ambiguity.

24.4 Expected utility

A decision maker is said to have expected utility preferences when he ranks plans 𝑐 by their expected utilities
𝐼

∑
𝑖=1

𝑢(𝑐𝑖)𝜋𝑖, (24.1)

where 𝑢 is a unique utility function and 𝜋 is a unique probability measure over states.
• A known 𝜋 expresses risk.
• Curvature of 𝑢 expresses risk aversion.

24.5 Constraint preferences

A decision maker is said to have constraint preferences when he ranks plans 𝑐 according to

min
{𝑚𝑖≥0}𝐼

𝑖=1

𝐼
∑
𝑖=1

𝑚𝑖𝜋𝑖𝑢(𝑐𝑖) (24.2)

subject to
𝐼

∑
𝑖=1

𝜋𝑖𝑚𝑖 log𝑚𝑖 ≤ 𝜂 (24.3)

and
𝐼

∑
𝑖=1

𝜋𝑖𝑚𝑖 = 1. (24.4)

In (24.3), 𝜂 ≥ 0 defines an entropy ball of probability distributions ̂𝜋 = 𝑚𝜋 that surround a baseline distribution 𝜋.
As noted earlier, ∑𝐼

𝑖=1 𝑚𝑖𝜋𝑖𝑢(𝑐𝑖) is the expected value of 𝑢(𝑐) under a twisted probability distribution { ̂𝜋𝑖}𝐼
𝑖=1 =

{𝑚𝑖𝜋𝑖}𝐼
𝑖=1.

Larger values of the entropy constraint 𝜂 indicate more apprehension about the baseline probability distribution {𝜋𝑖}𝐼
𝑖=1.

Following [HS01] and [HS08a], we call minimization problem (24.2) subject to (24.3) and(24.4) a constraint problem.
To find minimizing probabilities, we form a Lagrangian

𝐿 =
𝐼

∑
𝑖=1

𝑚𝑖𝜋𝑖𝑢(𝑐𝑖) + ̃𝜃[
𝐼

∑
𝑖=1

𝜋𝑖𝑚𝑖 log𝑚𝑖 − 𝜂] (24.5)

where ̃𝜃 ≥ 0 is a Lagrange multiplier associated with the entropy constraint.
Subject to the additional constraint that ∑𝐼

𝑖=1 𝑚𝑖𝜋𝑖 = 1, we want to minimize (24.5) with respect to {𝑚𝑖}𝐼
𝑖=1 and to

maximize it with respect to ̃𝜃.
The minimizing probability distortions (likelihood ratios) are

�̃�𝑖(𝑐; ̃𝜃) = exp(−𝑢(𝑐𝑖)/ ̃𝜃)
∑𝑗 𝜋𝑗 exp(−𝑢(𝑐𝑗)/ ̃𝜃)

. (24.6)

402 Chapter 24. Risk and Model Uncertainty

Advanced Quantitative Economics with Python

To compute the Lagrange multiplier ̃𝜃(𝑐, 𝜂), we must solve

∑
𝑖

𝜋𝑖�̃�𝑖(𝑐; ̃𝜃) log(�̃�𝑖(𝑐; ̃𝜃)) = 𝜂

or

∑
𝑖

𝜋𝑖
exp(−𝑢(𝑐𝑖)/ ̃𝜃)

∑𝑗 𝜋𝑗 exp(−𝑢(𝑐𝑗)/ ̃𝜃)
log[exp(−𝑢(𝑐𝑖)/ ̃𝜃)

∑𝑗 𝜋𝑗 exp(−𝑢(𝑐𝑗)/ ̃𝜃)
] = 𝜂 (24.7)

for ̃𝜃 = ̃𝜃(𝑐; 𝜂).
For a fixed 𝜂, the ̃𝜃 that solves equation (24.7) is evidently a function of the consumption plan 𝑐.
With ̃𝜃(𝑐; 𝜂) in hand we can obtain worst-case probabilities as functions 𝜋𝑖�̃�𝑖(𝑐; 𝜂) of 𝜂.
The indirect (expected) utility function under constraint preferences is

𝐼
∑
𝑖=1

𝜋𝑖�̃�𝑖(𝑐𝑖; 𝜂)𝑢(𝑐𝑖) =
𝐼

∑
𝑖=1

𝜋𝑖 ⎡⎢
⎣

exp(− ̃𝜃−1𝑢(𝑐𝑖))
∑𝐼

𝑗=1 exp(− ̃𝜃−1𝑢(𝑐𝑗))𝜋𝑗

⎤⎥
⎦

𝑢(𝑐𝑖). (24.8)

Entropy evaluated at the minimizing probability distortion (24.6) equals 𝐸�̃� log �̃� or
𝐼

∑
𝑖=1

⎡⎢
⎣

exp(− ̃𝜃−1𝑢(𝑐𝑖))
∑𝐼

𝑗=1 exp(− ̃𝜃−1𝑢(𝑐𝑗))𝜋𝑗

⎤⎥
⎦

×

{− ̃𝜃−1𝑢(𝑐𝑖) + log(
𝐼

∑
𝑗=1

exp(− ̃𝜃−1𝑢(𝑐𝑗))𝜋𝑗)} 𝜋𝑖

= − ̃𝜃−1
𝐼

∑
𝑖=1

𝜋𝑖 ⎡⎢
⎣

exp(− ̃𝜃−1𝑢(𝑐𝑖))
∑𝐼

𝑗=1 exp(− ̃𝜃−1𝑢(𝑐𝑗))𝜋𝑗

⎤⎥
⎦

𝑢(𝑐𝑖)

+ log(
𝐼

∑
𝑗=1

exp(− ̃𝜃−1𝑢(𝑐𝑗))𝜋𝑗) .

(24.9)

Expression (24.9) implies that

− ̃𝜃 log(
𝐼

∑
𝑗=1

exp(− ̃𝜃−1𝑢(𝑐𝑗))𝜋𝑗) =
𝐼

∑
𝑖=1

𝜋𝑖 ⎡⎢
⎣

exp(− ̃𝜃−1𝑢(𝑐𝑖))
∑𝐼

𝑗=1 exp(− ̃𝜃−1𝑢(𝑐𝑗))𝜋𝑗

⎤⎥
⎦

𝑢(𝑐𝑖)

+ ̃𝜃(𝑐; 𝜂)
𝐼

∑
𝑖=1

log �̃�𝑖(𝑐; 𝜂)�̃�𝑖(𝑐; 𝜂)𝜋𝑖,
(24.10)

where the last term is ̃𝜃 times the entropy of the worst-case probability distribution.

24.6 Multiplier preferences

A decision maker is said to havemultiplier preferences when he ranks consumption plans 𝑐 according to

T𝑢(𝑐) ≐ min
{𝑚𝑖≥0}𝐼

𝑖=1

𝐼
∑
𝑖=1

𝜋𝑖𝑚𝑖[𝑢(𝑐𝑖) + 𝜃 log𝑚𝑖] (24.11)

where minimization is subject to
𝐼

∑
𝑖=1

𝜋𝑖𝑚𝑖 = 1.

24.6. Multiplier preferences 403

Advanced Quantitative Economics with Python

Here 𝜃 ∈ (𝜃, +∞) is a ‘penalty parameter’ that governs a ‘cost’ to an ‘evil alter ego’ who distorts probabilities by choosing
{𝑚𝑖}𝐼

𝑖=1.
Lower values of the penalty parameter 𝜃 express more apprehension about the baseline probability distribution 𝜋.
Following [HS01] and [HS08a], we call the minimization problem on the right side of (24.11) a multiplier problem.
The minimizing probability distortion that solves the multiplier problem is

�̂�𝑖(𝑐; 𝜃) = exp(−𝑢(𝑐𝑖)/𝜃)
∑𝑗 𝜋𝑗 exp(−𝑢(𝑐𝑗)/𝜃) . (24.12)

We can solve

∑
𝑖

𝜋𝑖
exp(−𝑢(𝑐𝑖)/𝜃)

∑𝑗 𝜋𝑗 exp(−𝑢(𝑐𝑗)/𝜃) log[
exp(−𝑢(𝑐𝑖)/𝜃)

∑𝑗 𝜋𝑗 exp(−𝑢(𝑐𝑗)/𝜃)] = ̃𝜂 (24.13)

to find an entropy level ̃𝜂(𝑐; 𝜃) associated with multiplier preferences with penalty parameter 𝜃 and allocation 𝑐.
For a fixed 𝜃, the ̃𝜂 that solves equation (24.13) is a function of the consumption plan 𝑐
The forms of expressions (24.6) and (24.12) are identical, but the Lagrange multiplier ̃𝜃 appears in (24.6), while the
penalty parameter 𝜃 appears in (24.12).
Formulas (24.6) and (24.12) show that worst-case probabilities are context specific in the sense that they depend on both
the utility function 𝑢 and the consumption plan 𝑐.
If we add 𝜃 times entropy under the worst-case model to expected utility under the worst-case model, we find that the
indirect expected utility function under multiplier preferences is

−𝜃 log(
𝐼

∑
𝑗=1

exp(−𝜃−1𝑢(𝑐𝑗))𝜋𝑗) . (24.14)

24.7 Risk-sensitive preferences

Substituting �̂�𝑖 into ∑𝐼
𝑖=1 𝜋𝑖�̂�𝑖[𝑢(𝑐𝑖) + 𝜃 log �̂�𝑖] gives the indirect utility function

T𝑢(𝑐) ≐ −𝜃 log
𝐼

∑
𝑖=1

𝜋𝑖 exp(−𝑢(𝑐𝑖)/𝜃). (24.15)

Here T𝑢 in (24.15) is the risk-sensitivity operator of [Jac73], [Whi81], and [Whi90].
It defines a risk-sensitive preference ordering over plans 𝑐.
Because it is not linear in utilities 𝑢(𝑐𝑖) and probabilities 𝜋𝑖, it is said not to be separable across states.
Because risk-sensitive preferences use a unique probability distribution, they apparently express no model distrust or
ambiguity.
Instead, they make an additional adjustment for risk-aversion beyond that embedded in the curvature of 𝑢.
For 𝐼 = 2, 𝑐1 = 2, 𝑐2 = 1, 𝑢(𝑐) = ln 𝑐, the following figure plots the risk-sensitive criterion T𝑢(𝑐) defined in (24.15) as
a function of 𝜋1 for values of 𝜃 of 100 and .6.

404 Chapter 24. Risk and Model Uncertainty

Advanced Quantitative Economics with Python

For large values of 𝜃, T𝑢(𝑐) is approximately linear in the probability 𝜋1, but for lower values of 𝜃, T𝑢(𝑐) has considerable
curvature as a function of 𝜋1.
Under expected utility, i.e., 𝜃 = +∞, T𝑢(𝑐) is linear in 𝜋1, but it is convex as a function of 𝜋1 when 𝜃 < +∞.
The two panels in the next figure below can help us to visualize the extra adjustment for risk that the risk-sensitive operator
entails.
This will help us understand how the T transformation works by envisioning what function is being averaged.

24.7. Risk-sensitive preferences 405

Advanced Quantitative Economics with Python

The panel on the right portrays how the transformation exp (−𝑢(𝑐)
𝜃) sends 𝑢 (𝑐) to a new function by (i) flipping the sign,

and (ii) increasing curvature in proportion to 𝜃.
In the left panel, the red line is our tool for computing the mathematical expectation for different values of 𝜋.
The green lot indicates the mathematical expectation of exp (−𝑢(𝑐)

𝜃) when 𝜋 = .5.
Notice that the distance between the green dot and the curve is greater in the transformed space than the original space
as a result of additional curvature.
The inverse transformation 𝜃 log𝐸 [exp (−𝑢(𝑐)

𝜃)] generates the green dot on the left panel that constitutes the risk-
sensitive utility index.
The gap between the green dot and the red line on the left panel measures the additional adjustment for risk that risk-
sensitive preferences make relative to plain vanilla expected utility preferences.

24.7.1 Digression on moment generating functions

The risk-sensitivity operator T is intimately connected to a moment generating function.
In particular, a principal constinuent of the T operator, namely,

𝐸 exp(−𝑢(𝑐𝑖)/𝜃) =
𝐼

∑
𝑖=1

𝜋𝑖 exp(−𝑢(𝑐𝑖)/𝜃)

is evidently a moment generating function for the random variable 𝑢(𝑐𝑖), while

𝑔(𝜃−1) ≐ log
𝐼

∑
𝑖=1

𝜋𝑖 exp(−𝑢(𝑐𝑖)/𝜃)

is a cumulant generating function,

𝑔(𝜃−1) =
∞

∑
𝑗=1

𝜅𝑗
(−𝜃−1)𝑗

𝑗! .

where 𝜅𝑗 is the 𝑗th cumulant of the random variable 𝑢(𝑐).
Then

T𝑢(𝑐) = −𝜃𝑔(𝜃−1) = −𝜃
∞

∑
𝑗=1

𝜅𝑗
(−𝜃−1)𝑗

𝑗! .

406 Chapter 24. Risk and Model Uncertainty

Advanced Quantitative Economics with Python

In general, when 𝜃 < +∞, T𝑢(𝑐) depends on cumulants of all orders.
These statements extend to cases with continuous probability distributions for 𝑐 and therefore for 𝑢(𝑐).
For the special case 𝑢(𝑐) ∼ 𝒩(𝜇𝑢, 𝜎2

𝑢), 𝜅1 = 𝜇𝑢, 𝜅2 = 𝜎2
𝑢, and 𝜅𝑗 = 0 ∀𝑗 ≥ 3, so

T𝑢(𝑐) = 𝜇𝑢 − 1
2𝜃𝜎2

𝑢, (24.16)

which becomes expected utility 𝜇𝑢 when 𝜃−1 = 0.
The right side of equation (24.16) is a special case of stochastic differential utility preferences in which consumption
plans are ranked not just by their expected utilities 𝜇𝑢 but also the variances 𝜎2

𝑢 of their expected utilities.

24.8 Ex post Bayesian preferences

A decision maker is said to have ex post Bayesian preferences when he ranks consumption plans according to the
expected utility function

∑
𝑖

̂𝜋𝑖(𝑐∗)𝑢(𝑐𝑖) (24.17)

where ̂𝜋(𝑐∗) is the worst-case probability distribution associated with multiplier or constraint preferences evaluated at a
particular consumption plan 𝑐∗ = {𝑐∗

𝑖 }𝐼
𝑖=1.

At 𝑐∗, an ex post Bayesian’s indifference curves are tangent to those for multiplier and constraint preferences with appro-
priately chosen 𝜃 and 𝜂, respectively.

24.9 Comparing preferences

For the special case in which 𝐼 = 2, 𝑐1 = 2, 𝑐2 = 1, 𝑢(𝑐) = ln 𝑐, and 𝜋1 = .5, the following two figures depict how
worst-case probabilities are determined under constraint and multiplier preferences, respectively.
The first figure graphs entropy as a function of ̂𝜋1.

It also plots expected utility under the twisted probability distribution, namely, ̂𝐸𝑢(𝑐) = 𝑢(𝑐2) + ̂𝜋1(𝑢(𝑐1) − 𝑢(𝑐2)),
which is evidently a linear function of ̂𝜋1.

The entropy constraint ∑𝐼
𝑖=1 𝜋𝑖𝑚𝑖 log𝑚𝑖 ≤ 𝜂 implies a convex set Π̂1 of ̂𝜋1’s that constrains the adversary who chooses

̂𝜋1, namely, the set of ̂𝜋1’s for which the entropy curve lies below the horizontal dotted line at an entropy level of 𝜂 = .25.
Unless 𝑢(𝑐1) = 𝑢(𝑐2), the ̂𝜋1 that minimizes ̂𝐸𝑢(𝑐) is at the boundary of the set Π̂1.

24.8. Ex post Bayesian preferences 407

Advanced Quantitative Economics with Python

The next figure shows the function ∑𝐼
𝑖=1 𝜋𝑖𝑚𝑖[𝑢(𝑐𝑖) + 𝜃 log𝑚𝑖] that is to be minimized in the multiplier problem.

The argument of the function is ̂𝜋1 = 𝑚1𝜋1.

408 Chapter 24. Risk and Model Uncertainty

Advanced Quantitative Economics with Python

Evidently, from this figure and also from formula (24.12), lower values of 𝜃 lead to lower, and thus more distorted,
minimizing values of ̂𝜋1.

The figure indicates how one can construct a Lagrange multiplier ̃𝜃 associated with a given entropy constraint 𝜂 and a
given consumption plan.
Thus, to draw the figure, we set the penalty parameter for multiplier preferences 𝜃 so that the minimizing ̂𝜋1 equals the
minimizing ̂𝜋1 for the constraint problem from the previous figure.

The penalty parameter 𝜃 = .42 also equals the Lagrange multiplier ̃𝜃 on the entropy constraint for the constraint pref-
erences depicted in the previous figure because the ̂𝜋1 that minimizes the asymmetric curve associated with penalty
parameter 𝜃 = .42 is the same ̂𝜋1 associated with the intersection of the entropy curve and the entropy constraint dashed
vertical line.

24.10 Risk aversion and misspecification aversion

All five types of preferences use curvature of 𝑢 to express risk aversion.
Constraint preferences express concern about misspecification or ambiguity for short with a positive 𝜂 that circum-
scribes an entropy ball around an approximating probability distribution 𝜋, and aversion aversion to model misspecification
through minimization with respect to a likelihood ratio 𝑚.
Multiplier preferences express misspecification concerns with a parameter 𝜃 < +∞ that penalizes deviations from the
approximating model as measured by relative entropy, and they express aversion to misspecification concerns with mini-
mization over a probability distortion 𝑚.
By penalizing minimization over the likelihood ratio 𝑚, a decrease in 𝜃 represents an increase in ambiguity (or what
[Kni21] called uncertainty) about the specification of the baseline approximating model {𝜋𝑖}𝐼

𝑖=1.

24.10. Risk aversion and misspecification aversion 409

Advanced Quantitative Economics with Python

Formulas (24.6) assert that the decision maker acts as if he is pessimistic relative to an approximating model 𝜋.
It expresses what [Buc04] [p. 27] calls a statistical version of Murphy’s law:

The probability of anything happening is in inverse ratio to its desirability.
The minimizing likelihood ratio �̂� slants worst-case probabilities ̂𝜋 exponentially to increase probabilities of events that
give lower utilities.
As expressed by the value function bound (24.19) to be displayed below, the decision maker uses pessimism instrumen-
tally to protect himself against model misspecification.

The penalty parameter 𝜃 for multipler preferences or the entropy level 𝜂 that determines the Lagrange multiplier ̃𝜃 for
constraint preferences controls how adversely the decision maker exponentially slants probabilities.
A decision rule is said to be undominated in the sense of Bayesian decision theory if there exists a probability distribution
𝜋 for which it is optimal.
A decision rule is said to be admissible if it is undominated.
[HS08a] use ex post Bayesian preferences to show that robust decision rules are undominated and therefore admissible.

24.11 Indifference curves

Indifference curves illuminate how concerns about robustness affect asset pricing and utility costs of fluctuations. For
𝐼 = 2, the slopes of the indifference curves for our five preference specifications are

• Expected utility:

𝑑𝑐2
𝑑𝑐1

= −𝜋1
𝜋2

𝑢′(𝑐1)
𝑢′(𝑐2)

• Constraint and ex post Bayesian preferences:

𝑑𝑐2
𝑑𝑐1

= − ̂𝜋1
̂𝜋2

𝑢′(𝑐1)
𝑢′(𝑐2)

where ̂𝜋1, ̂𝜋2 are the minimizing probabilities computed from the worst-case distortions (24.6) from the constraint
problem at (𝑐1, 𝑐2).

• Multiplier and risk-sensitive preferences:

𝑑𝑐2
𝑑𝑐1

= −𝜋1
𝜋2

exp(−𝑢(𝑐1)/𝜃)
exp(−𝑢(𝑐2)/𝜃)

𝑢′(𝑐1)
𝑢′(𝑐2)

When 𝑐1 > 𝑐2, the exponential twisting formula (24.12) implies that ̂𝜋1 < 𝜋1, which in turn implies that the indifference
curves through (𝑐1, 𝑐2) for both constraint and multiplier preferences are flatter than the indifference curve associated
with expected utility preferences.
As we shall see soon when we discuss state price deflators, this gives rise to higher estimates of prices of risk.
For an example with 𝑢(𝑐) = ln 𝑐, 𝐼 = 2, and 𝜋1 = .5, the next two figures show indifference curves for expected utility,
multiplier, and constraint preferences.
The following figure shows indifference curves going through a point along the 45 degree line.

410 Chapter 24. Risk and Model Uncertainty

Advanced Quantitative Economics with Python

Kink at 45 degree line
Notice the kink in the indifference curve for constraint preferences at the 45 degree line.
To understand the source of the kink, consider how the Lagrange multiplier and worst-case probabilities vary with the
consumption plan under constraint preferences.
For fixed 𝜂, a given plan 𝑐, and a utility function increasing in 𝑐, worst case probabilities are fixed numbers ̂𝜋1 < .5
when 𝑐1 > 𝑐2 and ̂𝜋1 > .5 when 𝑐2 > 𝑐1.

This pattern makes the Lagrange multiplier ̃𝜃 vary discontinuously at ̂𝜋1 = .5.
The discontinuity in the worst case ̂𝜋1 at the 45 degree line accounts for the kink at the 45 degree line in an indifference
curve for constraint preferences associated with a given positive entropy constraint 𝜂.
The code for generating the preceding figure is somewhat intricate we formulate a root finding problem for finding indif-
ference curves.
Here is a brief literary description of the method we use.
Parameters

• Consumption bundle 𝑐 = (1, 1)
• Penalty parameter 𝜃 = 2
• Utility function 𝑢 = log
• Probability vector 𝜋 = (0.5, 0.5)

Algorithm:
• Compute �̄� = 𝜋1𝑢 (𝑐1) + 𝜋2𝑢 (𝑐2)
• Given values for 𝑐1, solve for values of 𝑐2 such that �̄� = 𝑢 (𝑐1, 𝑐2):

– Expected utility: 𝑐2,𝐸𝑈 = 𝑢−1 (�̄�−𝜋1𝑢(𝑐1)
𝜋2

)

– Multiplier preferences: solve �̄�−∑𝑖 𝜋𝑖
exp(−𝑢(𝑐𝑖)

𝜃)

∑𝑗 exp(−𝑢(𝑐𝑗)
𝜃)

(𝑢 (𝑐𝑖) + 𝜃 log(exp(−𝑢(𝑐𝑖)
𝜃)

∑𝑗 exp(−𝑢(𝑐𝑗)
𝜃)

)) = 0 numerically

24.11. Indifference curves 411

Advanced Quantitative Economics with Python

– Constraint preference: solve �̄� − ∑𝑖 𝜋𝑖
exp(−𝑢(𝑐𝑖)

𝜃∗)

∑𝑗 exp(−𝑢(𝑐𝑗)
𝜃∗)

𝑢 (𝑐𝑖) = 0 numerically where 𝜃∗ solves

∑𝑖 𝜋𝑖
exp(−𝑢(𝑐𝑖)

𝜃∗)

∑𝑗 exp(−𝑢(𝑐𝑗)
𝜃∗)

log(exp(−𝑢(𝑐𝑖)
𝜃∗)

∑𝑗 exp(−𝑢(𝑐𝑗)
𝜃∗)

) − 𝜂 = 0 numerically.

Remark: It seems that the constraint problem is hard to solve in its original form, i.e. by finding the distorting measure
that minimizes the expected utility.
It seems that viewing equation (24.7) as a root finding problem works much better.
But notice that equation (24.7) does not always have a solution.
Under 𝑢 = log, 𝑐1 = 𝑐2 = 1, we have:

∑
𝑖

𝜋𝑖
exp (−𝑢(𝑐𝑖)

̃𝜃)
∑𝑗 𝜋𝑗 exp(−𝑢(𝑐𝑗)

̃𝜃)
log⎛⎜⎜

⎝

exp (−𝑢(𝑐𝑖)
̃𝜃)

∑𝑗 𝜋𝑗 exp(−𝑢(𝑐𝑗)
̃𝜃)

⎞⎟⎟
⎠

= 0

Conjecture: when our numerical method fails it because the derivative of the objective doesn’t exist for our choice of
parameters.
Remark: It is tricky to get the algorithm to work properly for all values of 𝑐1. In particular, parameters were chosen with
graduate student descent.
Tangent indifference curves off 45 degree line
For a given 𝜂 and a given allocatin (𝑐1, 𝑐2) off the 45 degree line, by solving equations (24.7) and (24.13), we can find

̃𝜃(𝜂, 𝑐) and ̃𝜂(𝜃, 𝑐) that make indifference curves for multiplier and constraint preferences be tangent to one another.
The following figure shows indifference curves for multiplier and constraint preferences through a point off the 45 degree
line, namely, (𝑐(1), 𝑐(2)) = (3, 1), at which 𝜂 and 𝜃 are adjusted to render the indifference curves for constraint and
multiplier preferences tangent.

Note that all three lines of the left graph intersect at (1, 3). While the intersection at (3, 1) is hard-coded, the intersection
at (1,3) arises from the computation, which confirms that the code seems to be working properly.
As we move along the (kinked) indifference curve for the constraint preferences for a given 𝜂, the worst-case probabilities
remain constant, but the Lagrange multiplier ̃𝜃 on the entropy constraint ∑𝐼

𝑖=1 𝑚𝑖 log𝑚𝑖 ≤ 𝜂 varies with (𝑐1, 𝑐2).

412 Chapter 24. Risk and Model Uncertainty

https://sciencedryad.wordpress.com/2014/01/25/grad-student-descent/

Advanced Quantitative Economics with Python

As we move along the (smooth) indifference curve for the multiplier preferences for a given penalty parameter 𝜃, the
implied entropy ̃𝜂 from equation (24.13) and the worst-case probabilities both change with (𝑐1, 𝑐2).
For constraint preferences, there is a kink in the indifference curve.
For ex post Bayesian preferences, there are effectively two sets of indifference curves depending on which side of the 45
degree line the (𝑐1, 𝑐2) endowment point sits.
There are two sets of indifference curves because, while the worst-case probabilities differ above and below the 45 degree
line, the idea of ex post Bayesian preferences is to use a single probability distribution to compute expected utilities for
all consumption bundles.
Indifference curves through point (𝑐1, 𝑐2) = (3, 1) for expected logarithmic utility (less curved smooth line), multiplier
(more curved line), constraint (solid line kinked at 45 degree line), and ex post Bayesian (dotted lines) preferences. The
worst-case probability ̂𝜋1 < .5 when 𝑐1 = 3 > 𝑐2 = 1 and ̂𝜋1 > .5 when 𝑐1 = 1 < 𝑐2 = 3.

24.12 State price deflators

Concerns about model uncertainty boost prices of risk that are embedded in state-price deflators. With complete markets,
let 𝑞𝑖 be the price of consumption in state 𝑖.
The budget set of a representative consumer having endowment ̄𝑐 = { ̄𝑐𝑖}𝐼

𝑖=1 is expressed by ∑𝐼
𝑖 𝑞𝑖(𝑐𝑖 − ̄𝑐𝑖) ≤ 0.

When a representative consumer has multiplier preferences, the state prices are

𝑞𝑖 = 𝜋𝑖�̂�𝑖𝑢′(̄𝑐𝑖) = 𝜋𝑖(
exp(−𝑢(̄𝑐𝑖)/𝜃)

∑𝑗 𝜋𝑗 exp(−𝑢(̄𝑐𝑗)/𝜃))𝑢′(̄𝑐𝑖). (24.18)

The worst-case likelihood ratio �̂�𝑖 operates to increase prices 𝑞𝑖 in relatively low utility states 𝑖.
State prices agree under multiplier and constraint preferences when 𝜂 and 𝜃 are adjusted according to (24.7) or (24.13)
to make the indifference curves tangent at the endowment point.
The next figure can help us think about state-price deflators under our different preference orderings.
In this figure, budget line and indifference curves through point (𝑐1, 𝑐2) = (3, 1) for expected logarithmic utility, multi-
plier, constraint (kinked at 45 degree line), and ex post Bayesian (dotted lines) preferences.
Figure 2.7:

24.12. State price deflators 413

Advanced Quantitative Economics with Python

Because budget constraints are linear, asset prices are identical under multiplier and constraint preferences for which 𝜃
and 𝜂 are adjusted to verify (24.7) or (24.13) at a given consumption endowment {𝑐𝑖}𝐼

𝑖=1.
However, as we note next, though they are tangent at the endowment point, the fact that indifference curves differ for
multiplier and constraint preferencesmeans that certainty equivalent consumption compensations of the kind that [Luc87],
[HST99], [Tal00], and [BHS09] used to measure the costs of business cycles must differ.

24.12.1 Consumption-equivalent measures of uncertainty aversion

For each of our five types of preferences, the following figure allows us to construct a certainty equivalent point (𝑐∗, 𝑐∗)
on the 45 degree line that renders the consumer indifferent between it and the risky point (𝑐(1), 𝑐(2)) = (3, 1).
Figure 2.8:

414 Chapter 24. Risk and Model Uncertainty

Advanced Quantitative Economics with Python

The figure indicates that the certainty equivalent level 𝑐∗ is higher for the consumer with expected utility preferences than
for the consumer with multiplier preferences, and that it is higher for the consumer with multiplier preferences than for
the consumer with constraint preferences.
The gap between these certainty equivalents measures the uncertainty aversion of the multiplier preferences or constraint
preferences consumer.
The gap between the expected value .5𝑐(1)+.5𝑐(2) at point A and the certainty equivalent for the expected utility decision
maker at point B is a measure of his risk aversion.
The gap between points 𝐵 and 𝐶 measures the multiplier preference consumer’s aversion to model uncertainty.
The gap between points B and D measures the constraint preference consumer’s aversion to model uncertainty.

24.12. State price deflators 415

Advanced Quantitative Economics with Python

24.13 Iso-utility and iso-entropy curves and expansion paths

The following figures show iso-entropy and iso-utility lines for the special case in which 𝐼 = 3, 𝜋1 = .3, 𝜋2 = .4, and
the utility function is 𝑢(𝑐) = 𝑐1−𝛼

1−𝛼 with 𝛼 = 0 and 𝛼 = 3, respectively, for the fixed plan 𝑐(1) = 1, 𝑐(2) = 2, 𝑐(3) = 3.
The iso-utility lines are the level curves of

̂𝜋1𝑐1 + ̂𝜋2𝑐2 + (1 − ̂𝜋1 − ̂𝜋2)𝑐3

and are linear in (̂𝜋1, ̂𝜋2).
This is what it means to say ‘expected utility is linear in probabilities.’
Both figures plot the locus of points of tangency between the iso-entropy and the iso-utility curves that is traced out as
one varies 𝜃−1 in the interval [0, 2].
While the iso-entropy lines are identical in the two figures, these ‘expansion paths’ differ because the utility functions
differ, meaning that for a given 𝜃 and (𝑐1, 𝑐2, 𝑐3) triple, the worst-case probabilities ̂𝜋𝑖(𝜃) = 𝜋𝑖

exp(−𝑢(𝑐𝑖)/𝜃)
𝐸 exp(−𝑢(𝑐)/𝜃) differ as we

vary 𝜃, causing the associated entropies to differ.
Color bars:

• First color bar: variation in 𝜃
• Second color bar: variation in utility levels
• Third color bar: variation in entropy levels

/tmp/ipykernel_6440/3904427642.py:36: RuntimeWarning: invalid value encountered in␣
↪divide
m = m_unnormalized / (π * m_unnormalized).sum()

/tmp/ipykernel_6440/3904427642.py:35: RuntimeWarning: overflow encountered in exp
m_unnormalized = np.exp(-u(c) / θ)

/tmp/ipykernel_6440/3904427642.py:36: RuntimeWarning: invalid value encountered in␣
↪divide
m = m_unnormalized / (π * m_unnormalized).sum()

416 Chapter 24. Risk and Model Uncertainty

Advanced Quantitative Economics with Python

24.14 Bounds on expected utility

Suppose that a decision maker wants a lower bound on expected utility ∑𝐼
𝑖=1 ̂𝜋𝑖𝑢(𝑐𝑖) that is satisfied for any distribution

̂𝜋 with relative entropy less than or equal to 𝜂.
An attractive feature of multiplier and constraint preferences is that they carry with them such a bound.
To show this, it is useful to collect some findings in the following string of inequalities associated with multiplier prefer-
ences:

T𝜃𝑢(𝑐) = −𝜃 log
𝐼

∑
𝑖=1

exp(−𝑢(𝑐𝑖)
𝜃)𝜋𝑖

=
𝐼

∑
𝑖=1

𝑚∗
𝑖𝜋𝑖(𝑢(𝑐𝑖) + 𝜃 log𝑚∗

𝑖)

≤
𝐼

∑
𝑖=1

𝑚𝑖𝜋𝑖𝑢(𝑐𝑖) + 𝜃
𝑖

∑
𝑖=1

𝑚𝑖 log𝑚𝑖𝜋𝑖

where 𝑚∗
𝑖 ∝ exp(−𝑢(𝑐𝑖)

𝜃) are the worst-case distortions to probabilities.

The inequality in the last line just asserts that minimizers minimize.
Therefore, we have the following useful bound:

𝐼
∑
𝑖=1

𝑚𝑖𝜋𝑖𝑢(𝑐𝑖) ≥ T𝜃𝑢(𝑐) − 𝜃
𝐼

∑
𝑖=1

𝜋𝑖𝑚𝑖 log𝑚𝑖. (24.19)

The left side is expected utility under the probability distribution {𝑚𝑖𝜋𝑖}.
The right side is a lower bound on expected utility under all distributions expressed as an affine function of relative entropy
∑𝐼

𝑖=1 𝜋𝑖𝑚𝑖 log𝑚𝑖.

The bound is attained for 𝑚𝑖 = 𝑚∗
𝑖 ∝ exp(−𝑢(𝑐𝑖)

𝜃).

24.14. Bounds on expected utility 417

Advanced Quantitative Economics with Python

The intercept in the bound is the risk-sensitive criterion T𝜃𝑢(𝑐), while the slope is the penalty parameter 𝜃.
Lowering 𝜃 does two things:

• it lowers the intercept T𝜃𝑢(𝑐), which makes the bound less informative for small values of entropy; and
• it lowers the absolute value of the slope, which makes the bound more informative for larger values of relative
entropy ∑𝐼

𝑖=1 𝜋𝑖𝑚𝑖 log𝑚𝑖.
The following figure reports best-case and worst-case expected utilities.
We calculate the lines in this figure numerically by solving optimization problems with respect to the change of measure.

In this figure, expected utility is on the co-ordinate axis while entropy is on the ordinate axis.
The lower curved line depicts expected utility under the worst-casemodel associated with each value of entropy 𝜂 recorded
on the ordinate axis, i.e., it is∑𝐼

𝑖=1 𝜋𝑖�̃�𝑖(̃𝜃(𝑐, 𝜂))𝑢(𝑐𝑖), where �̃�𝑖(̃𝜃(𝜂)) ∝ exp(−𝑢(𝑐𝑖)
̃𝜃) and ̃𝜃 is the Lagrange multiplier

associated with the constraint that entropy cannot exceed the value on the ordinate axis.
The higher curved line depicts expected utility under the best-case model indexed by the value of the Lagrange mul-
tiplier ̌𝜃 > 0 associated with each value of entropy less than or equal to 𝜂 recorded on the ordinate axis, i.e., it is
∑𝐼

𝑖=1 𝜋𝑖�̌�𝑖(̌𝜃(𝜂))𝑢(𝑐𝑖) where �̌�𝑖(̌𝜃(𝑐, 𝜂)) ∝ exp(𝑢(𝑐𝑖)
̌𝜃).

(Here ̌𝜃 is the Lagrange multiplier associated with max-max expected utility.)
Points between these two curves are possible values of expected utility for some distribution with entropy less than or
equal to the value 𝜂 on the ordinate axis.
The straight line depicts the right side of inequality (24.19) for a particular value of the penalty parameter 𝜃.
As noted, when one lowers 𝜃, the intercept T𝜃𝑢(𝑐) and the absolute value of the slope both decrease.

418 Chapter 24. Risk and Model Uncertainty

Advanced Quantitative Economics with Python

Thus, as 𝜃 is lowered, T𝜃𝑢(𝑐) becomes a more conservative estimate of expected utility under the approximating model
𝜋.
However, as 𝜃 is lowered, the robustness bound (24.19) becomes more informative for sufficiently large values of entropy.
The slope of straight line depicting a bound is −𝜃 and the projection of the point of tangency with the curved depicting
the lower bound of expected utility is the entropy associated with that 𝜃 when it is interpreted as a Lagrange multiplier
on the entropy constraint in the constraint problem .
This is an application of the envelope theorem.

24.15 Why entropy?

Beyond the helpful mathematical fact that it leads directly to convenient exponential twisting formulas (24.6) and (24.12)
for worst-case probability distortions, there are two related justifications for using entropy to measure discrepancies be-
tween probability distribution.
One arises from the role of entropy in statistical tests for discriminating between models.
The other comes from axioms.

24.15.1 Entropy and statistical detection

Robust control theory starts with a decision maker who has constructed a good baseline approximating model whose free
parameters he has estimated to fit historical data well.
The decision maker recognizes that actual outcomes might be generated by one of a vast number of other models that fit
the historical data nearly as well as his.
Therefore, he wants to evaluate outcomes under a set of alternative models that are plausible in the sense of being statis-
tically close to his model.
He uses relative entropy to quantify what close means.
[AHS03] and [BHS09]describe links between entropy and large deviations bounds on test statistics for discriminating
between models, in particular, statistics that describe the probability of making an error in applying a likelihood ratio test
to decide whether model A or model B generated a data record of length 𝑇 .
For a given sample size, an informative bound on the detection error probability is a function of the entropy parameter 𝜂
in constraint preferences. [AHS03] and [BHS09] use detection error probabilities to calibrate reasonable values of 𝜂.
[AHS03] and [HS08a] also use detection error probabilities to calibrate reasonable values of the penalty parameter 𝜃 in
multiplier preferences.
For a fixed sample size and a fixed 𝜃, they would calculate the worst-case �̂�𝑖(𝜃), an associated entropy 𝜂(𝜃), and an
associated detection error probability. In this way they build up a detection error probability as a function of 𝜃.
They then invert this function to calibrate 𝜃 to deliver a reasonable detection error probability.
To indicate outcomes from this approach, the following figure plots the histogram for U.S. quarterly consumption growth
alongwith a representative agent’s approximating density and aworst-case density that [BHS09] show imply highmeasured
market prices of risk even when a representative consumer has the unit coefficient of relative risk aversion associated with
a logarithmic one-period utility function.

24.15. Why entropy? 419

Advanced Quantitative Economics with Python

The density for the approximating model is log 𝑐𝑡+1 − log 𝑐𝑡 = 𝜇 + 𝜎𝑐𝜖𝑡+1 where 𝜖𝑡+1 ∼ 𝑁(0, 1) and 𝜇 and 𝜎𝑐 are
estimated by maximum likelihood from the U.S. quarterly data in the histogram over the period 1948.I-2006.IV.
The consumer’s value function under logarithmic utility implies that the worst-case model is log 𝑐𝑡+1 − log 𝑐𝑡 = (𝜇 +
𝜎𝑐𝑤) + 𝜎𝑐 ̃𝜖𝑡+1 where { ̃𝜖𝑡+1} is also a normalized Gaussian random sequence and where 𝑤 is calculated by setting a
detection error probability to .05.
The worst-case model appears to fit the histogram nearly as well as the approximating model.

24.15.2 Axiomatic justifications

Multiplier and constraint preferences are both special cases of what [MMR06] call variational preferences.
They provide an axiomatic foundation for variational preferences and describe how they express ambiguity aversion.
Constraint preferences are particular instances of the multiple priors model of [GS89].

420 Chapter 24. Risk and Model Uncertainty

CHAPTER

TWENTYFIVE

ETYMOLOGY OF ENTROPY

This lecture describes and compares several notions of entropy.
Among the senses of entropy, we’ll encounter these

• A measure of uncertainty of a random variable advanced by Claude Shannon [SW49]
• A key object governing thermodynamics
• Kullback and Leibler’s measure of the statistical divergence between two probability distributions
• A measure of the volatility of stochastic discount factors that appear in asset pricing theory
• Measures of unpredictability that occur in classical Wiener-Kolmogorov linear prediction theory
• A frequency domain criterion for constructing robust decision rules

The concept of entropy plays an important role in robust control formulations described in this lecture Risk and Model
Uncertainty and in this lecture Robustness.

25.1 Information Theory

In information theory [SW49], entropy is a measure of the unpredictability of a random variable.
To illustrate things, let𝑋 be a discrete random variable taking values 𝑥1, … , 𝑥𝑛 with probabilities 𝑝𝑖 = Prob(𝑋 = 𝑥𝑖) ≥
0, ∑𝑖 𝑝𝑖 = 1.
Claude Shannon’s [SW49] definition of entropy is

𝐻(𝑝) = ∑
𝑖

𝑝𝑖 log𝑏(𝑝−1
𝑖) = − ∑

𝑖
𝑝𝑖 log𝑏(𝑝𝑖). (25.1)

where log𝑏 denotes the log function with base 𝑏.
Inspired by the limit

lim
𝑝↓0

𝑝 log 𝑝 = lim
𝑝↓0

log 𝑝
𝑝−1 = lim

𝑝↓0
𝑝 = 0,

we set 𝑝 log 𝑝 = 0 in equation (25.1).
Typical bases for the logarithm are 2, 𝑒, and 10.
In the information theory literature, logarithms of base 2, 𝑒, and 10 are associated with units of information called bits,
nats, and dits, respectively.
Shannon typically used base 2.

421

https://python-advanced.quantecon.org/five_preferences.html
https://python-advanced.quantecon.org/five_preferences.html
https://python-advanced.quantecon.org/robustness.html

Advanced Quantitative Economics with Python

25.2 A Measure of Unpredictability

For a discrete random variable 𝑋 with probability density 𝑝 = {𝑝𝑖}𝑛
𝑖=1, the surprisal for state 𝑖 is 𝑠𝑖 = log (1

𝑝𝑖
).

The quantity log (1
𝑝𝑖

) is called the surprisal because it is inversely related to the likelihood that state 𝑖 will occur.
Note that entropy 𝐻(𝑝) equals the expected surprisal

𝐻(𝑝) = ∑
𝑖

𝑝𝑖𝑠𝑖 = ∑
𝑖

𝑝𝑖 log(1
𝑝𝑖

) = − ∑
𝑖

𝑝𝑖 log (𝑝𝑖) .

25.2.1 Example

Take a possibly unfair coin, so 𝑋 = {0, 1} with 𝑝 = Prob(𝑋 = 1) = 𝑝 ∈ [0, 1].
Then

𝐻(𝑝) = −(1 − 𝑝) log(1 − 𝑝) − 𝑝 log 𝑝.
Evidently,

𝐻′(𝑝) = log(1 − 𝑝) − log 𝑝 = 0
at 𝑝 = .5 and 𝐻″(𝑝) = − 1

1−𝑝 − 1
𝑝 < 0 for 𝑝 ∈ (0, 1).

So 𝑝 = .5 maximizes entropy, while entropy is minimized at 𝑝 = 0 and 𝑝 = 1.
Thus, among all coins, a fair coin is the most unpredictable.
See Fig. 25.1

25.2.2 Example

Take an 𝑛-sided possibly unfair die with a probability distribution {𝑝𝑖}𝑛
𝑖=1. The die is fair if 𝑝𝑖 = 1

𝑛 ∀𝑖.
Among all dies, a fair die maximizes entropy.
For a fair die, entropy equals 𝐻(𝑝) = −𝑛−1 ∑𝑖 log (1

𝑛) = log(𝑛).
To specify the expected number of bits needed to isolate the outcome of one roll of a fair 𝑛-sided die requires log2(𝑛)
bits of information.
For example, if 𝑛 = 2, log2(2) = 1.
For 𝑛 = 3, log2(3) = 1.585.

25.3 Mathematical Properties of Entropy

For a discrete random variable with probability vector 𝑝, entropy 𝐻(𝑝) is a function that satisfies
• 𝐻 is continuous.
• 𝐻 is symmetric: 𝐻(𝑝1, 𝑝2, … , 𝑝𝑛) = 𝐻(𝑝𝑟1

, … , 𝑝𝑟𝑛
) for any permutation 𝑟1, … , 𝑟𝑛 of 1, … , 𝑛.

• A uniform distribution maximizes 𝐻(𝑝): 𝐻(𝑝1, … , 𝑝𝑛) ≤ 𝐻(1
𝑛 , … , 1

𝑛).
• Maximum entropy increases with the number of states: 𝐻(1

𝑛 , … , 1
𝑛) ≤ 𝐻(1

𝑛+1 , … , 1
𝑛+1).

• Entropy is not affected by events zero probability.

422 Chapter 25. Etymology of Entropy

Advanced Quantitative Economics with Python

Fig. 25.1: Entropy as a function of ̂𝜋1 when 𝜋1 = .5.

25.4 Conditional Entropy

Let (𝑋, 𝑌) be a bivariate discrete random vector with outcomes 𝑥1, … , 𝑥𝑛 and 𝑦1, … , 𝑦𝑚, respectively, occurring with
probability density 𝑝(𝑥𝑖, 𝑦𝑖).
Conditional entropy 𝐻(𝑋|𝑌) is defined as

𝐻(𝑋|𝑌) = ∑
𝑖,𝑗

𝑝(𝑥𝑖, 𝑦𝑗) log
𝑝(𝑦𝑗)

𝑝(𝑥𝑖, 𝑦𝑗)
. (25.2)

Here 𝑝(𝑦𝑗)
𝑝(𝑥𝑖,𝑦𝑗) , the reciprocal of the conditional probability of 𝑥𝑖 given 𝑦𝑗, can be defined as the conditional surprisal.

25.5 Independence as Maximum Conditional Entropy

Let 𝑚 = 𝑛 and [𝑥1, … , 𝑥𝑛] = [𝑦1, … , 𝑦𝑛].
Let ∑𝑗 𝑝(𝑥𝑖, 𝑦𝑗) = ∑𝑗 𝑝(𝑥𝑗, 𝑦𝑖) for all 𝑖, so that the marginal distributions of 𝑥 and 𝑦 are identical.
Thus, 𝑥 and 𝑦 are identically distributed, but they are not necessarily independent.
Consider the following problem: choose a joint distribution 𝑝(𝑥𝑖, 𝑦𝑗) to maximize conditional entropy (25.2) subject to
the restriction that 𝑥 and 𝑦 are identically distributed.
The conditional-entropy-maximizing 𝑝(𝑥𝑖, 𝑦𝑗) sets

𝑝(𝑥𝑖, 𝑦𝑗)
𝑝(𝑦𝑗)

= ∑
𝑗

𝑝(𝑥𝑖, 𝑦𝑗) = 𝑝(𝑥𝑖)∀𝑖.

25.4. Conditional Entropy 423

Advanced Quantitative Economics with Python

Thus, among all joint distributions with identical marginal distributions, the conditional entropy maximizing joint distri-
bution makes 𝑥 and 𝑦 be independent.

25.6 Thermodynamics

Josiah Willard Gibbs (see https://en.wikipedia.org/wiki/Josiah_Willard_Gibbs) defined entropy as

𝑆 = −𝑘𝐵 ∑
𝑖

𝑝𝑖 log 𝑝𝑖 (25.3)

where 𝑝𝑖 is the probability of a micro state and 𝑘𝐵 is Boltzmann’s constant.
• The Boltzmann constant 𝑘𝑏 relates energy at the micro particle level with the temperature observed at the macro
level. It equals what is called a gas constant divided by an Avogadro constant.

The second law of thermodynamics states that the entropy of a closed physical system increases until 𝑆 defined in (25.3)
attains a maximum.

25.7 Statistical Divergence

Let 𝑋 be a discrete state space 𝑥1, … , 𝑥𝑛 and let 𝑝 and 𝑞 be two discrete probability distributions on 𝑋.
Assume that 𝑝𝑖

𝑞𝑡
∈ (0, ∞) for all 𝑖 for which 𝑝𝑖 > 0.

Then the Kullback-Leibler statistical divergence, also called relative entropy, is defined as

𝐷(𝑝|𝑞) = ∑
𝑖

𝑝𝑖 log(𝑝𝑖
𝑞𝑖

) = ∑
𝑖

𝑞𝑖 (𝑝𝑖
𝑞𝑖

) log(𝑝𝑖
𝑞𝑖

) . (25.4)

Evidently,

𝐷(𝑝|𝑞) = − ∑
𝑖

𝑝𝑖 log 𝑞𝑖 + ∑
𝑖

𝑝𝑖 log 𝑝𝑖

= 𝐻(𝑝, 𝑞) − 𝐻(𝑝),

where 𝐻(𝑝, 𝑞) = ∑𝑖 𝑝𝑖 log 𝑞𝑖 is the cross-entropy.
It is easy to verify, as we have done above, that 𝐷(𝑝|𝑞) ≥ 0 and that 𝐷(𝑝|𝑞) = 0 implies that 𝑝𝑖 = 𝑞𝑖 when 𝑞𝑖 > 0.

25.8 Continuous distributions

For a continuous random variable, Kullback-Leibler divergence between two densities 𝑝 and 𝑞 is defined as

𝐷(𝑝|𝑞) = ∫ 𝑝(𝑥) log(𝑝(𝑥)
𝑞(𝑥)) 𝑑 𝑥.

424 Chapter 25. Etymology of Entropy

https://en.wikipedia.org/wiki/Josiah_Willard_Gibbs

Advanced Quantitative Economics with Python

25.9 Relative entropy and Gaussian distributions

We want to compute relative entropy for two continuous densities 𝜙 and ̂𝜙 when 𝜙 is 𝑁(0, 𝐼) and ̂𝜙 is 𝑁(𝑤, Σ), where
the covariance matrix Σ is nonsingular.
We seek a formula for

ent = ∫(log ̂𝜙(𝜀) − log𝜙(𝜀)) ̂𝜙(𝜀)𝑑𝜀.

Claim

ent = −1
2 log detΣ + 1

2𝑤′𝑤 + 1
2 trace(Σ − 𝐼). (25.5)

Proof
The log likelihood ratio is

log ̂𝜙(𝜀) − log𝜙(𝜀) = 1
2 [−(𝜀 − 𝑤)′Σ−1(𝜀 − 𝑤) + 𝜀′𝜀 − log detΣ] . (25.6)

Observe that

− ∫ 1
2(𝜀 − 𝑤)′Σ−1(𝜀 − 𝑤) ̂𝜙(𝜀)𝑑𝜀 = −1

2 trace(𝐼).

Applying the identity 𝜀 = 𝑤 + (𝜀 − 𝑤) gives
1
2𝜀′𝜀 = 1

2𝑤′𝑤 + 1
2(𝜀 − 𝑤)′(𝜀 − 𝑤) + 𝑤′(𝜀 − 𝑤).

Taking mathematical expectations

1
2 ∫ 𝜀′𝜀 ̂𝜙(𝜀)𝑑𝜀 = 1

2𝑤′𝑤 + 1
2 trace(Σ).

Combining terms gives

ent = ∫(log ̂𝜙 − log𝜙) ̂𝜙𝑑𝜀 = −1
2 log detΣ + 1

2𝑤′𝑤 + 1
2 trace(Σ − 𝐼). (25.7)

which agrees with equation (25.5). Notice the separate appearances of the mean distortion𝑤 and the covariance distortion
Σ − 𝐼 in equation (25.7).
Extension
Let 𝑁0 = 𝒩(𝜇0, Σ0) and 𝑁1 = 𝒩(𝜇1, Σ1) be two multivariate Gaussian distributions.
Then

𝐷(𝑁0|𝑁1) = 1
2 (trace(Σ−1

1 Σ0) + (𝜇1 − 𝜇0)′Σ−1
1 (𝜇1 − 𝜇0) − log(detΣ0

detΣ1
) − 𝑘) . (25.8)

25.10 Von Neumann Entropy

Let 𝑃 and 𝑄 be two positive-definite symmetric matrices.
A measure of the divergence between two 𝑃 and 𝑄 is

𝐷(𝑃 |𝑄) = trace(𝑃 ln𝑃 − 𝑃 ln𝑄 − 𝑃 + 𝑄)

25.9. Relative entropy and Gaussian distributions 425

Advanced Quantitative Economics with Python

where the log of a matrix is defined here (https://en.wikipedia.org/wiki/Logarithm_of_a_matrix).
A density matrix 𝑃 from quantum mechanics is a positive definite matrix with trace 1.
The von Neumann entropy of a density matrix 𝑃 is

𝑆 = −trace(𝑃 ln𝑃)

25.11 Backus-Chernov-Zin Entropy

After flipping signs, [BCZ14] use Kullback-Leibler relative entropy as ameasure of volatility of stochastic discount factors
that they assert is useful for characterizing features of both the data and various theoretical models of stochastic discount
factors.
Where 𝑝𝑡+1 is the physical or true measure, 𝑝∗

𝑡+1 is the risk-neutral measure, and 𝐸𝑡 denotes conditional expectation
under the 𝑝𝑡+1 measure, [BCZ14] define entropy as

𝐿𝑡(𝑝∗
𝑡+1/𝑝𝑡+1) = −𝐸𝑡 log(𝑝∗

𝑡+1/𝑝𝑡+1). (25.9)

Evidently, by virtue of the minus sign in equation (25.9),

𝐿𝑡(𝑝∗
𝑡+1/𝑝𝑡+1) = 𝐷𝐾𝐿,𝑡(𝑝∗

𝑡+1|𝑝𝑡+1), (25.10)

where 𝐷𝐾𝐿,𝑡 denotes conditional relative entropy.

Let𝑚𝑡+1 be a stochastic discount factor, 𝑟𝑡+1 a gross one-period return on a risky security, and (𝑟1
𝑡+1)−1 ≡ 𝑞1

𝑡 = 𝐸𝑡𝑚𝑡+1
be the reciprocal of a risk-free one-period gross rate of return. Then

𝐸𝑡(𝑚𝑡+1𝑟𝑡+1) = 1

[BCZ14] note that a stochastic discount factor satisfies

𝑚𝑡+1 = 𝑞1
𝑡 𝑝∗

𝑡+1/𝑝𝑡+1.

They derive the following entropy bound

𝐸𝐿𝑡(𝑚𝑡+1) ≥ 𝐸(log 𝑟𝑡+1 − log 𝑟1
𝑡+1)

which they propose as a complement to a Hansen-Jagannathan [HJ91] bound.

25.12 Wiener-Kolmogorov Prediction Error Formula as Entropy

Let {𝑥𝑡}∞
𝑡=−∞ be a covariance stationary stochastic process with mean zero and spectral density 𝑆𝑥(𝜔).

The variance of 𝑥 is

𝜎2
𝑥 = (1

2𝜋) ∫
𝜋

−𝜋
𝑆𝑥(𝜔)𝑑𝜔.

As described in chapter XIV of [Sar87], the Wiener-Kolmogorov formula for the one-period ahead prediction error is

𝜎2
𝜖 = exp [(1

2𝜋) ∫
𝜋

−𝜋
log𝑆𝑥(𝜔)𝑑𝜔] . (25.11)

Occasionally the logarithm of the one-step-ahead prediction error 𝜎2
𝜖 is called entropy because it measures unpredictabil-

ity.

426 Chapter 25. Etymology of Entropy

https://en.wikipedia.org/wiki/Logarithm_of_a_matrix

Advanced Quantitative Economics with Python

Consider the following problem reminiscent of one described earlier.
Problem:
Among all covariance stationary univariate processes with unconditional variance 𝜎2

𝑥, find a process with maximal one-
step-ahead prediction error.
The maximizer is a process with spectral density

𝑆𝑥(𝜔) = 2𝜋𝜎2
𝑥.

Thus, among all univariate covariance stationary processes with variance 𝜎2
𝑥, a process with a flat spectral density is the

most uncertain, in the sense of one-step-ahead prediction error variance.
This no-patterns-across-time outcome for a temporally dependent process resembles the no-pattern-across-states outcome
for the static entropy maximizing coin or die in the classic information theoretic analysis described above.

25.13 Multivariate Processes

Let 𝑦𝑡 be an 𝑛 × 1 covariance stationary stochastic process with mean 0 with matrix covariogram 𝐶𝑦(𝑗) = 𝐸𝑦𝑡𝑦′
𝑡−𝑗 and

spectral density matrix

𝑆𝑦(𝜔) =
∞

∑
𝑗=−∞

𝑒−𝑖𝜔𝑗𝐶𝑦(𝑗), 𝜔 ∈ [−𝜋, 𝜋].

Let

𝑦𝑡 = 𝐷(𝐿)𝜖𝑡 ≡
∞

∑
𝑗=0

𝐷𝑗𝜖𝑡

be a Wold representation for 𝑦, where 𝐷(0)𝜖𝑡 is a vector of one-step-ahead errors in predicting 𝑦𝑡 conditional on the
infinite history 𝑦𝑡−1 = [𝑦𝑡−1, 𝑦𝑡−2, …] and 𝜖𝑡 is an 𝑛 × 1 vector of serially uncorrelated random disturbances with mean
zero and identity contemporaneous covariance matrix 𝐸𝜖𝑡𝜖′

𝑡 = 𝐼 .
Linear-least-squares predictors have one-step-ahead prediction error 𝐷(0)𝐷(0)′ that satisfies

log det[𝐷(0)𝐷(0)′] = (1
2𝜋) ∫

𝜋

−𝜋
log det[𝑆𝑦(𝜔)]𝑑𝜔. (25.12)

Being a measure of the unpredictability of an 𝑛×1 vector covariance stationary stochastic process, the left side of (25.12)
is sometimes called entropy.

25.14 Frequency Domain Robust Control

Chapter 8 of [HS08b] adapts work in the control theory literature to define a frequency domain entropy criterion for
robust control as

∫
Γ
log det[𝜃𝐼 − 𝐺𝐹 (𝜁)′𝐺𝐹 (𝜁)]𝑑𝜆(𝜁), (25.13)

where 𝜃 ∈ (𝜃, +∞) is a positive robustness parameter and 𝐺𝐹 (𝜁) is a 𝜁-transform of the objective function.
Hansen and Sargent [HS08b] show that criterion (25.13) can be represented as

log det[𝐷(0)′𝐷(0)] = ∫
Γ
log det[𝜃𝐼 − 𝐺𝐹 (𝜁)′𝐺𝐹 (𝜁)]𝑑𝜆(𝜁), (25.14)

for an appropriate covariance stationary stochastic process derived from 𝜃, 𝐺𝐹 (𝜁).
This explains the monikermaximum entropy robust control for decision rules 𝐹 designed to maximize criterion (25.13).

25.13. Multivariate Processes 427

Advanced Quantitative Economics with Python

25.15 Relative Entropy for a Continuous Random Variable

Let 𝑥 be a continuous random variable with density 𝜙(𝑥), and let 𝑔(𝑥) be a nonnegative random variable satisfying
∫ 𝑔(𝑥)𝜙(𝑥)𝑑𝑥 = 1.
The relative entropy of the distorted density ̂𝜙(𝑥) = 𝑔(𝑥)𝜙(𝑥) is defined as

ent(𝑔) = ∫ 𝑔(𝑥) log 𝑔(𝑥)𝜙(𝑥)𝑑𝑥.

Fig. 25.2 plots the functions 𝑔 log 𝑔 and 𝑔 − 1 over the interval 𝑔 ≥ 0.
That relative entropy ent(𝑔) ≥ 0 can be established by noting (a) that 𝑔 log 𝑔 ≥ 𝑔 − 1 (see Fig. 25.2) and (b) that under
𝜙, 𝐸𝑔 = 1.
Fig. 25.3 and Fig. 25.4 display aspects of relative entropy visually for a continuous random variable 𝑥 for two densities
with likelihood ratio 𝑔 ≥ 0.
Where the numerator density is 𝒩(0, 1), for two denominator Gaussian densities 𝒩(0, 1.5) and 𝒩(0, .95), respectively,
Fig. 25.3 and Fig. 25.4 display the functions 𝑔 log 𝑔 and 𝑔 − 1 as functions of 𝑥.

Fig. 25.2: The function 𝑔 log 𝑔 for 𝑔 ≥ 0. For a random variable 𝑔 with 𝐸𝑔 = 1, 𝐸𝑔 log 𝑔 ≥ 0.

428 Chapter 25. Etymology of Entropy

Advanced Quantitative Economics with Python

Fig. 25.3: Graphs of 𝑔 log 𝑔 and 𝑔 − 1 where 𝑔 is the ratio of the density of a 𝒩(0, 1) random variable to the density of
a 𝒩(0, 1.5) random variable. Under the 𝒩(0, 1.5) density, 𝐸𝑔 = 1.

Fig. 25.4: 𝑔 log 𝑔 and 𝑔 − 1 where 𝑔 is the ratio of the density of a 𝒩(0, 1) random variable to the density of a 𝒩(0, 1.5)
random variable. Under the 𝒩(0, 1.5) density, 𝐸𝑔 = 1.

25.15. Relative Entropy for a Continuous Random Variable 429

Advanced Quantitative Economics with Python

430 Chapter 25. Etymology of Entropy

CHAPTER

TWENTYSIX

ROBUSTNESS

Contents

• Robustness

– Overview

– The Model

– Constructing More Robust Policies

– Robustness as Outcome of a Two-Person Zero-Sum Game

– The Stochastic Case

– Implementation

– Application

– Appendix

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

26.1 Overview

This lecture modifies a Bellman equation to express a decision-maker’s doubts about transition dynamics.
His specification doubts make the decision-maker want a robust decision rule.
Robust means insensitive to misspecification of transition dynamics.
The decision-maker has a single approximating model.
He calls it approximating to acknowledge that he doesn’t completely trust it.
He fears that outcomes will actually be determined by another model that he cannot describe explicitly.
All that he knows is that the actual data-generating model is in some (uncountable) set of models that surrounds his
approximating model.
He quantifies the discrepancy between his approximating model and the genuine data-generating model by using a quantity
called entropy.
(We’ll explain what entropy means below)

431

Advanced Quantitative Economics with Python

He wants a decision rule that will work well enough no matter which of those other models actually governs outcomes.
This is what it means for his decision rule to be “robust to misspecification of an approximating model”.
This may sound like too much to ask for, but ….
… a secret weapon is available to design robust decision rules.
The secret weapon is max-min control theory.
A value-maximizing decision-maker enlists the aid of an (imaginary) value-minimizingmodel chooser to construct bounds
on the value attained by a given decision rule under different models of the transition dynamics.
The original decision-maker uses those bounds to construct a decision rule with an assured performance level, no matter
which model actually governs outcomes.

Note: In reading this lecture, please don’t think that our decision-maker is paranoid when he conducts a worst-case
analysis. By designing a rule that works well against a worst-case, his intention is to construct a rule that will work well
across a set of models.

Let’s start with some imports:

import pandas as pd
import numpy as np
from scipy.linalg import eig
import matplotlib.pyplot as plt
%matplotlib inline
import quantecon as qe

26.1.1 Sets of Models Imply Sets Of Values

Our “robust” decision-maker wants to know how well a given rule will work when he does not know a single transition
law ….
… he wants to know sets of values that will be attained by a given decision rule 𝐹 under a set of transition laws.
Ultimately, he wants to design a decision rule 𝐹 that shapes these sets of values in ways that he prefers.
With this in mind, consider the following graph, which relates to a particular decision problem to be explained below
The figure shows a value-entropy correspondence for a particular decision rule 𝐹 .
The shaded set is the graph of the correspondence, which maps entropy to a set of values associated with a set of models
that surround the decision-maker’s approximating model.
Here

• Value refers to a sum of discounted rewards obtained by applying the decision rule 𝐹 when the state starts at some
fixed initial state 𝑥0.

• Entropy is a non-negative number that measures the size of a set of models surrounding the decision-maker’s ap-
proximating model.

– Entropy is zero when the set includes only the approximating model, indicating that the decision-maker com-
pletely trusts the approximating model.

– Entropy is bigger, and the set of surrounding models is bigger, the less the decision-maker trusts the approx-
imating model.

432 Chapter 26. Robustness

Advanced Quantitative Economics with Python

26.1. Overview 433

Advanced Quantitative Economics with Python

The shaded region indicates that for allmodels having entropy less than or equal to the number on the horizontal axis, the
value obtained will be somewhere within the indicated set of values.
Now let’s compare sets of values associated with two different decision rules, 𝐹𝑟 and 𝐹𝑏.
In the next figure,

• The red set shows the value-entropy correspondence for decision rule 𝐹𝑟.
• The blue set shows the value-entropy correspondence for decision rule 𝐹𝑏.

The blue correspondence is skinnier than the red correspondence.
This conveys the sense in which the decision rule 𝐹𝑏 is more robust than the decision rule 𝐹𝑟

• more robust means that the set of values is less sensitive to increasing misspecification as measured by entropy
Notice that the less robust rule 𝐹𝑟 promises higher values for small misspecifications (small entropy).
(But it is more fragile in the sense that it is more sensitive to perturbations of the approximating model)
Below we’ll explain in detail how to construct these sets of values for a given 𝐹 , but for now ….
Here is a hint about the secret weapons we’ll use to construct these sets

• We’ll use some min problems to construct the lower bounds
• We’ll use some max problems to construct the upper bounds

We will also describe how to choose 𝐹 to shape the sets of values.

434 Chapter 26. Robustness

Advanced Quantitative Economics with Python

This will involve crafting a skinnier set at the cost of a lower level (at least for low values of entropy).

26.1.2 Inspiring Video

If youwant to understandmore about why one serious quantitative researcher is interested in this approach, we recommend
Lars Peter Hansen’s Nobel lecture.

26.1.3 Other References

Our discussion in this lecture is based on
• [HS00]
• [HS08a]

26.2 The Model

For simplicity, we present ideas in the context of a class of problems with linear transition laws and quadratic objective
functions.
To fit in with our earlier lecture on LQ control, we will treat loss minimization rather than value maximization.
To begin, recall the infinite horizon LQ problem, where an agent chooses a sequence of controls {𝑢𝑡} to minimize

∞
∑
𝑡=0

𝛽𝑡 {𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡} (26.1)

subject to the linear law of motion

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑢𝑡 + 𝐶𝑤𝑡+1, 𝑡 = 0, 1, 2, … (26.2)

As before,
• 𝑥𝑡 is 𝑛 × 1, 𝐴 is 𝑛 × 𝑛
• 𝑢𝑡 is 𝑘 × 1, 𝐵 is 𝑛 × 𝑘
• 𝑤𝑡 is 𝑗 × 1, 𝐶 is 𝑛 × 𝑗
• 𝑅 is 𝑛 × 𝑛 and 𝑄 is 𝑘 × 𝑘

Here 𝑥𝑡 is the state, 𝑢𝑡 is the control, and 𝑤𝑡 is a shock vector.
For now, we take {𝑤𝑡} ∶= {𝑤𝑡}∞

𝑡=1 to be deterministic — a single fixed sequence.
We also allow for model uncertainty on the part of the agent solving this optimization problem.
In particular, the agent takes 𝑤𝑡 = 0 for all 𝑡 ≥ 0 as a benchmark model but admits the possibility that this model might
be wrong.
As a consequence, she also considers a set of alternative models expressed in terms of sequences {𝑤𝑡} that are “close” to
the zero sequence.
She seeks a policy that will do well enough for a set of alternative models whose members are pinned down by sequences
{𝑤𝑡}.
Soon we’ll quantify the quality of a model specification in terms of the maximal size of the expression
∑∞

𝑡=0 𝛽𝑡+1𝑤′
𝑡+1𝑤𝑡+1.

26.2. The Model 435

https://www.nobelprize.org/prizes/economic-sciences/2013/hansen/lecture/
https://python-intro.quantecon.org/lqcontrol.html
https://python.quantecon.org/lqcontrol.html#infinite-horizon

Advanced Quantitative Economics with Python

26.3 Constructing More Robust Policies

If our agent takes {𝑤𝑡} as a given deterministic sequence, then, drawing on intuition from earlier lectures on dynamic
programming, we can anticipate Bellman equations such as

𝐽𝑡−1(𝑥) = min
𝑢

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 𝐽𝑡(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤𝑡)}

(Here 𝐽 depends on 𝑡 because the sequence {𝑤𝑡} is not recursive)
Our tool for studying robustness is to construct a rule that works well even if an adverse sequence {𝑤𝑡} occurs.
In our framework, “adverse” means “loss increasing”.
As we’ll see, this will eventually lead us to construct the Bellman equation

𝐽(𝑥) = min
𝑢

max
𝑤

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 [𝐽(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤) − 𝜃𝑤′𝑤]} (26.3)

Notice that we’ve added the penalty term −𝜃𝑤′𝑤.
Since 𝑤′𝑤 = ‖𝑤‖2, this term becomes influential when 𝑤 moves away from the origin.
The penalty parameter 𝜃 controls how much we penalize the maximizing agent for “harming” the minimizing agent.
By raising 𝜃 more and more, we more and more limit the ability of maximizing agent to distort outcomes relative to the
approximating model.
So bigger 𝜃 is implicitly associated with smaller distortion sequences {𝑤𝑡}.

26.3.1 Analyzing the Bellman Equation

So what does 𝐽 in (26.3) look like?
As with the ordinary LQ control model, 𝐽 takes the form 𝐽(𝑥) = 𝑥′𝑃𝑥 for some symmetric positive definite matrix 𝑃 .
One of our main tasks will be to analyze and compute the matrix 𝑃 .
Related tasks will be to study associated feedback rules for 𝑢𝑡 and 𝑤𝑡+1.
First, using matrix calculus, you will be able to verify that

max
𝑤

{(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤)′𝑃(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤) − 𝜃𝑤′𝑤}
= (𝐴𝑥 + 𝐵𝑢)′𝒟(𝑃)(𝐴𝑥 + 𝐵𝑢)

(26.4)

where

𝒟(𝑃) ∶= 𝑃 + 𝑃𝐶(𝜃𝐼 − 𝐶′𝑃𝐶)−1𝐶′𝑃 (26.5)

and 𝐼 is a 𝑗 × 𝑗 identity matrix. Substituting this expression for the maximum into (26.3) yields

𝑥′𝑃𝑥 = min
𝑢

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 (𝐴𝑥 + 𝐵𝑢)′𝒟(𝑃)(𝐴𝑥 + 𝐵𝑢)} (26.6)

Using similar mathematics, the solution to this minimization problem is 𝑢 = −𝐹𝑥 where 𝐹 ∶= (𝑄 +
𝛽𝐵′𝒟(𝑃)𝐵)−1𝛽𝐵′𝒟(𝑃)𝐴.
Substituting this minimizer back into (26.6) and working through the algebra gives 𝑥′𝑃𝑥 = 𝑥′ℬ(𝒟(𝑃))𝑥 for all 𝑥, or,
equivalently,

𝑃 = ℬ(𝒟(𝑃))

436 Chapter 26. Robustness

https://python-intro.quantecon.org/lqcontrol.html
https://python-intro.quantecon.org/linear_algebra.html#la-mcalc

Advanced Quantitative Economics with Python

where 𝒟 is the operator defined in (26.5) and

ℬ(𝑃) ∶= 𝑅 − 𝛽2𝐴′𝑃𝐵(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴 + 𝛽𝐴′𝑃𝐴

The operator ℬ is the standard (i.e., non-robust) LQ Bellman operator, and 𝑃 = ℬ(𝑃) is the standard matrix Riccati
equation coming from the Bellman equation — see this discussion.
Under some regularity conditions (see [HS08a]), the operator ℬ ∘ 𝒟 has a unique positive definite fixed point, which we
denote below by ̂𝑃 .
A robust policy, indexed by 𝜃, is 𝑢 = − ̂𝐹𝑥 where

̂𝐹 ∶= (𝑄 + 𝛽𝐵′𝒟(̂𝑃)𝐵)−1𝛽𝐵′𝒟(̂𝑃)𝐴 (26.7)

We also define

�̂� ∶= (𝜃𝐼 − 𝐶′ ̂𝑃𝐶)−1𝐶′ ̂𝑃 (𝐴 − 𝐵 ̂𝐹) (26.8)

The interpretation of �̂� is that 𝑤𝑡+1 = �̂�𝑥𝑡 on the worst-case path of {𝑥𝑡}, in the sense that this vector is the maximizer
of (26.4) evaluated at the fixed rule 𝑢 = − ̂𝐹𝑥.
Note that ̂𝑃 , ̂𝐹 , �̂� are all determined by the primitives and 𝜃.
Note also that if 𝜃 is very large, then 𝒟 is approximately equal to the identity mapping.
Hence, when 𝜃 is large, ̂𝑃 and ̂𝐹 are approximately equal to their standard LQ values.
Furthermore, when 𝜃 is large, �̂� is approximately equal to zero.
Conversely, smaller 𝜃 is associated with greater fear of model misspecification and greater concern for robustness.

26.4 Robustness as Outcome of a Two-Person Zero-Sum Game

What we have done above can be interpreted in terms of a two-person zero-sum game in which ̂𝐹 , �̂� are Nash equilibrium
objects.
Agent 1 is our original agent, who seeks to minimize loss in the LQ program while admitting the possibility of misspeci-
fication.
Agent 2 is an imaginary malevolent player.
Agent 2’s malevolence helps the original agent to compute bounds on his value function across a set of models.
We begin with agent 2’s problem.

26.4.1 Agent 2’s Problem

Agent 2
1. knows a fixed policy 𝐹 specifying the behavior of agent 1, in the sense that 𝑢𝑡 = −𝐹𝑥𝑡 for all 𝑡
2. responds by choosing a shock sequence {𝑤𝑡} from a set of paths sufficiently close to the benchmark sequence

{0, 0, 0, …}
A natural way to say “sufficiently close to the zero sequence” is to restrict the summed inner product ∑∞

𝑡=1 𝑤′
𝑡𝑤𝑡 to be

small.

26.4. Robustness as Outcome of a Two-Person Zero-Sum Game 437

https://python.quantecon.org/lqcontrol.html#infinite-horizon

Advanced Quantitative Economics with Python

However, to obtain a time-invariant recursive formulation, it turns out to be convenient to restrict a discounted inner
product

∞
∑
𝑡=1

𝛽𝑡𝑤′
𝑡𝑤𝑡 ≤ 𝜂 (26.9)

Now let 𝐹 be a fixed policy, and let 𝐽𝐹 (𝑥0,w) be the present-value cost of that policy given sequence w ∶= {𝑤𝑡} and
initial condition 𝑥0 ∈ ℝ𝑛.
Substituting −𝐹𝑥𝑡 for 𝑢𝑡 in (26.1), this value can be written as

𝐽𝐹 (𝑥0,w) ∶=
∞

∑
𝑡=0

𝛽𝑡𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡 (26.10)

where

𝑥𝑡+1 = (𝐴 − 𝐵𝐹)𝑥𝑡 + 𝐶𝑤𝑡+1 (26.11)

and the initial condition 𝑥0 is as specified in the left side of (26.10).
Agent 2 chooses w to maximize agent 1’s loss 𝐽𝐹 (𝑥0,w) subject to (26.9).
Using a Lagrangian formulation, we can express this problem as

max
w

∞
∑
𝑡=0

𝛽𝑡 {𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡 − 𝛽𝜃(𝑤′

𝑡+1𝑤𝑡+1 − 𝜂)}

where {𝑥𝑡} satisfied (26.11) and 𝜃 is a Lagrange multiplier on constraint (26.9).
For the moment, let’s take 𝜃 as fixed, allowing us to drop the constant 𝛽𝜃𝜂 term in the objective function, and hence write
the problem as

max
w

∞
∑
𝑡=0

𝛽𝑡 {𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡 − 𝛽𝜃𝑤′

𝑡+1𝑤𝑡+1}

or, equivalently,

min
w

∞
∑
𝑡=0

𝛽𝑡 {−𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡 + 𝛽𝜃𝑤′

𝑡+1𝑤𝑡+1} (26.12)

subject to (26.11).
What’s striking about this optimization problem is that it is once again an LQ discounted dynamic programming problem,
with w = {𝑤𝑡} as the sequence of controls.
The expression for the optimal policy can be found by applying the usual LQ formula (see here).
We denote it by 𝐾(𝐹, 𝜃), with the interpretation 𝑤𝑡+1 = 𝐾(𝐹, 𝜃)𝑥𝑡.
The remaining step for agent 2’s problem is to set 𝜃 to enforce the constraint (26.9), which can be done by choosing
𝜃 = 𝜃𝜂 such that

𝛽
∞

∑
𝑡=0

𝛽𝑡𝑥′
𝑡𝐾(𝐹, 𝜃𝜂)′𝐾(𝐹, 𝜃𝜂)𝑥𝑡 = 𝜂 (26.13)

Here 𝑥𝑡 is given by (26.11) — which in this case becomes 𝑥𝑡+1 = (𝐴 − 𝐵𝐹 + 𝐶𝐾(𝐹, 𝜃))𝑥𝑡.

438 Chapter 26. Robustness

https://python.quantecon.org/lqcontrol.html#infinite-horizon

Advanced Quantitative Economics with Python

26.4.2 Using Agent 2’s Problem to Construct Bounds on the Value Sets

The Lower Bound

Define the minimized object on the right side of problem (26.12) as 𝑅𝜃(𝑥0, 𝐹).
Because “minimizers minimize” we have

𝑅𝜃(𝑥0, 𝐹) ≤
∞

∑
𝑡=0

𝛽𝑡 {−𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡} + 𝛽𝜃

∞
∑
𝑡=0

𝛽𝑡𝑤′
𝑡+1𝑤𝑡+1,

where 𝑥𝑡+1 = (𝐴 − 𝐵𝐹 + 𝐶𝐾(𝐹, 𝜃))𝑥𝑡 and 𝑥0 is a given initial condition.
This inequality in turn implies the inequality

𝑅𝜃(𝑥0, 𝐹) − 𝜃 ent ≤
∞

∑
𝑡=0

𝛽𝑡 {−𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡} (26.14)

where

ent ∶= 𝛽
∞

∑
𝑡=0

𝛽𝑡𝑤′
𝑡+1𝑤𝑡+1

The left side of inequality (26.14) is a straight line with slope −𝜃.
Technically, it is a “separating hyperplane”.
At a particular value of entropy, the line is tangent to the lower bound of values as a function of entropy.
In particular, the lower bound on the left side of (26.14) is attained when

ent = 𝛽
∞

∑
𝑡=0

𝛽𝑡𝑥′
𝑡𝐾(𝐹, 𝜃)′𝐾(𝐹, 𝜃)𝑥𝑡 (26.15)

To construct the lower bound on the set of values associated with all perturbations w satisfying the entropy constraint
(26.9) at a given entropy level, we proceed as follows:

• For a given 𝜃, solve the minimization problem (26.12).
• Compute the minimizer 𝑅𝜃(𝑥0, 𝐹) and the associated entropy using (26.15).
• Compute the lower bound on the value function 𝑅𝜃(𝑥0, 𝐹) − 𝜃 ent and plot it against ent.
• Repeat the preceding three steps for a range of values of 𝜃 to trace out the lower bound.

Note: This procedure sweeps out a set of separating hyperplanes indexed by different values for the Lagrange multiplier
𝜃.

The Upper Bound

To construct an upper bound we use a very similar procedure.
We simply replace the minimization problem (26.12) with the maximization problem

𝑉 ̃𝜃(𝑥0, 𝐹) = max
w

∞
∑
𝑡=0

𝛽𝑡 {−𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡 − 𝛽 ̃𝜃𝑤′

𝑡+1𝑤𝑡+1} (26.16)

where now ̃𝜃 > 0 penalizes the choice of w with larger entropy.

26.4. Robustness as Outcome of a Two-Person Zero-Sum Game 439

Advanced Quantitative Economics with Python

(Notice that ̃𝜃 = −𝜃 in problem (26.12))
Because “maximizers maximize” we have

𝑉 ̃𝜃(𝑥0, 𝐹) ≥
∞

∑
𝑡=0

𝛽𝑡 {−𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡} − 𝛽 ̃𝜃

∞
∑
𝑡=0

𝛽𝑡𝑤′
𝑡+1𝑤𝑡+1

which in turn implies the inequality

𝑉 ̃𝜃(𝑥0, 𝐹) + ̃𝜃 ent ≥
∞

∑
𝑡=0

𝛽𝑡 {−𝑥′
𝑡(𝑅 + 𝐹 ′𝑄𝐹)𝑥𝑡} (26.17)

where

ent ≡ 𝛽
∞

∑
𝑡=0

𝛽𝑡𝑤′
𝑡+1𝑤𝑡+1

The left side of inequality (26.17) is a straight line with slope ̃𝜃.
The upper bound on the left side of (26.17) is attained when

ent = 𝛽
∞

∑
𝑡=0

𝛽𝑡𝑥′
𝑡𝐾(𝐹, ̃𝜃)′𝐾(𝐹, ̃𝜃)𝑥𝑡 (26.18)

To construct the upper bound on the set of values associated all perturbations w with a given entropy we proceed much
as we did for the lower bound

• For a given ̃𝜃, solve the maximization problem (26.16).
• Compute the maximizer 𝑉 ̃𝜃(𝑥0, 𝐹) and the associated entropy using (26.18).

• Compute the upper bound on the value function 𝑉 ̃𝜃(𝑥0, 𝐹) + ̃𝜃 ent and plot it against ent.

• Repeat the preceding three steps for a range of values of ̃𝜃 to trace out the upper bound.

Reshaping the Set of Values

Now in the interest of reshaping these sets of values by choosing 𝐹 , we turn to agent 1’s problem.

26.4.3 Agent 1’s Problem

Now we turn to agent 1, who solves

min
{𝑢𝑡}

∞
∑
𝑡=0

𝛽𝑡 {𝑥′
𝑡𝑅𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡 − 𝛽𝜃𝑤′
𝑡+1𝑤𝑡+1} (26.19)

where {𝑤𝑡+1} satisfies 𝑤𝑡+1 = 𝐾𝑥𝑡.
In other words, agent 1 minimizes

∞
∑
𝑡=0

𝛽𝑡 {𝑥′
𝑡(𝑅 − 𝛽𝜃𝐾′𝐾)𝑥𝑡 + 𝑢′

𝑡𝑄𝑢𝑡} (26.20)

subject to

𝑥𝑡+1 = (𝐴 + 𝐶𝐾)𝑥𝑡 + 𝐵𝑢𝑡 (26.21)

Once again, the expression for the optimal policy can be found here — we denote it by ̃𝐹 .

440 Chapter 26. Robustness

https://python.quantecon.org/lqcontrol.html#infinite-horizon

Advanced Quantitative Economics with Python

26.4.4 Nash Equilibrium

Clearly, the ̃𝐹 we have obtained depends on 𝐾, which, in agent 2’s problem, depended on an initial policy 𝐹 .
Holding all other parameters fixed, we can represent this relationship as a mapping Φ, where

̃𝐹 = Φ(𝐾(𝐹 , 𝜃))

The map 𝐹 ↦ Φ(𝐾(𝐹 , 𝜃)) corresponds to a situation in which
1. agent 1 uses an arbitrary initial policy 𝐹
2. agent 2 best responds to agent 1 by choosing 𝐾(𝐹, 𝜃)
3. agent 1 best responds to agent 2 by choosing ̃𝐹 = Φ(𝐾(𝐹 , 𝜃))

As you may have already guessed, the robust policy ̂𝐹 defined in (26.7) is a fixed point of the mapping Φ.
In particular, for any given 𝜃,

1. 𝐾(̂𝐹 , 𝜃) = �̂�, where �̂� is as given in (26.8)

2. Φ(�̂�) = ̂𝐹
A sketch of the proof is given in the appendix.

26.5 The Stochastic Case

Now we turn to the stochastic case, where the sequence {𝑤𝑡} is treated as an IID sequence of random vectors.
In this setting, we suppose that our agent is uncertain about the conditional probability distribution of 𝑤𝑡+1.
The agent takes the standard normal distribution 𝑁(0, 𝐼) as the baseline conditional distribution, while admitting the
possibility that other “nearby” distributions prevail.
These alternative conditional distributions of 𝑤𝑡+1 might depend nonlinearly on the history 𝑥𝑠, 𝑠 ≤ 𝑡.
To implement this idea, we need a notion of what it means for one distribution to be near another one.
Here we adopt a very useful measure of closeness for distributions known as the relative entropy, or Kullback-Leibler
divergence.
For densities 𝑝, 𝑞, the Kullback-Leibler divergence of 𝑞 from 𝑝 is defined as

𝐷𝐾𝐿(𝑝, 𝑞) ∶= ∫ ln [𝑝(𝑥)
𝑞(𝑥)] 𝑝(𝑥) 𝑑𝑥

Using this notation, we replace (26.3) with the stochastic analog

𝐽(𝑥) = min
𝑢

max
𝜓∈𝒫

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 [∫ 𝐽(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤) 𝜓(𝑑𝑤) − 𝜃𝐷𝐾𝐿(𝜓, 𝜙)]} (26.22)

Here 𝒫 represents the set of all densities on ℝ𝑛 and 𝜙 is the benchmark distribution 𝑁(0, 𝐼).
The distribution 𝜙 is chosen as the least desirable conditional distribution in terms of next period outcomes, while taking
into account the penalty term 𝜃𝐷𝐾𝐿(𝜓, 𝜙).
This penalty term plays a role analogous to the one played by the deterministic penalty 𝜃𝑤′𝑤 in (26.3), since it discourages
large deviations from the benchmark.

26.5. The Stochastic Case 441

https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

Advanced Quantitative Economics with Python

26.5.1 Solving the Model

Themaximization problem in (26.22) appears highly nontrivial— after all, we aremaximizing over an infinite dimensional
space consisting of the entire set of densities.
However, it turns out that the solution is tractable, and in fact also falls within the class of normal distributions.
First, we note that 𝐽 has the form 𝐽(𝑥) = 𝑥′𝑃𝑥 + 𝑑 for some positive definite matrix 𝑃 and constant real number 𝑑.
Moreover, it turns out that if (𝐼 − 𝜃−1𝐶′𝑃𝐶)−1 is nonsingular, then

max
𝜓∈𝒫

{∫(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤)′𝑃(𝐴𝑥 + 𝐵𝑢 + 𝐶𝑤) 𝜓(𝑑𝑤) − 𝜃𝐷𝐾𝐿(𝜓, 𝜙)}

= (𝐴𝑥 + 𝐵𝑢)′𝒟(𝑃)(𝐴𝑥 + 𝐵𝑢) + 𝜅(𝜃, 𝑃)
(26.23)

where

𝜅(𝜃, 𝑃) ∶= 𝜃 ln[det(𝐼 − 𝜃−1𝐶′𝑃𝐶)−1]

and the maximizer is the Gaussian distribution

𝜓 = 𝑁 ((𝜃𝐼 − 𝐶′𝑃𝐶)−1𝐶′𝑃(𝐴𝑥 + 𝐵𝑢), (𝐼 − 𝜃−1𝐶′𝑃𝐶)−1) (26.24)

Substituting the expression for the maximum into Bellman equation (26.22) and using 𝐽(𝑥) = 𝑥′𝑃𝑥 + 𝑑 gives

𝑥′𝑃𝑥 + 𝑑 = min
𝑢

{𝑥′𝑅𝑥 + 𝑢′𝑄𝑢 + 𝛽 (𝐴𝑥 + 𝐵𝑢)′𝒟(𝑃)(𝐴𝑥 + 𝐵𝑢) + 𝛽 [𝑑 + 𝜅(𝜃, 𝑃)]} (26.25)

Since constant terms do not affect minimizers, the solution is the same as (26.6), leading to

𝑥′𝑃𝑥 + 𝑑 = 𝑥′ℬ(𝒟(𝑃))𝑥 + 𝛽 [𝑑 + 𝜅(𝜃, 𝑃)]

To solve this Bellman equation, we take ̂𝑃 to be the positive definite fixed point of ℬ ∘ 𝒟.
In addition, we take ̂𝑑 as the real number solving 𝑑 = 𝛽 [𝑑 + 𝜅(𝜃, 𝑃)], which is

̂𝑑 ∶= 𝛽
1 − 𝛽 𝜅(𝜃, 𝑃) (26.26)

The robust policy in this stochastic case is the minimizer in (26.25), which is once again 𝑢 = − ̂𝐹𝑥 for ̂𝐹 given by (26.7).
Substituting the robust policy into (26.24) we obtain the worst-case shock distribution:

𝑤𝑡+1 ∼ 𝑁(�̂�𝑥𝑡, (𝐼 − 𝜃−1𝐶′ ̂𝑃𝐶)−1)

where �̂� is given by (26.8).
Note that the mean of the worst-case shock distribution is equal to the same worst-case𝑤𝑡+1 as in the earlier deterministic
setting.

26.5.2 Computing Other Quantities

Before turning to implementation, we briefly outline how to compute several other quantities of interest.

442 Chapter 26. Robustness

Advanced Quantitative Economics with Python

Worst-Case Value of a Policy

One thing we will be interested in doing is holding a policy fixed and computing the discounted loss associated with that
policy.
So let 𝐹 be a given policy and let 𝐽𝐹 (𝑥) be the associated loss, which, by analogy with (26.22), satisfies

𝐽𝐹 (𝑥) = max
𝜓∈𝒫

{𝑥′(𝑅 + 𝐹 ′𝑄𝐹)𝑥 + 𝛽 [∫ 𝐽𝐹 ((𝐴 − 𝐵𝐹)𝑥 + 𝐶𝑤) 𝜓(𝑑𝑤) − 𝜃𝐷𝐾𝐿(𝜓, 𝜙)]}

Writing 𝐽𝐹 (𝑥) = 𝑥′𝑃𝐹 𝑥 + 𝑑𝐹 and applying the same argument used to derive (26.23) we get

𝑥′𝑃𝐹 𝑥 + 𝑑𝐹 = 𝑥′(𝑅 + 𝐹 ′𝑄𝐹)𝑥 + 𝛽 [𝑥′(𝐴 − 𝐵𝐹)′𝒟(𝑃𝐹)(𝐴 − 𝐵𝐹)𝑥 + 𝑑𝐹 + 𝜅(𝜃, 𝑃𝐹)]

To solve this we take 𝑃𝐹 to be the fixed point

𝑃𝐹 = 𝑅 + 𝐹 ′𝑄𝐹 + 𝛽(𝐴 − 𝐵𝐹)′𝒟(𝑃𝐹)(𝐴 − 𝐵𝐹)

and

𝑑𝐹 ∶= 𝛽
1 − 𝛽 𝜅(𝜃, 𝑃𝐹) = 𝛽

1 − 𝛽 𝜃 ln[det(𝐼 − 𝜃−1𝐶′𝑃𝐹 𝐶)−1] (26.27)

If you skip ahead to the appendix, you will be able to verify that −𝑃𝐹 is the solution to the Bellman equation in agent 2’s
problem discussed above—we use this in our computations.

26.6 Implementation

The QuantEcon.py package provides a class called RBLQ for implementation of robust LQ optimal control.
The code can be found on GitHub.
Here is a brief description of the methods of the class

• d_operator() and b_operator() implement 𝒟 and ℬ respectively
• robust_rule() and robust_rule_simple() both solve for the triple ̂𝐹 , �̂�, ̂𝑃 , as described in equations
(26.7) – (26.8) and the surrounding discussion

– robust_rule() is more efficient
– robust_rule_simple() is more transparent and easier to follow

• K_to_F() and F_to_K() solve the decision problems of agent 1 and agent 2 respectively
• compute_deterministic_entropy() computes the left-hand side of (26.13)
• evaluate_F() computes the loss and entropy associated with a given policy — see this discussion

26.7 Application

Let us consider a monopolist similar to this one, but now facing model uncertainty.
The inverse demand function is 𝑝𝑡 = 𝑎0 − 𝑎1𝑦𝑡 + 𝑑𝑡.
where

𝑑𝑡+1 = 𝜌𝑑𝑡 + 𝜎𝑑𝑤𝑡+1, {𝑤𝑡}
IID∼ 𝑁(0, 1)

26.6. Implementation 443

http://quantecon.org/quantecon-py
https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/robustlq.py
https://python-intro.quantecon.org/lqcontrol.html#lqc-mwac

Advanced Quantitative Economics with Python

and all parameters are strictly positive.
The period return function for the monopolist is

𝑟𝑡 = 𝑝𝑡𝑦𝑡 − 𝛾 (𝑦𝑡+1 − 𝑦𝑡)2

2 − 𝑐𝑦𝑡

Its objective is to maximize expected discounted profits, or, equivalently, to minimize 𝔼 ∑∞
𝑡=0 𝛽𝑡(−𝑟𝑡).

To form a linear regulator problem, we take the state and control to be

𝑥𝑡 = ⎡⎢
⎣

1
𝑦𝑡
𝑑𝑡

⎤⎥
⎦

and 𝑢𝑡 = 𝑦𝑡+1 − 𝑦𝑡

Setting 𝑏 ∶= (𝑎0 − 𝑐)/2 we define

𝑅 = − ⎡⎢
⎣

0 𝑏 0
𝑏 −𝑎1 1/2
0 1/2 0

⎤⎥
⎦

and 𝑄 = 𝛾/2

For the transition matrices, we set

𝐴 = ⎡⎢
⎣

1 0 0
0 1 0
0 0 𝜌

⎤⎥
⎦

, 𝐵 = ⎡⎢
⎣

0
1
0
⎤⎥
⎦

, 𝐶 = ⎡⎢
⎣

0
0
𝜎𝑑

⎤⎥
⎦

Our aim is to compute the value-entropy correspondences shown above.
The parameters are

𝑎0 = 100, 𝑎1 = 0.5, 𝜌 = 0.9, 𝜎𝑑 = 0.05, 𝛽 = 0.95, 𝑐 = 2, 𝛾 = 50.0

The standard normal distribution for 𝑤𝑡 is understood as the agent’s baseline, with uncertainty parameterized by 𝜃.
We compute value-entropy correspondences for two policies

1. The no concern for robustness policy 𝐹0, which is the ordinary LQ loss minimizer.
2. A “moderate” concern for robustness policy 𝐹𝑏, with 𝜃 = 0.02.

The code for producing the graph shown above, with blue being for the robust policy, is as follows

Model parameters

a_0 = 100
a_1 = 0.5
ρ = 0.9
σ_d = 0.05
β = 0.95
c = 2
γ = 50.0

θ = 0.002
ac = (a_0 - c) / 2.0

Define LQ matrices

R = np.array([[0., ac, 0.],
[ac, -a_1, 0.5],

(continues on next page)

444 Chapter 26. Robustness

Advanced Quantitative Economics with Python

(continued from previous page)

[0., 0.5, 0.]])

R = -R # For minimization
Q = γ / 2

A = np.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., ρ]])

B = np.array([[0.],
[1.],
[0.]])

C = np.array([[0.],
[0.],
[σ_d]])

Functions

def evaluate_policy(θ, F):

"""
Given θ (scalar, dtype=float) and policy F (array_like), returns the
value associated with that policy under the worst case path for {w_t},
as well as the entropy level.
"""

rlq = qe.RBLQ(Q, R, A, B, C, β, θ)
K_F, P_F, d_F, O_F, o_F = rlq.evaluate_F(F)
x0 = np.array([[1.], [0.], [0.]])
value = - x0.T @ P_F @ x0 - d_F
entropy = x0.T @ O_F @ x0 + o_F
return list(map(float, (value, entropy)))

def value_and_entropy(emax, F, bw, grid_size=1000):

"""
Compute the value function and entropy levels for a θ path
increasing until it reaches the specified target entropy value.

Parameters
==========
emax: scalar

The target entropy value

F: array_like
The policy function to be evaluated

bw: str
A string specifying whether the implied shock path follows best
or worst assumptions. The only acceptable values are 'best' and
'worst'.

Returns

(continues on next page)

26.7. Application 445

Advanced Quantitative Economics with Python

(continued from previous page)

=======
df: pd.DataFrame

A pandas DataFrame containing the value function and entropy
values up to the emax parameter. The columns are 'value' and
'entropy'.

"""

if bw == 'worst':
θs = 1 / np.linspace(1e-8, 1000, grid_size)

else:
θs = -1 / np.linspace(1e-8, 1000, grid_size)

df = pd.DataFrame(index=θs, columns=('value', 'entropy'))

for θ in θs:
df.loc[θ] = evaluate_policy(θ, F)
if df.loc[θ, 'entropy'] >= emax:

break

df = df.dropna(how='any')
return df

--
Main
--

Compute the optimal rule
optimal_lq = qe.LQ(Q, R, A, B, C, beta=β)
Po, Fo, do = optimal_lq.stationary_values()

Compute a robust rule given θ
baseline_robust = qe.RBLQ(Q, R, A, B, C, β, θ)
Fb, Kb, Pb = baseline_robust.robust_rule()

Check the positive definiteness of worst-case covariance matrix to
ensure that θ exceeds the breakdown point
test_matrix = np.identity(Pb.shape[0]) - (C.T @ Pb @ C) / θ
eigenvals, eigenvecs = eig(test_matrix)
assert (eigenvals >= 0).all(), 'θ below breakdown point.'

emax = 1.6e6

optimal_best_case = value_and_entropy(emax, Fo, 'best')
robust_best_case = value_and_entropy(emax, Fb, 'best')
optimal_worst_case = value_and_entropy(emax, Fo, 'worst')
robust_worst_case = value_and_entropy(emax, Fb, 'worst')

fig, ax = plt.subplots()

ax.set_xlim(0, emax)
ax.set_ylabel("Value")
ax.set_xlabel("Entropy")
ax.grid()

(continues on next page)

446 Chapter 26. Robustness

Advanced Quantitative Economics with Python

(continued from previous page)

for axis in 'x', 'y':
plt.ticklabel_format(style='sci', axis=axis, scilimits=(0, 0))

plot_args = {'lw': 2, 'alpha': 0.7}

colors = 'r', 'b'

df_pairs = ((optimal_best_case, optimal_worst_case),
(robust_best_case, robust_worst_case))

class Curve:

def __init__(self, x, y):
self.x, self.y = x, y

def __call__(self, z):
return np.interp(z, self.x, self.y)

for c, df_pair in zip(colors, df_pairs):
curves = []
for df in df_pair:

Plot curves
x, y = df['entropy'], df['value']
x, y = (np.asarray(a, dtype='float') for a in (x, y))
egrid = np.linspace(0, emax, 100)
curve = Curve(x, y)
print(ax.plot(egrid, curve(egrid), color=c, **plot_args))
curves.append(curve)

Color fill between curves
ax.fill_between(egrid,

curves[0](egrid),
curves[1](egrid),
color=c, alpha=0.1)

plt.show()

[<matplotlib.lines.Line2D object at 0x7f7eb31f99d0>]
[<matplotlib.lines.Line2D object at 0x7f7eb1dc2590>]
[<matplotlib.lines.Line2D object at 0x7f7eb1dd8610>]
[<matplotlib.lines.Line2D object at 0x7f7eb1dd8fd0>]

26.7. Application 447

Advanced Quantitative Economics with Python

Here’s another such figure, with 𝜃 = 0.002 instead of 0.02
Can you explain the different shape of the value-entropy correspondence for the robust policy?

26.8 Appendix

We sketch the proof only of the first claim in this section, which is that, for any given 𝜃, 𝐾(̂𝐹 , 𝜃) = �̂�, where �̂� is as
given in (26.8).
This is the content of the next lemma.
Lemma. If ̂𝑃 is the fixed point of the map ℬ ∘ 𝒟 and ̂𝐹 is the robust policy as given in (26.7), then

𝐾(̂𝐹 , 𝜃) = (𝜃𝐼 − 𝐶′ ̂𝑃𝐶)−1𝐶′ ̂𝑃 (𝐴 − 𝐵 ̂𝐹) (26.28)

Proof: As a first step, observe that when 𝐹 = ̂𝐹 , the Bellman equation associated with the LQ problem (26.11) – (26.12)
is

̃𝑃 = −𝑅 − ̂𝐹 ′𝑄 ̂𝐹 − 𝛽2(𝐴 − 𝐵 ̂𝐹)′ ̃𝑃𝐶(𝛽𝜃𝐼 + 𝛽𝐶′ ̃𝑃𝐶)−1𝐶′ ̃𝑃 (𝐴 − 𝐵 ̂𝐹) + 𝛽(𝐴 − 𝐵 ̂𝐹)′ ̃𝑃 (𝐴 − 𝐵 ̂𝐹) (26.29)

(revisit this discussion if you don’t know where (26.29) comes from) and the optimal policy is

𝑤𝑡+1 = −𝛽(𝛽𝜃𝐼 + 𝛽𝐶′ ̃𝑃𝐶)−1𝐶′ ̃𝑃 (𝐴 − 𝐵 ̂𝐹)𝑥𝑡

Suppose for a moment that − ̂𝑃 solves the Bellman equation (26.29).

448 Chapter 26. Robustness

https://python.quantecon.org/lqcontrol.html#infinite-horizon

Advanced Quantitative Economics with Python

In this case, the policy becomes

𝑤𝑡+1 = (𝜃𝐼 − 𝐶′ ̂𝑃𝐶)−1𝐶′ ̂𝑃 (𝐴 − 𝐵 ̂𝐹)𝑥𝑡

which is exactly the claim in (26.28).
Hence it remains only to show that − ̂𝑃 solves (26.29), or, in other words,

̂𝑃 = 𝑅 + ̂𝐹 ′𝑄 ̂𝐹 + 𝛽(𝐴 − 𝐵 ̂𝐹)′ ̂𝑃𝐶(𝜃𝐼 − 𝐶′ ̂𝑃𝐶)−1𝐶′ ̂𝑃 (𝐴 − 𝐵 ̂𝐹) + 𝛽(𝐴 − 𝐵 ̂𝐹)′ ̂𝑃 (𝐴 − 𝐵 ̂𝐹)

Using the definition of 𝒟, we can rewrite the right-hand side more simply as

𝑅 + ̂𝐹 ′𝑄 ̂𝐹 + 𝛽(𝐴 − 𝐵 ̂𝐹)′𝒟(̂𝑃)(𝐴 − 𝐵 ̂𝐹)

Although it involves a substantial amount of algebra, it can be shown that the latter is just ̂𝑃 .

Hint: Use the fact that ̂𝑃 = ℬ(𝒟(̂𝑃))

26.8. Appendix 449

Advanced Quantitative Economics with Python

450 Chapter 26. Robustness

CHAPTER

TWENTYSEVEN

ROBUST MARKOV PERFECT EQUILIBRIUM

Contents

• Robust Markov Perfect Equilibrium

– Overview

– Linear Markov Perfect Equilibria with Robust Agents

– Application

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

27.1 Overview

This lecture describes a Markov perfect equilibrium with robust agents.
We focus on special settings with

• two players
• quadratic payoff functions
• linear transition rules for the state vector

These specifications simplify calculations and allow us to give a simple example that illustrates basic forces.
This lecture is based on ideas described in chapter 15 of [HS08a] and in Markov perfect equilibrium and Robustness.
Let’s start with some standard imports:

import numpy as np
import quantecon as qe
from scipy.linalg import solve
import matplotlib.pyplot as plt
%matplotlib inline

451

https://python-intro.quantecon.org/markov_perf.html

Advanced Quantitative Economics with Python

27.1.1 Basic Setup

Decisions of two agents affect the motion of a state vector that appears as an argument of payoff functions of both agents.
As described inMarkov perfect equilibrium, when decision-makers have no concerns about the robustness of their decision
rules to misspecifications of the state dynamics, a Markov perfect equilibrium can be computed via backward recursion
on two sets of equations

• a pair of Bellman equations, one for each agent.
• a pair of equations that express linear decision rules for each agent as functions of that agent’s continuation value
function as well as parameters of preferences and state transition matrices.

This lecture shows how a similar equilibrium concept and similar computational procedures apply when we impute con-
cerns about robustness to both decision-makers.
A Markov perfect equilibrium with robust agents will be characterized by

• a pair of Bellman equations, one for each agent.
• a pair of equations that express linear decision rules for each agent as functions of that agent’s continuation value
function as well as parameters of preferences and state transition matrices.

• a pair of equations that express linear decision rules for worst-case shocks for each agent as functions of that agent’s
continuation value function as well as parameters of preferences and state transition matrices.

Below, we’ll construct a robust firms version of the classic duopoly model with adjustment costs analyzed in Markov
perfect equilibrium.

27.2 Linear Markov Perfect Equilibria with Robust Agents

As we saw in Markov perfect equilibrium, the study of Markov perfect equilibria in dynamic games with two players
leads us to an interrelated pair of Bellman equations.
In linear quadratic dynamic games, these “stacked Bellman equations” become “stacked Riccati equations” with a tractable
mathematical structure.

27.2.1 Modified Coupled Linear Regulator Problems

We consider a general linear quadratic regulator game with two players, each of whom fears model misspecifications.
We often call the players agents.
The agents share a common baseline model for the transition dynamics of the state vector

• this is a counterpart of a ‘rational expectations’ assumption of shared beliefs
But now one or more agents doubt that the baseline model is correctly specified.
The agents express the possibility that their baseline specification is incorrect by adding a contribution 𝐶𝑣𝑖𝑡 to the time 𝑡
transition law for the state

• 𝐶 is the usual volatility matrix that appears in stochastic versions of optimal linear regulator problems.
• 𝑣𝑖𝑡 is a possibly history-dependent vector of distortions to the dynamics of the state that agent 𝑖 uses to represent
misspecification of the original model.

For convenience, we’ll start with a finite horizon formulation, where 𝑡0 is the initial date and 𝑡1 is the common terminal
date.

452 Chapter 27. Robust Markov Perfect Equilibrium

https://python-intro.quantecon.org/markov_perf.html
https://python-intro.quantecon.org/markov_perf.html
https://python-intro.quantecon.org/markov_perf.html
https://python-intro.quantecon.org/markov_perf.html

Advanced Quantitative Economics with Python

Player 𝑖 takes a sequence {𝑢−𝑖𝑡} as given and chooses a sequence {𝑢𝑖𝑡} to minimize and {𝑣𝑖𝑡} to maximize
𝑡1−1
∑
𝑡=𝑡0

𝛽𝑡−𝑡0 {𝑥′
𝑡𝑅𝑖𝑥𝑡 + 𝑢′

𝑖𝑡𝑄𝑖𝑢𝑖𝑡 + 𝑢′
−𝑖𝑡𝑆𝑖𝑢−𝑖𝑡 + 2𝑥′

𝑡𝑊𝑖𝑢𝑖𝑡 + 2𝑢′
−𝑖𝑡𝑀𝑖𝑢𝑖𝑡 − 𝜃𝑖𝑣′

𝑖𝑡𝑣𝑖𝑡} (27.1)

while thinking that the state evolves according to

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵1𝑢1𝑡 + 𝐵2𝑢2𝑡 + 𝐶𝑣𝑖𝑡 (27.2)

Here
• 𝑥𝑡 is an 𝑛 × 1 state vector, 𝑢𝑖𝑡 is a 𝑘𝑖 × 1 vector of controls for player 𝑖, and
• 𝑣𝑖𝑡 is an ℎ × 1 vector of distortions to the state dynamics that concern player 𝑖
• 𝑅𝑖 is 𝑛 × 𝑛
• 𝑆𝑖 is 𝑘−𝑖 × 𝑘−𝑖

• 𝑄𝑖 is 𝑘𝑖 × 𝑘𝑖

• 𝑊𝑖 is 𝑛 × 𝑘𝑖

• 𝑀𝑖 is 𝑘−𝑖 × 𝑘𝑖

• 𝐴 is 𝑛 × 𝑛
• 𝐵𝑖 is 𝑛 × 𝑘𝑖

• 𝐶 is 𝑛 × ℎ
• 𝜃𝑖 ∈ [𝜃𝑖, +∞] is a scalar multiplier parameter of player 𝑖

If 𝜃𝑖 = +∞, player 𝑖 completely trusts the baseline model.
If 𝜃𝑖 <∞, player 𝑖 suspects that some other unspecified model actually governs the transition dynamics.
The term 𝜃𝑖𝑣′

𝑖𝑡𝑣𝑖𝑡 is a time 𝑡 contribution to an entropy penalty that an (imaginary) loss-maximizing agent inside agent
𝑖’s mind charges for distorting the law of motion in a way that harms agent 𝑖.

• the imaginary loss-maximizing agent helps the loss-minimizing agent by helping him construct bounds on the
behavior of his decision rule over a large set of alternative models of state transition dynamics.

27.2.2 Computing Equilibrium

We formulate a linear robust Markov perfect equilibrium as follows.
Player 𝑖 employs linear decision rules 𝑢𝑖𝑡 = −𝐹𝑖𝑡𝑥𝑡, where 𝐹𝑖𝑡 is a 𝑘𝑖 × 𝑛 matrix.
Player 𝑖’s malevolent alter ego employs decision rules 𝑣𝑖𝑡 = 𝐾𝑖𝑡𝑥𝑡 where 𝐾𝑖𝑡 is an ℎ × 𝑛 matrix.
A robust Markov perfect equilibrium is a pair of sequences {𝐹1𝑡, 𝐹2𝑡} and a pair of sequences {𝐾1𝑡, 𝐾2𝑡} over 𝑡 =
𝑡0, … , 𝑡1 − 1 that satisfy

• {𝐹1𝑡, 𝐾1𝑡} solves player 1’s robust decision problem, taking {𝐹2𝑡} as given, and
• {𝐹2𝑡, 𝐾2𝑡} solves player 2’s robust decision problem, taking {𝐹1𝑡} as given.

If we substitute 𝑢2𝑡 = −𝐹2𝑡𝑥𝑡 into (27.1) and (27.2), then player 1’s problem becomes minimization-maximization of

𝑡1−1
∑
𝑡=𝑡0

𝛽𝑡−𝑡0 {𝑥′
𝑡Π1𝑡𝑥𝑡 + 𝑢′

1𝑡𝑄1𝑢1𝑡 + 2𝑢′
1𝑡Γ1𝑡𝑥𝑡 − 𝜃1𝑣′

1𝑡𝑣1𝑡} (27.3)

27.2. Linear Markov Perfect Equilibria with Robust Agents 453

Advanced Quantitative Economics with Python

subject to

𝑥𝑡+1 = Λ1𝑡𝑥𝑡 + 𝐵1𝑢1𝑡 + 𝐶𝑣1𝑡 (27.4)

where
• Λ𝑖𝑡 ∶= 𝐴 − 𝐵−𝑖𝐹−𝑖𝑡

• Π𝑖𝑡 ∶= 𝑅𝑖 + 𝐹 ′
−𝑖𝑡𝑆𝑖𝐹−𝑖𝑡

• Γ𝑖𝑡 ∶= 𝑊 ′
𝑖 − 𝑀 ′

𝑖 𝐹−𝑖𝑡

This is an LQ robust dynamic programming problem of the type studied in the Robustness lecture, which can be solved
by working backward.
Maximization with respect to distortion 𝑣1𝑡 leads to the following version of the 𝒟 operator from the Robustness lecture,
namely

𝒟1(𝑃) ∶= 𝑃 + 𝑃𝐶(𝜃1𝐼 − 𝐶′𝑃𝐶)−1𝐶′𝑃 (27.5)

The matrix 𝐹1𝑡 in the policy rule 𝑢1𝑡 = −𝐹1𝑡𝑥𝑡 that solves agent 1’s problem satisfies

𝐹1𝑡 = (𝑄1 + 𝛽𝐵′
1𝒟1(𝑃1𝑡+1)𝐵1)−1(𝛽𝐵′

1𝒟1(𝑃1𝑡+1)Λ1𝑡 + Γ1𝑡) (27.6)

where 𝑃1𝑡 solves the matrix Riccati difference equation
𝑃1𝑡 = Π1𝑡 − (𝛽𝐵′

1𝒟1(𝑃1𝑡+1)Λ1𝑡 + Γ1𝑡)′(𝑄1 + 𝛽𝐵′
1𝒟1(𝑃1𝑡+1)𝐵1)−1(𝛽𝐵′

1𝒟1(𝑃1𝑡+1)Λ1𝑡 + Γ1𝑡)+
𝛽Λ′

1𝑡𝒟1(𝑃1𝑡+1)Λ1𝑡
(27.7)

Similarly, the policy that solves player 2’s problem is

𝐹2𝑡 = (𝑄2 + 𝛽𝐵′
2𝒟2(𝑃2𝑡+1)𝐵2)−1(𝛽𝐵′

2𝒟2(𝑃2𝑡+1)Λ2𝑡 + Γ2𝑡) (27.8)

where 𝑃2𝑡 solves
𝑃2𝑡 = Π2𝑡 − (𝛽𝐵′

2𝒟2(𝑃2𝑡+1)Λ2𝑡 + Γ2𝑡)′(𝑄2 + 𝛽𝐵′
2𝒟2(𝑃2𝑡+1)𝐵2)−1(𝛽𝐵′

2𝒟2(𝑃2𝑡+1)Λ2𝑡 + Γ2𝑡)+
𝛽Λ′

2𝑡𝒟2(𝑃2𝑡+1)Λ2𝑡
(27.9)

Here in all cases 𝑡 = 𝑡0, … , 𝑡1 − 1 and the terminal conditions are 𝑃𝑖𝑡1
= 0.

The solution procedure is to use equations (27.6), (27.7), (27.8), and (27.9), and “work backwards” from time 𝑡1 − 1.
Since we’re working backwards, 𝑃1𝑡+1 and 𝑃2𝑡+1 are taken as given at each stage.
Moreover, since

• some terms on the right-hand side of (27.6) contain 𝐹2𝑡

• some terms on the right-hand side of (27.8) contain 𝐹1𝑡

we need to solve these 𝑘1 + 𝑘2 equations simultaneously.

27.2.3 Key Insight

As in Markov perfect equilibrium, a key insight here is that equations (27.6) and (27.8) are linear in 𝐹1𝑡 and 𝐹2𝑡.
After these equations have been solved, we can take 𝐹𝑖𝑡 and solve for 𝑃𝑖𝑡 in (27.7) and (27.9).
Notice how 𝑗’s control law 𝐹𝑗𝑡 is a function of {𝐹𝑖𝑠, 𝑠 ≥ 𝑡, 𝑖 ≠ 𝑗}.
Thus, agent 𝑖’s choice of {𝐹𝑖𝑡; 𝑡 = 𝑡0, … , 𝑡1 − 1} influences agent 𝑗’s choice of control laws.
However, in the Markov perfect equilibrium of this game, each agent is assumed to ignore the influence that his choice
exerts on the other agent’s choice.
After these equations have been solved, we can also deduce associated sequences of worst-case shocks.

454 Chapter 27. Robust Markov Perfect Equilibrium

https://python-intro.quantecon.org/markov_perf.html

Advanced Quantitative Economics with Python

27.2.4 Worst-case Shocks

For agent 𝑖 the maximizing or worst-case shock 𝑣𝑖𝑡 is

𝑣𝑖𝑡 = 𝐾𝑖𝑡𝑥𝑡

where

𝐾𝑖𝑡 = 𝜃−1
𝑖 (𝐼 − 𝜃−1

𝑖 𝐶′𝑃𝑖,𝑡+1𝐶)−1𝐶′𝑃𝑖,𝑡+1(𝐴 − 𝐵1𝐹𝑖𝑡 − 𝐵2𝐹2𝑡)

27.2.5 Infinite Horizon

We often want to compute the solutions of such games for infinite horizons, in the hope that the decision rules 𝐹𝑖𝑡 settle
down to be time-invariant as 𝑡1 → +∞.
In practice, we usually fix 𝑡1 and compute the equilibrium of an infinite horizon game by driving 𝑡0 → −∞.
This is the approach we adopt in the next section.

27.2.6 Implementation

We use the function nnash_robust to compute a Markov perfect equilibrium of the infinite horizon linear quadratic dy-
namic game with robust planers in the manner described above.

27.3 Application

27.3.1 A Duopoly Model

Without concerns for robustness, the model is identical to the duopoly model from theMarkov perfect equilibrium lecture.
To begin, we briefly review the structure of that model.
Two firms are the only producers of a good the demand for which is governed by a linear inverse demand function

𝑝 = 𝑎0 − 𝑎1(𝑞1 + 𝑞2) (27.10)

Here 𝑝 = 𝑝𝑡 is the price of the good, 𝑞𝑖 = 𝑞𝑖𝑡 is the output of firm 𝑖 = 1, 2 at time 𝑡 and 𝑎0 > 0, 𝑎1 > 0.
In (27.10) and what follows,

• the time subscript is suppressed when possible to simplify notation
• ̂𝑥 denotes a next period value of variable 𝑥

Each firm recognizes that its output affects total output and therefore the market price.
The one-period payoff function of firm 𝑖 is price times quantity minus adjustment costs:

𝜋𝑖 = 𝑝𝑞𝑖 − 𝛾(̂𝑞𝑖 − 𝑞𝑖)2, 𝛾 > 0, (27.11)

Substituting the inverse demand curve (27.10) into (27.11) lets us express the one-period payoff as

𝜋𝑖(𝑞𝑖, 𝑞−𝑖, ̂𝑞𝑖) = 𝑎0𝑞𝑖 − 𝑎1𝑞2
𝑖 − 𝑎1𝑞𝑖𝑞−𝑖 − 𝛾(̂𝑞𝑖 − 𝑞𝑖)2, (27.12)

where 𝑞−𝑖 denotes the output of the firm other than 𝑖.

27.3. Application 455

https://python-intro.quantecon.org/markov_perf.html

Advanced Quantitative Economics with Python

The objective of the firm is to maximize ∑∞
𝑡=0 𝛽𝑡𝜋𝑖𝑡.

Firm 𝑖 chooses a decision rule that sets next period quantity ̂𝑞𝑖 as a function 𝑓𝑖 of the current state (𝑞𝑖, 𝑞−𝑖).
This completes our review of the duopoly model without concerns for robustness.
Now we activate robustness concerns of both firms.
To map a robust version of the duopoly model into coupled robust linear-quadratic dynamic programming problems, we
again define the state and controls as

𝑥𝑡 ∶= ⎡⎢
⎣

1
𝑞1𝑡
𝑞2𝑡

⎤⎥
⎦

and 𝑢𝑖𝑡 ∶= 𝑞𝑖,𝑡+1 − 𝑞𝑖𝑡, 𝑖 = 1, 2

If we write

𝑥′
𝑡𝑅𝑖𝑥𝑡 + 𝑢′

𝑖𝑡𝑄𝑖𝑢𝑖𝑡

where 𝑄1 = 𝑄2 = 𝛾,

𝑅1 ∶= ⎡⎢
⎣

0 − 𝑎0
2 0

− 𝑎0
2 𝑎1

𝑎1
2

0 𝑎1
2 0

⎤⎥
⎦

and 𝑅2 ∶= ⎡⎢
⎣

0 0 − 𝑎0
2

0 0 𝑎1
2

− 𝑎0
2

𝑎1
2 𝑎1

⎤⎥
⎦

then we recover the one-period payoffs (27.11) for the two firms in the duopoly model.
The law of motion for the state 𝑥𝑡 is 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵1𝑢1𝑡 + 𝐵2𝑢2𝑡 where

𝐴 ∶= ⎡⎢
⎣

1 0 0
0 1 0
0 0 1

⎤⎥
⎦

, 𝐵1 ∶= ⎡⎢
⎣

0
1
0
⎤⎥
⎦

, 𝐵2 ∶= ⎡⎢
⎣

0
0
1
⎤⎥
⎦

A robust decision rule of firm 𝑖 will take the form 𝑢𝑖𝑡 = −𝐹𝑖𝑥𝑡, inducing the following closed-loop system for the
evolution of 𝑥 in the Markov perfect equilibrium:

𝑥𝑡+1 = (𝐴 − 𝐵1𝐹1 − 𝐵1𝐹2)𝑥𝑡 (27.13)

27.3.2 Parameters and Solution

Consider the duopoly model with parameter values of:
• 𝑎0 = 10
• 𝑎1 = 2
• 𝛽 = 0.96
• 𝛾 = 12

From these, we computed the infinite horizon MPE without robustness using the code

import numpy as np
import quantecon as qe

Parameters
a0 = 10.0
a1 = 2.0
β = 0.96

(continues on next page)

456 Chapter 27. Robust Markov Perfect Equilibrium

Advanced Quantitative Economics with Python

(continued from previous page)

γ = 12.0

In LQ form
A = np.eye(3)
B1 = np.array([[0.], [1.], [0.]])
B2 = np.array([[0.], [0.], [1.]])

R1 = [[0., -a0 / 2, 0.],
[-a0 / 2., a1, a1 / 2.],
[0, a1 / 2., 0.]]

R2 = [[0., 0., -a0 / 2],
[0., 0., a1 / 2.],
[-a0 / 2, a1 / 2., a1]]

Q1 = Q2 = γ
S1 = S2 = W1 = W2 = M1 = M2 = 0.0

Solve using QE's nnash function
F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1, R2, Q1,

Q2, S1, S2, W1, W2, M1,
M2, beta=β)

Display policies
print("Computed policies for firm 1 and firm 2:\n")
print(f"F1 = {F1}")
print(f"F2 = {F2}")
print("\n")

Computed policies for firm 1 and firm 2:

F1 = [[-0.66846615 0.29512482 0.07584666]]
F2 = [[-0.66846615 0.07584666 0.29512482]]

Markov Perfect Equilibrium with Robustness

We add robustness concerns to the Markov Perfect Equilibrium model by extending the function qe.nnash (link) into
a robustness version by adding the maximization operator 𝒟(𝑃) into the backward induction.
The MPE with robustness function is nnash_robust.
The function’s code is as follows

def nnash_robust(A, C, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2,
θ1, θ2, beta=1.0, tol=1e-8, max_iter=1000):

"""
Compute the limit of a Nash linear quadratic dynamic game with
robustness concern.

In this problem, player i minimizes
.. math::

\sum_{t=0}^{\infty}

(continues on next page)

27.3. Application 457

https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/lqnash.py

Advanced Quantitative Economics with Python

(continued from previous page)

\left\{
x_t' r_i x_t + 2 x_t' w_i
u_{it} +u_{it}' q_i u_{it} + u_{jt}' s_i u_{jt} + 2 u_{jt}'
m_i u_{it}

\right\}
subject to the law of motion
.. math::

x_{it+1} = A x_t + b_1 u_{1t} + b_2 u_{2t} + C w_{it+1}
and a perceived control law :math:`u_j(t) = - f_j x_t` for the other
player.

The player i also concerns about the model misspecification,
and maximizes
.. math::

\sum_{t=0}^{\infty}
\left\{

\beta^{t+1} \theta_{i} w_{it+1}'w_{it+1}
\right\}

The solution computed in this routine is the :math:`f_i` and
:math:`P_i` of the associated double optimal linear regulator
problem.

Parameters

A : scalar(float) or array_like(float)

Corresponds to the MPE equations, should be of size (n, n)
C : scalar(float) or array_like(float)

As above, size (n, c), c is the size of w
B1 : scalar(float) or array_like(float)

As above, size (n, k_1)
B2 : scalar(float) or array_like(float)

As above, size (n, k_2)
R1 : scalar(float) or array_like(float)

As above, size (n, n)
R2 : scalar(float) or array_like(float)

As above, size (n, n)
Q1 : scalar(float) or array_like(float)

As above, size (k_1, k_1)
Q2 : scalar(float) or array_like(float)

As above, size (k_2, k_2)
S1 : scalar(float) or array_like(float)

As above, size (k_1, k_1)
S2 : scalar(float) or array_like(float)

As above, size (k_2, k_2)
W1 : scalar(float) or array_like(float)

As above, size (n, k_1)
W2 : scalar(float) or array_like(float)

As above, size (n, k_2)
M1 : scalar(float) or array_like(float)

As above, size (k_2, k_1)
M2 : scalar(float) or array_like(float)

As above, size (k_1, k_2)
θ1 : scalar(float)

Robustness parameter of player 1
θ2 : scalar(float)

(continues on next page)

458 Chapter 27. Robust Markov Perfect Equilibrium

Advanced Quantitative Economics with Python

(continued from previous page)

Robustness parameter of player 2
beta : scalar(float), optional(default=1.0)

Discount factor
tol : scalar(float), optional(default=1e-8)

This is the tolerance level for convergence
max_iter : scalar(int), optional(default=1000)

This is the maximum number of iterations allowed

Returns

F1 : array_like, dtype=float, shape=(k_1, n)

Feedback law for agent 1
F2 : array_like, dtype=float, shape=(k_2, n)

Feedback law for agent 2
P1 : array_like, dtype=float, shape=(n, n)

The steady-state solution to the associated discrete matrix
Riccati equation for agent 1

P2 : array_like, dtype=float, shape=(n, n)
The steady-state solution to the associated discrete matrix
Riccati equation for agent 2

"""

Unload parameters and make sure everything is a matrix
params = A, C, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2
params = map(np.asmatrix, params)
A, C, B1, B2, R1, R2, Q1, Q2, S1, S2, W1, W2, M1, M2 = params

Multiply A, B1, B2 by sqrt(β) to enforce discounting
A, B1, B2 = [np.sqrt(β) * x for x in (A, B1, B2)]

Initial values
n = A.shape[0]
k_1 = B1.shape[1]
k_2 = B2.shape[1]

v1 = np.eye(k_1)
v2 = np.eye(k_2)
P1 = np.eye(n) * 1e-5
P2 = np.eye(n) * 1e-5
F1 = np.random.randn(k_1, n)
F2 = np.random.randn(k_2, n)

for it in range(max_iter):
Update
F10 = F1
F20 = F2

I = np.eye(C.shape[1])

D1(P1)
Note: INV1 may not be solved if the matrix is singular
INV1 = solve(θ1 * I - C.T @ P1 @ C, I)
D1P1 = P1 + P1 @ C @ INV1 @ C.T @ P1

(continues on next page)

27.3. Application 459

Advanced Quantitative Economics with Python

(continued from previous page)

D2(P2)
Note: INV2 may not be solved if the matrix is singular
INV2 = solve(θ2 * I - C.T @ P2 @ C, I)
D2P2 = P2 + P2 @ C @ INV2 @ C.T @ P2

G2 = solve(Q2 + B2.T @ D2P2 @ B2, v2)
G1 = solve(Q1 + B1.T @ D1P1 @ B1, v1)
H2 = G2 @ B2.T @ D2P2
H1 = G1 @ B1.T @ D1P1

Break up the computation of F1, F2
F1_left = v1 - (H1 @ B2 + G1 @ M1.T) @ (H2 @ B1 + G2 @ M2.T)
F1_right = H1 @ A + G1 @ W1.T - \

(H1 @ B2 + G1 @ M1.T) @ (H2 @ A + G2 @ W2.T)
F1 = solve(F1_left, F1_right)
F2 = H2 @ A + G2 @ W2.T - (H2 @ B1 + G2 @ M2.T) @ F1

Λ1 = A - B2 @ F2
Λ2 = A - B1 @ F1
Π1 = R1 + F2.T @ S1 @ F2
Π2 = R2 + F1.T @ S2 @ F1
Γ1 = W1.T - M1.T @ F2
Γ2 = W2.T - M2.T @ F1

Compute P1 and P2
P1 = Π1 - (B1.T @ D1P1 @ Λ1 + Γ1).T @ F1 + \

Λ1.T @ D1P1 @ Λ1
P2 = Π2 - (B2.T @ D2P2 @ Λ2 + Γ2).T @ F2 + \

Λ2.T @ D2P2 @ Λ2

dd = np.max(np.abs(F10 - F1)) + np.max(np.abs(F20 - F2))

if dd < tol: # success!
break

else:
raise ValueError(f'No convergence: Iteration limit of {max_iter} \

reached in nnash')

return F1, F2, P1, P2

27.3.3 Some Details

Firm 𝑖 wants to minimize
𝑡1−1
∑
𝑡=𝑡0

𝛽𝑡−𝑡0 {𝑥′
𝑡𝑅𝑖𝑥𝑡 + 𝑢′

𝑖𝑡𝑄𝑖𝑢𝑖𝑡 + 𝑢′
−𝑖𝑡𝑆𝑖𝑢−𝑖𝑡 + 2𝑥′

𝑡𝑊𝑖𝑢𝑖𝑡 + 2𝑢′
−𝑖𝑡𝑀𝑖𝑢𝑖𝑡}

where

𝑥𝑡 ∶= ⎡⎢
⎣

1
𝑞1𝑡
𝑞2𝑡

⎤⎥
⎦

and 𝑢𝑖𝑡 ∶= 𝑞𝑖,𝑡+1 − 𝑞𝑖𝑡, 𝑖 = 1, 2

460 Chapter 27. Robust Markov Perfect Equilibrium

Advanced Quantitative Economics with Python

and

𝑅1 ∶= ⎡⎢
⎣

0 − 𝑎0
2 0

− 𝑎0
2 𝑎1

𝑎1
2

0 𝑎1
2 0

⎤⎥
⎦
, 𝑅2 ∶= ⎡⎢

⎣

0 0 − 𝑎0
2

0 0 𝑎1
2

− 𝑎0
2

𝑎1
2 𝑎1

⎤⎥
⎦
, 𝑄1 = 𝑄2 = 𝛾, 𝑆1 = 𝑆2 = 0, 𝑊1 = 𝑊2 = 0, 𝑀1 = 𝑀2 = 0

The parameters of the duopoly model are:
• 𝑎0 = 10
• 𝑎1 = 2
• 𝛽 = 0.96
• 𝛾 = 12

Parameters
a0 = 10.0
a1 = 2.0
β = 0.96
γ = 12.0

In LQ form
A = np.eye(3)
B1 = np.array([[0.], [1.], [0.]])
B2 = np.array([[0.], [0.], [1.]])

R1 = [[0., -a0 / 2, 0.],
[-a0 / 2., a1, a1 / 2.],
[0, a1 / 2., 0.]]

R2 = [[0., 0., -a0 / 2],
[0., 0., a1 / 2.],
[-a0 / 2, a1 / 2., a1]]

Q1 = Q2 = γ
S1 = S2 = W1 = W2 = M1 = M2 = 0.0

Consistency Check

We first conduct a comparison test to check if nnash_robust agrees with qe.nnash in the non-robustness case in
which each 𝜃𝑖 ≈ +∞

Solve using QE's nnash function
F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1, R2, Q1,

Q2, S1, S2, W1, W2, M1,
M2, beta=β)

Solve using nnash_robust
F1r, F2r, P1r, P2r = nnash_robust(A, np.zeros((3, 1)), B1, B2, R1, R2, Q1,

Q2, S1, S2, W1, W2, M1, M2, 1e-10,
1e-10, beta=β)

print('F1 and F1r should be the same: ', np.allclose(F1, F1r))
print('F2 and F2r should be the same: ', np.allclose(F1, F1r))

(continues on next page)

27.3. Application 461

Advanced Quantitative Economics with Python

(continued from previous page)

print('P1 and P1r should be the same: ', np.allclose(P1, P1r))
print('P2 and P2r should be the same: ', np.allclose(P1, P1r))

F1 and F1r should be the same: True
F2 and F2r should be the same: True
P1 and P1r should be the same: True
P2 and P2r should be the same: True

We can see that the results are consistent across the two functions.

Comparative Dynamics under Baseline Transition Dynamics

Wewant to compare the dynamics of price and output under the baseline MPEmodel with those under the baseline model
under the robust decision rules within the robust MPE.
This means that we simulate the state dynamics under the MPE equilibrium closed-loop transition matrix

𝐴𝑜 = 𝐴 − 𝐵1𝐹1 − 𝐵2𝐹2

where 𝐹1 and 𝐹2 are the firms’ robust decision rules within the robust markov_perfect equilibrium
• by simulating under the baseline model transition dynamics and the robust MPE rules we are in assuming that at
the end of the day firms’ concerns about misspecification of the baseline model do not materialize.

• a short way of saying this is that misspecification fears are all ‘just in the minds’ of the firms.
• simulating under the baseline model is a common practice in the literature.
• note that some assumption about the model that actually governs the data has to be made in order to create a
simulation.

• later we will describe the (erroneous) beliefs of the two firms that justify their robust decisions as best responses to
transition laws that are distorted relative to the baseline model.

After simulating 𝑥𝑡 under the baseline transition dynamics and robust decision rules 𝐹𝑖, 𝑖 = 1, 2, we extract and plot
industry output 𝑞𝑡 = 𝑞1𝑡 + 𝑞2𝑡 and price 𝑝𝑡 = 𝑎0 − 𝑎1𝑞𝑡.
Here we set the robustness and volatility matrix parameters as follows:

• 𝜃1 = 0.02
• 𝜃2 = 0.04

• 𝐶 = ⎛⎜
⎝

0
0.01
0.01

⎞⎟
⎠

Because we have set 𝜃1 < 𝜃2 < +∞ we know that
• both firms fear that the baseline specification of the state transition dynamics are incorrect.
• firm 1 fears misspecification more than firm 2.

Robustness parameters and matrix
C = np.asmatrix([[0], [0.01], [0.01]])
θ1 = 0.02
θ2 = 0.04
n = 20

(continues on next page)

462 Chapter 27. Robust Markov Perfect Equilibrium

Advanced Quantitative Economics with Python

(continued from previous page)

Solve using nnash_robust
F1r, F2r, P1r, P2r = nnash_robust(A, C, B1, B2, R1, R2, Q1,

Q2, S1, S2, W1, W2, M1, M2,
θ1, θ2, beta=β)

MPE output and price
AF = A - B1 @ F1 - B2 @ F2
x = np.empty((3, n))
x[:, 0] = 1, 1, 1
for t in range(n - 1):

x[:, t + 1] = AF @ x[:, t]
q1 = x[1, :]
q2 = x[2, :]
q = q1 + q2 # Total output, MPE
p = a0 - a1 * q # Price, MPE

RMPE output and price
AO = A - B1 @ F1r - B2 @ F2r
xr = np.empty((3, n))
xr[:, 0] = 1, 1, 1
for t in range(n - 1):

xr[:, t+1] = AO @ xr[:, t]
qr1 = xr[1, :]
qr2 = xr[2, :]
qr = qr1 + qr2 # Total output, RMPE
pr = a0 - a1 * qr # Price, RMPE

RMPE heterogeneous beliefs output and price
I = np.eye(C.shape[1])
INV1 = solve(θ1 * I - C.T @ P1 @ C, I)
K1 = P1 @ C @ INV1 @ C.T @ P1 @ AO
AOCK1 = AO + C.T @ K1

INV2 = solve(θ2 * I - C.T @ P2 @ C, I)
K2 = P2 @ C @ INV2 @ C.T @ P2 @ AO
AOCK2 = AO + C.T @ K2
xrp1 = np.empty((3, n))
xrp2 = np.empty((3, n))
xrp1[:, 0] = 1, 1, 1
xrp2[:, 0] = 1, 1, 1
for t in range(n - 1):

xrp1[:, t + 1] = AOCK1 @ xrp1[:, t]
xrp2[:, t + 1] = AOCK2 @ xrp2[:, t]

qrp11 = xrp1[1, :]
qrp12 = xrp1[2, :]
qrp21 = xrp2[1, :]
qrp22 = xrp2[2, :]
qrp1 = qrp11 + qrp12 # Total output, RMPE from player 1's belief
qrp2 = qrp21 + qrp22 # Total output, RMPE from player 2's belief
prp1 = a0 - a1 * qrp1 # Price, RMPE from player 1's belief
prp2 = a0 - a1 * qrp2 # Price, RMPE from player 2's belief

27.3. Application 463

Advanced Quantitative Economics with Python

The following code prepares graphs that compare market-wide output 𝑞1𝑡 + 𝑞2𝑡 and the price of the good 𝑝𝑡 under
equilibrium decision rules 𝐹𝑖, 𝑖 = 1, 2 from an ordinary Markov perfect equilibrium and the decision rules under a
Markov perfect equilibrium with robust firms with multiplier parameters 𝜃𝑖, 𝑖 = 1, 2 set as described above.
Both industry output and price are under the transition dynamics associated with the baseline model; only the decision
rules 𝐹𝑖 differ across the two equilibrium objects presented.

fig, axes = plt.subplots(2, 1, figsize=(9, 9))

ax = axes[0]
ax.plot(q, 'g-', lw=2, alpha=0.75, label='MPE output')
ax.plot(qr, 'm-', lw=2, alpha=0.75, label='RMPE output')
ax.set(ylabel="output", xlabel="time", ylim=(2, 4))
ax.legend(loc='upper left', frameon=0)

ax = axes[1]
ax.plot(p, 'g-', lw=2, alpha=0.75, label='MPE price')
ax.plot(pr, 'm-', lw=2, alpha=0.75, label='RMPE price')
ax.set(ylabel="price", xlabel="time")
ax.legend(loc='upper right', frameon=0)
plt.show()

464 Chapter 27. Robust Markov Perfect Equilibrium

Advanced Quantitative Economics with Python

Under the dynamics associated with the baseline model, the price path is higher with the Markov perfect equilibrium
robust decision rules than it is with decision rules for the ordinary Markov perfect equilibrium.
So is the industry output path.
To dig a little beneath the forces driving these outcomes, we want to plot 𝑞1𝑡 and 𝑞2𝑡 in the Markov perfect equilibrium
with robust firms and to compare them with corresponding objects in the Markov perfect equilibrium without robust firms

fig, axes = plt.subplots(2, 1, figsize=(9, 9))

ax = axes[0]
ax.plot(q1, 'g-', lw=2, alpha=0.75, label='firm 1 MPE output')
ax.plot(qr1, 'b-', lw=2, alpha=0.75, label='firm 1 RMPE output')
ax.set(ylabel="output", xlabel="time", ylim=(1, 2))
ax.legend(loc='upper left', frameon=0)

ax = axes[1]

(continues on next page)

27.3. Application 465

Advanced Quantitative Economics with Python

(continued from previous page)

ax.plot(q2, 'g-', lw=2, alpha=0.75, label='firm 2 MPE output')
ax.plot(qr2, 'r-', lw=2, alpha=0.75, label='firm 2 RMPE output')
ax.set(ylabel="output", xlabel="time", ylim=(1, 2))
ax.legend(loc='upper left', frameon=0)
plt.show()

Evidently, firm 1’s output path is substantially lower when firms are robust firms while firm 2’s output path is virtually the
same as it would be in an ordinary Markov perfect equilibrium with no robust firms.
Recall that we have set 𝜃1 = .02 and 𝜃2 = .04, so that firm 1 fears misspecification of the baseline model substantially
more than does firm 2

• but also please notice that firm 2’s behavior in the Markov perfect equilibrium with robust firms responds to the
decision rule 𝐹1𝑥𝑡 employed by firm 1.

• thus it is something of a coincidence that its output is almost the same in the two equilibria.

466 Chapter 27. Robust Markov Perfect Equilibrium

Advanced Quantitative Economics with Python

Larger concerns about misspecification induce firm 1 to be more cautious than firm 2 in predicting market price and the
output of the other firm.
To explore this, we study next how ex-post the two firms’ beliefs about state dynamics differ in the Markov perfect equi-
librium with robust firms.
(by ex-post we mean after extremization of each firm’s intertemporal objective)

Heterogeneous Beliefs

As before, let 𝐴𝑜 = 𝐴 − 𝐵_1𝐹_1𝑟 − 𝐵_2𝐹_2𝑟, where in a robust MPE, 𝐹 𝑟
𝑖 is a robust decision rule for firm 𝑖.

Worst-case forecasts of 𝑥𝑡 starting from 𝑡 = 0 differ between the two firms.
This means that worst-case forecasts of industry output 𝑞1𝑡 + 𝑞2𝑡 and price 𝑝𝑡 also differ between the two firms.
To find these worst-case beliefs, we compute the following three “closed-loop” transition matrices

• 𝐴𝑜

• 𝐴𝑜 + 𝐶𝐾_1
• 𝐴𝑜 + 𝐶𝐾_2

We call the first transition law, namely, 𝐴𝑜, the baseline transition under firms’ robust decision rules.
We call the second and third worst-case transitions under robust decision rules for firms 1 and 2.
From {𝑥𝑡} paths generated by each of these transition laws, we pull off the associated price and total output sequences.
The following code plots them

print('Baseline Robust transition matrix AO is: \n', np.round(AO, 3))
print('Player 1\'s worst-case transition matrix AOCK1 is: \n', \
np.round(AOCK1, 3))
print('Player 2\'s worst-case transition matrix AOCK2 is: \n', \
np.round(AOCK2, 3))

Baseline Robust transition matrix AO is:
[[1. 0. 0.]
[0.666 0.682 -0.074]
[0.671 -0.071 0.694]]

Player 1's worst-case transition matrix AOCK1 is:
[[0.998 0.002 0.]
[0.664 0.685 -0.074]
[0.669 -0.069 0.694]]

Player 2's worst-case transition matrix AOCK2 is:
[[0.999 0. 0.001]
[0.665 0.683 -0.073]
[0.67 -0.071 0.695]]

== Plot ==
fig, axes = plt.subplots(2, 1, figsize=(9, 9))

ax = axes[0]
ax.plot(qrp1, 'b--', lw=2, alpha=0.75,

label='RMPE worst-case belief output player 1')
ax.plot(qrp2, 'r:', lw=2, alpha=0.75,

label='RMPE worst-case belief output player 2')

(continues on next page)

27.3. Application 467

Advanced Quantitative Economics with Python

(continued from previous page)

ax.plot(qr, 'm-', lw=2, alpha=0.75, label='RMPE output')
ax.set(ylabel="output", xlabel="time", ylim=(2, 4))
ax.legend(loc='upper left', frameon=0)

ax = axes[1]
ax.plot(prp1, 'b--', lw=2, alpha=0.75,

label='RMPE worst-case belief price player 1')
ax.plot(prp2, 'r:', lw=2, alpha=0.75,

label='RMPE worst-case belief price player 2')
ax.plot(pr, 'm-', lw=2, alpha=0.75, label='RMPE price')
ax.set(ylabel="price", xlabel="time")
ax.legend(loc='upper right', frameon=0)
plt.show()

We see from the above graph that under robustness concerns, player 1 and player 2 have heterogeneous beliefs about total
output and the goods price even though they share the same baseline model and information

468 Chapter 27. Robust Markov Perfect Equilibrium

Advanced Quantitative Economics with Python

• firm 1 thinks that total output will be higher and price lower than does firm 2
• this leads firm 1 to produce less than firm 2

These beliefs justify (or rationalize) the Markov perfect equilibrium robust decision rules.
This means that the robust rules are the unique optimal rules (or best responses) to the indicated worst-case transition
dynamics.
([HS08a] discuss how this property of robust decision rules is connected to the concept of admissibility in Bayesian
statistical decision theory)

27.3. Application 469

Advanced Quantitative Economics with Python

470 Chapter 27. Robust Markov Perfect Equilibrium

Part VI

Time Series Models

471

CHAPTER

TWENTYEIGHT

COVARIANCE STATIONARY PROCESSES

Contents

• Covariance Stationary Processes

– Overview

– Introduction

– Spectral Analysis

– Implementation

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

28.1 Overview

In this lecture we study covariance stationary linear stochastic processes, a class ofmodels routinely used to study economic
and financial time series.
This class has the advantage of being

1. simple enough to be described by an elegant and comprehensive theory
2. relatively broad in terms of the kinds of dynamics it can represent

We consider these models in both the time and frequency domain.

28.1.1 ARMA Processes

We will focus much of our attention on linear covariance stationary models with a finite number of parameters.
In particular, we will study stationary ARMA processes, which form a cornerstone of the standard theory of time series
analysis.
Every ARMA process can be represented in linear state space form.
However, ARMA processes have some important structure that makes it valuable to study them separately.

473

https://python-intro.quantecon.org/linear_models.html

Advanced Quantitative Economics with Python

28.1.2 Spectral Analysis

Analysis in the frequency domain is also called spectral analysis.
In essence, spectral analysis provides an alternative representation of the autocovariance function of a covariance stationary
process.
Having a second representation of this important object

• shines a light on the dynamics of the process in question
• allows for a simpler, more tractable representation in some important cases

The famous Fourier transform and its inverse are used to map between the two representations.

28.1.3 Other Reading

For supplementary reading, see
• [LS18], chapter 2
• [Sar87], chapter 11
• John Cochrane’s notes on time series analysis, chapter 8
• [Shi95], chapter 6
• [CC08], all

Let’s start with some imports:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import quantecon as qe

28.2 Introduction

Consider a sequence of random variables {𝑋𝑡} indexed by 𝑡 ∈ ℤ and taking values in ℝ.
Thus, {𝑋𝑡} begins in the infinite past and extends to the infinite future — a convenient and standard assumption.
As in other fields, successful economic modeling typically assumes the existence of features that are constant over time.
If these assumptions are correct, then each new observation 𝑋𝑡, 𝑋𝑡+1, … can provide additional information about the
time-invariant features, allowing us to learn from as data arrive.
For this reason, we will focus in what follows on processes that are stationary—or become so after a transformation (see
for example this lecture).

474 Chapter 28. Covariance Stationary Processes

https://lectures.quantecon.org/_downloads/time_series_book.pdf

Advanced Quantitative Economics with Python

28.2.1 Definitions

A real-valued stochastic process {𝑋𝑡} is called covariance stationary if
1. Its mean 𝜇 ∶= 𝔼𝑋𝑡 does not depend on 𝑡.
2. For all 𝑘 in ℤ, the 𝑘-th autocovariance 𝛾(𝑘) ∶= 𝔼(𝑋𝑡 − 𝜇)(𝑋𝑡+𝑘 − 𝜇) is finite and depends only on 𝑘.

The function 𝛾 ∶ ℤ → ℝ is called the autocovariance function of the process.
Throughout this lecture, we will work exclusively with zero-mean (i.e., 𝜇 = 0) covariance stationary processes.
The zero-mean assumption costs nothing in terms of generality since working with non-zero-mean processes involves no
more than adding a constant.

28.2.2 Example 1: White Noise

Perhaps the simplest class of covariance stationary processes is the white noise processes.
A process {𝜖𝑡} is called a white noise process if

1. 𝔼𝜖𝑡 = 0
2. 𝛾(𝑘) = 𝜎21{𝑘 = 0} for some 𝜎 > 0

(Here 1{𝑘 = 0} is defined to be 1 if 𝑘 = 0 and zero otherwise)
White noise processes play the role of building blocks for processes with more complicated dynamics.

28.2.3 Example 2: General Linear Processes

From the simple building block provided by white noise, we can construct a very flexible family of covariance stationary
processes — the general linear processes

𝑋𝑡 =
∞

∑
𝑗=0

𝜓𝑗𝜖𝑡−𝑗, 𝑡 ∈ ℤ (28.1)

where
• {𝜖𝑡} is white noise
• {𝜓𝑡} is a square summable sequence in ℝ (that is, ∑∞

𝑡=0 𝜓2
𝑡 < ∞)

The sequence {𝜓𝑡} is often called a linear filter.
Equation (28.1) is said to present a moving average process or a moving average representation.
With some manipulations, it is possible to confirm that the autocovariance function for (28.1) is

𝛾(𝑘) = 𝜎2
∞

∑
𝑗=0

𝜓𝑗𝜓𝑗+𝑘 (28.2)

By the Cauchy-Schwartz inequality, one can show that 𝛾(𝑘) satisfies equation (28.2).
Evidently, 𝛾(𝑘) does not depend on 𝑡.

28.2. Introduction 475

https://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality

Advanced Quantitative Economics with Python

28.2.4 Wold Representation

Remarkably, the class of general linear processes goes a long way towards describing the entire class of zero-mean co-
variance stationary processes.
In particular, Wold’s decomposition theorem states that every zero-mean covariance stationary process {𝑋𝑡} can be
written as

𝑋𝑡 =
∞

∑
𝑗=0

𝜓𝑗𝜖𝑡−𝑗 + 𝜂𝑡

where
• {𝜖𝑡} is white noise
• {𝜓𝑡} is square summable
• 𝜓0𝜖𝑡 is the one-step ahead prediction error in forecasting 𝑋𝑡 as a linear least-squares function of the infinite history

𝑋𝑡−1, 𝑋𝑡−2, …
• 𝜂𝑡 can be expressed as a linear function of𝑋𝑡−1, 𝑋𝑡−2, … and is perfectly predictable over arbitrarily long horizons

For the method of constructing a Wold representation, intuition, and further discussion, see [Sar87], p. 286.

28.2.5 AR and MA

General linear processes are a very broad class of processes.
It often pays to specialize to those for which there exists a representation having only finitely many parameters.
(Experience and theory combine to indicate that models with a relatively small number of parameters typically perform
better than larger models, especially for forecasting)
One very simple example of such a model is the first-order autoregressive or AR(1) process

𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝜖𝑡 where |𝜙| < 1 and {𝜖𝑡} is white noise (28.3)

By direct substitution, it is easy to verify that 𝑋𝑡 = ∑∞
𝑗=0 𝜙𝑗𝜖𝑡−𝑗.

Hence {𝑋𝑡} is a general linear process.
Applying (28.2) to the previous expression for 𝑋𝑡, we get the AR(1) autocovariance function

𝛾(𝑘) = 𝜙𝑘 𝜎2

1 − 𝜙2 , 𝑘 = 0, 1, … (28.4)

The next figure plots an example of this function for 𝜙 = 0.8 and 𝜙 = −0.8 with 𝜎 = 1.

num_rows, num_cols = 2, 1
fig, axes = plt.subplots(num_rows, num_cols, figsize=(10, 8))
plt.subplots_adjust(hspace=0.4)

for i, ϕ in enumerate((0.8, -0.8)):
ax = axes[i]
times = list(range(16))
acov = [ϕ**k / (1 - ϕ**2) for k in times]
ax.plot(times, acov, 'bo-', alpha=0.6,

label=f'autocovariance, $\phi = {ϕ:.2}$')
ax.legend(loc='upper right')

(continues on next page)

476 Chapter 28. Covariance Stationary Processes

https://en.wikipedia.org/wiki/Wold%27s_theorem

Advanced Quantitative Economics with Python

(continued from previous page)

ax.set(xlabel='time', xlim=(0, 15))
ax.hlines(0, 0, 15, linestyle='--', alpha=0.5)

plt.show()

Another very simple process is the MA(1) process (here MA means “moving average”)

𝑋𝑡 = 𝜖𝑡 + 𝜃𝜖𝑡−1

You will be able to verify that

𝛾(0) = 𝜎2(1 + 𝜃2), 𝛾(1) = 𝜎2𝜃, and 𝛾(𝑘) = 0 ∀ 𝑘 > 1

The AR(1) can be generalized to an AR(𝑝) and likewise for the MA(1).
Putting all of this together, we get the

28.2. Introduction 477

Advanced Quantitative Economics with Python

28.2.6 ARMA Processes

A stochastic process {𝑋𝑡} is called an autoregressive moving average process, or ARMA(𝑝, 𝑞), if it can be written as

𝑋𝑡 = 𝜙1𝑋𝑡−1 + ⋯ + 𝜙𝑝𝑋𝑡−𝑝 + 𝜖𝑡 + 𝜃1𝜖𝑡−1 + ⋯ + 𝜃𝑞𝜖𝑡−𝑞 (28.5)

where {𝜖𝑡} is white noise.
An alternative notation for ARMA processes uses the lag operator 𝐿.
Def. Given arbitrary variable 𝑌𝑡, let 𝐿𝑘𝑌𝑡 ∶= 𝑌𝑡−𝑘.
It turns out that

• lag operators facilitate succinct representations for linear stochastic processes
• algebraic manipulations that treat the lag operator as an ordinary scalar are legitimate

Using 𝐿, we can rewrite (28.5) as

𝐿0𝑋𝑡 − 𝜙1𝐿1𝑋𝑡 − ⋯ − 𝜙𝑝𝐿𝑝𝑋𝑡 = 𝐿0𝜖𝑡 + 𝜃1𝐿1𝜖𝑡 + ⋯ + 𝜃𝑞𝐿𝑞𝜖𝑡 (28.6)

If we let 𝜙(𝑧) and 𝜃(𝑧) be the polynomials

𝜙(𝑧) ∶= 1 − 𝜙1𝑧 − ⋯ − 𝜙𝑝𝑧𝑝 and 𝜃(𝑧) ∶= 1 + 𝜃1𝑧 + ⋯ + 𝜃𝑞𝑧𝑞 (28.7)

then (28.6) becomes

𝜙(𝐿)𝑋𝑡 = 𝜃(𝐿)𝜖𝑡 (28.8)

In what follows we always assume that the roots of the polynomial 𝜙(𝑧) lie outside the unit circle in the complex plane.
This condition is sufficient to guarantee that the ARMA(𝑝, 𝑞) process is covariance stationary.
In fact, it implies that the process falls within the class of general linear processes described above.
That is, given an ARMA(𝑝, 𝑞) process {𝑋𝑡} satisfying the unit circle condition, there exists a square summable sequence
{𝜓𝑡} with 𝑋𝑡 = ∑∞

𝑗=0 𝜓𝑗𝜖𝑡−𝑗 for all 𝑡.
The sequence {𝜓𝑡} can be obtained by a recursive procedure outlined on page 79 of [CC08].
The function 𝑡 ↦ 𝜓𝑡 is often called the impulse response function.

28.3 Spectral Analysis

Autocovariance functions provide a great deal of information about covariance stationary processes.
In fact, for zero-mean Gaussian processes, the autocovariance function characterizes the entire joint distribution.
Even for non-Gaussian processes, it provides a significant amount of information.
It turns out that there is an alternative representation of the autocovariance function of a covariance stationary process,
called the spectral density.
At times, the spectral density is easier to derive, easier to manipulate, and provides additional intuition.

478 Chapter 28. Covariance Stationary Processes

Advanced Quantitative Economics with Python

28.3.1 Complex Numbers

Before discussing the spectral density, we invite you to recall the main properties of complex numbers (or skip to the next
section).
It can be helpful to remember that, in a formal sense, complex numbers are just points (𝑥, 𝑦) ∈ ℝ2 endowed with a
specific notion of multiplication.
When (𝑥, 𝑦) is regarded as a complex number, 𝑥 is called the real part and 𝑦 is called the imaginary part.
The modulus or absolute value of a complex number 𝑧 = (𝑥, 𝑦) is just its Euclidean norm in ℝ2, but is usually written as
|𝑧| instead of ‖𝑧‖.
The product of two complex numbers (𝑥, 𝑦) and (𝑢, 𝑣) is defined to be (𝑥𝑢 − 𝑣𝑦, 𝑥𝑣 + 𝑦𝑢), while addition is standard
pointwise vector addition.
When endowed with these notions of multiplication and addition, the set of complex numbers forms a field — addition
and multiplication play well together, just as they do in ℝ.
The complex number (𝑥, 𝑦) is often written as 𝑥 + 𝑖𝑦, where 𝑖 is called the imaginary unit and is understood to obey
𝑖2 = −1.
The 𝑥 + 𝑖𝑦 notation provides an easy way to remember the definition of multiplication given above, because, proceeding
naively,

(𝑥 + 𝑖𝑦)(𝑢 + 𝑖𝑣) = 𝑥𝑢 − 𝑦𝑣 + 𝑖(𝑥𝑣 + 𝑦𝑢)

Converted back to our first notation, this becomes (𝑥𝑢 − 𝑣𝑦, 𝑥𝑣 + 𝑦𝑢) as promised.
Complex numbers can be represented in the polar form 𝑟𝑒𝑖𝜔 where

𝑟𝑒𝑖𝜔 ∶= 𝑟(cos(𝜔) + 𝑖 sin(𝜔)) = 𝑥 + 𝑖𝑦

where 𝑥 = 𝑟 cos(𝜔), 𝑦 = 𝑟 sin(𝜔), and 𝜔 = arctan(𝑦/𝑧) or tan(𝜔) = 𝑦/𝑥.

28.3.2 Spectral Densities

Let {𝑋𝑡} be a covariance stationary process with autocovariance function 𝛾 satisfying ∑𝑘 𝛾(𝑘)2 < ∞.
The spectral density 𝑓 of {𝑋𝑡} is defined as the discrete time Fourier transform of its autocovariance function 𝛾.

𝑓(𝜔) ∶= ∑
𝑘∈ℤ

𝛾(𝑘)𝑒−𝑖𝜔𝑘, 𝜔 ∈ ℝ

(Some authors normalize the expression on the right by constants such as 1/𝜋 — the convention chosen makes little
difference provided you are consistent).
Using the fact that 𝛾 is even, in the sense that 𝛾(𝑡) = 𝛾(−𝑡) for all 𝑡, we can show that

𝑓(𝜔) = 𝛾(0) + 2 ∑
𝑘≥1

𝛾(𝑘) cos(𝜔𝑘) (28.9)

It is not difficult to confirm that 𝑓 is
• real-valued
• even (𝑓(𝜔) = 𝑓(−𝜔)), and
• 2𝜋-periodic, in the sense that 𝑓(2𝜋 + 𝜔) = 𝑓(𝜔) for all 𝜔

It follows that the values of 𝑓 on [0, 𝜋] determine the values of 𝑓 on all of ℝ — the proof is an exercise.
For this reason, it is standard to plot the spectral density only on the interval [0, 𝜋].

28.3. Spectral Analysis 479

https://en.wikipedia.org/wiki/Field_%28mathematics%29
https://en.wikipedia.org/wiki/Discrete-time_Fourier_transform

Advanced Quantitative Economics with Python

28.3.3 Example 1: White Noise

Consider a white noise process {𝜖𝑡} with standard deviation 𝜎.
It is easy to check that in this case 𝑓(𝜔) = 𝜎2. So 𝑓 is a constant function.
As we will see, this can be interpreted as meaning that “all frequencies are equally present”.
(White light has this property when frequency refers to the visible spectrum, a connection that provides the origins of the
term “white noise”)

28.3.4 Example 2: AR and MA and ARMA

It is an exercise to show that the MA(1) process 𝑋𝑡 = 𝜃𝜖𝑡−1 + 𝜖𝑡 has a spectral density

𝑓(𝜔) = 𝜎2(1 + 2𝜃 cos(𝜔) + 𝜃2) (28.10)

With a bit more effort, it’s possible to show (see, e.g., p. 261 of [Sar87]) that the spectral density of the AR(1) process
𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝜖𝑡 is

𝑓(𝜔) = 𝜎2

1 − 2𝜙 cos(𝜔) + 𝜙2 (28.11)

More generally, it can be shown that the spectral density of the ARMA process (28.5) is

𝑓(𝜔) = ∣ 𝜃(𝑒𝑖𝜔)
𝜙(𝑒𝑖𝜔) ∣

2
𝜎2 (28.12)

where
• 𝜎 is the standard deviation of the white noise process {𝜖𝑡}.
• the polynomials 𝜙(⋅) and 𝜃(⋅) are as defined in (28.7).

The derivation of (28.12) uses the fact that convolutions become products under Fourier transformations.
The proof is elegant and can be found in many places — see, for example, [Sar87], chapter 11, section 4.
It’s a nice exercise to verify that (28.10) and (28.11) are indeed special cases of (28.12).

28.3.5 Interpreting the Spectral Density

Plotting (28.11) reveals the shape of the spectral density for the AR(1) model when 𝜙 takes the values 0.8 and -0.8
respectively.

def ar1_sd(ϕ, ω):
return 1 / (1 - 2 * ϕ * np.cos(ω) + ϕ**2)

ωs = np.linspace(0, np.pi, 180)
num_rows, num_cols = 2, 1
fig, axes = plt.subplots(num_rows, num_cols, figsize=(10, 8))
plt.subplots_adjust(hspace=0.4)

Autocovariance when phi = 0.8
for i, ϕ in enumerate((0.8, -0.8)):

(continues on next page)

480 Chapter 28. Covariance Stationary Processes

Advanced Quantitative Economics with Python

(continued from previous page)

ax = axes[i]
sd = ar1_sd(ϕ, ωs)
ax.plot(ωs, sd, 'b-', alpha=0.6, lw=2,

label='spectral density, $\phi = {ϕ:.2}$')
ax.legend(loc='upper center')
ax.set(xlabel='frequency', xlim=(0, np.pi))

plt.show()

These spectral densities correspond to the autocovariance functions for the AR(1) process shown above.
Informally, we think of the spectral density as being large at those 𝜔 ∈ [0, 𝜋] at which the autocovariance function seems
approximately to exhibit big damped cycles.
To see the idea, let’s consider why, in the lower panel of the preceding figure, the spectral density for the case 𝜙 = −0.8
is large at 𝜔 = 𝜋.
Recall that the spectral density can be expressed as

𝑓(𝜔) = 𝛾(0) + 2 ∑
𝑘≥1

𝛾(𝑘) cos(𝜔𝑘) = 𝛾(0) + 2 ∑
𝑘≥1

(−0.8)𝑘 cos(𝜔𝑘) (28.13)

When we evaluate this at 𝜔 = 𝜋, we get a large number because cos(𝜋𝑘) is large and positive when (−0.8)𝑘 is positive,
and large in absolute value and negative when (−0.8)𝑘 is negative.

28.3. Spectral Analysis 481

Advanced Quantitative Economics with Python

Hence the product is always large and positive, and hence the sum of the products on the right-hand side of (28.13) is
large.
These ideas are illustrated in the next figure, which has 𝑘 on the horizontal axis.

ϕ = -0.8
times = list(range(16))
y1 = [ϕ**k / (1 - ϕ**2) for k in times]
y2 = [np.cos(np.pi * k) for k in times]
y3 = [a * b for a, b in zip(y1, y2)]

num_rows, num_cols = 3, 1
fig, axes = plt.subplots(num_rows, num_cols, figsize=(10, 8))
plt.subplots_adjust(hspace=0.25)

Autocovariance when ϕ = -0.8
ax = axes[0]
ax.plot(times, y1, 'bo-', alpha=0.6, label='$\gamma(k)$')
ax.legend(loc='upper right')
ax.set(xlim=(0, 15), yticks=(-2, 0, 2))
ax.hlines(0, 0, 15, linestyle='--', alpha=0.5)

Cycles at frequency π
ax = axes[1]
ax.plot(times, y2, 'bo-', alpha=0.6, label='$\cos(\pi k)$')
ax.legend(loc='upper right')
ax.set(xlim=(0, 15), yticks=(-1, 0, 1))
ax.hlines(0, 0, 15, linestyle='--', alpha=0.5)

Product
ax = axes[2]
ax.stem(times, y3, label='$\gamma(k) \cos(\pi k)$')
ax.legend(loc='upper right')
ax.set(xlim=(0, 15), ylim=(-3, 3), yticks=(-1, 0, 1, 2, 3))
ax.hlines(0, 0, 15, linestyle='--', alpha=0.5)
ax.set_xlabel("k")

plt.show()

482 Chapter 28. Covariance Stationary Processes

Advanced Quantitative Economics with Python

On the other hand, if we evaluate 𝑓(𝜔) at 𝜔 = 𝜋/3, then the cycles are not matched, the sequence 𝛾(𝑘) cos(𝜔𝑘) contains
both positive and negative terms, and hence the sum of these terms is much smaller.

ϕ = -0.8
times = list(range(16))
y1 = [ϕ**k / (1 - ϕ**2) for k in times]
y2 = [np.cos(np.pi * k/3) for k in times]
y3 = [a * b for a, b in zip(y1, y2)]

num_rows, num_cols = 3, 1
fig, axes = plt.subplots(num_rows, num_cols, figsize=(10, 8))
plt.subplots_adjust(hspace=0.25)

Autocovariance when phi = -0.8
ax = axes[0]
ax.plot(times, y1, 'bo-', alpha=0.6, label='$\gamma(k)$')
ax.legend(loc='upper right')
ax.set(xlim=(0, 15), yticks=(-2, 0, 2))
ax.hlines(0, 0, 15, linestyle='--', alpha=0.5)

Cycles at frequency π
ax = axes[1]
ax.plot(times, y2, 'bo-', alpha=0.6, label='$\cos(\pi k/3)$')

(continues on next page)

28.3. Spectral Analysis 483

Advanced Quantitative Economics with Python

(continued from previous page)

ax.legend(loc='upper right')
ax.set(xlim=(0, 15), yticks=(-1, 0, 1))
ax.hlines(0, 0, 15, linestyle='--', alpha=0.5)

Product
ax = axes[2]
ax.stem(times, y3, label='$\gamma(k) \cos(\pi k/3)$')
ax.legend(loc='upper right')
ax.set(xlim=(0, 15), ylim=(-3, 3), yticks=(-1, 0, 1, 2, 3))
ax.hlines(0, 0, 15, linestyle='--', alpha=0.5)
ax.set_xlabel("k")

plt.show()

In summary, the spectral density is large at frequencies 𝜔 where the autocovariance function exhibits damped cycles.

484 Chapter 28. Covariance Stationary Processes

Advanced Quantitative Economics with Python

28.3.6 Inverting the Transformation

We have just seen that the spectral density is useful in the sense that it provides a frequency-based perspective on the
autocovariance structure of a covariance stationary process.
Another reason that the spectral density is useful is that it can be “inverted” to recover the autocovariance function via the
inverse Fourier transform.
In particular, for all 𝑘 ∈ ℤ, we have

𝛾(𝑘) = 1
2𝜋 ∫

𝜋

−𝜋
𝑓(𝜔)𝑒𝑖𝜔𝑘𝑑𝜔 (28.14)

This is convenient in situations where the spectral density is easier to calculate and manipulate than the autocovariance
function.
(For example, the expression (28.12) for the ARMA spectral density is much easier to work with than the expression for
the ARMA autocovariance)

28.3.7 Mathematical Theory

This section is loosely based on [Sar87], p. 249-253, and included for those who
• would like a bit more insight into spectral densities
• and have at least some background in Hilbert space theory

Others should feel free to skip to the next section— none of this material is necessary to progress to computation.
Recall that every separable Hilbert space 𝐻 has a countable orthonormal basis {ℎ𝑘}.
The nice thing about such a basis is that every 𝑓 ∈ 𝐻 satisfies

𝑓 = ∑
𝑘

𝛼𝑘ℎ𝑘 where 𝛼𝑘 ∶= ⟨𝑓, ℎ𝑘⟩ (28.15)

where ⟨⋅, ⋅⟩ denotes the inner product in 𝐻 .
Thus, 𝑓 can be represented to any degree of precision by linearly combining basis vectors.
The scalar sequence 𝛼 = {𝛼𝑘} is called the Fourier coefficients of 𝑓 , and satisfies ∑𝑘 |𝛼𝑘|2 < ∞.
In other words, 𝛼 is in ℓ2, the set of square summable sequences.
Consider an operator 𝑇 that maps 𝛼 ∈ ℓ2 into its expansion ∑𝑘 𝛼𝑘ℎ𝑘 ∈ 𝐻 .
The Fourier coefficients of 𝑇 𝛼 are just 𝛼 = {𝛼𝑘}, as you can verify by confirming that ⟨𝑇 𝛼, ℎ𝑘⟩ = 𝛼𝑘.
Using elementary results from Hilbert space theory, it can be shown that

• 𝑇 is one-to-one — if 𝛼 and 𝛽 are distinct in ℓ2, then so are their expansions in 𝐻 .
• 𝑇 is onto — if 𝑓 ∈ 𝐻 then its preimage in ℓ2 is the sequence 𝛼 given by 𝛼𝑘 = ⟨𝑓, ℎ𝑘⟩.
• 𝑇 is a linear isometry — in particular, ⟨𝛼, 𝛽⟩ = ⟨𝑇 𝛼, 𝑇 𝛽⟩.

Summarizing these results, we say that any separable Hilbert space is isometrically isomorphic to ℓ2.
In essence, this says that each separable Hilbert space we consider is just a different way of looking at the fundamental
space ℓ2.
With this in mind, let’s specialize to a setting where

• 𝛾 ∈ ℓ2 is the autocovariance function of a covariance stationary process, and 𝑓 is the spectral density.

28.3. Spectral Analysis 485

https://en.wikipedia.org/wiki/Hilbert_space
https://en.wikipedia.org/wiki/Separable_space

Advanced Quantitative Economics with Python

• 𝐻 = 𝐿2, where 𝐿2 is the set of square summable functions on the interval [−𝜋, 𝜋], with inner product ⟨𝑔, ℎ⟩ =
∫𝜋
−𝜋 𝑔(𝜔)ℎ(𝜔)𝑑𝜔.

• {ℎ𝑘} = the orthonormal basis for 𝐿2 given by the set of trigonometric functions.

ℎ𝑘(𝜔) = 𝑒𝑖𝜔𝑘
√

2𝜋 , 𝑘 ∈ ℤ, 𝜔 ∈ [−𝜋, 𝜋]

Using the definition of 𝑇 from above and the fact that 𝑓 is even, we now have

𝑇 𝛾 = ∑
𝑘∈ℤ

𝛾(𝑘) 𝑒𝑖𝜔𝑘
√

2𝜋 = 1√
2𝜋 𝑓(𝜔) (28.16)

In other words, apart from a scalar multiple, the spectral density is just a transformation of 𝛾 ∈ ℓ2 under a certain linear
isometry — a different way to view 𝛾.
In particular, it is an expansion of the autocovariance function with respect to the trigonometric basis functions in 𝐿2.
As discussed above, the Fourier coefficients of 𝑇 𝛾 are given by the sequence 𝛾, and, in particular, 𝛾(𝑘) = ⟨𝑇 𝛾, ℎ𝑘⟩.
Transforming this inner product into its integral expression and using (28.16) gives (28.14), justifying our earlier expres-
sion for the inverse transform.

28.4 Implementation

Most code for working with covariance stationary models deals with ARMA models.
Python code for studying ARMA models can be found in the tsa submodule of statsmodels.
Since this code doesn’t quite cover our needs — particularly vis-a-vis spectral analysis — we’ve put together the module
arma.py, which is part of QuantEcon.py package.
The module provides functions for mapping ARMA(𝑝, 𝑞) models into their

1. impulse response function
2. simulated time series
3. autocovariance function
4. spectral density

28.4.1 Application

Let’s use this code to replicate the plots on pages 68–69 of [LS18].
Here are some functions to generate the plots

def plot_impulse_response(arma, ax=None):
if ax is None:

ax = plt.gca()
yi = arma.impulse_response()
ax.stem(list(range(len(yi))), yi)
ax.set(xlim=(-0.5), ylim=(min(yi)-0.1, max(yi)+0.1),

title='Impulse response', xlabel='time', ylabel='response')
return ax

def plot_spectral_density(arma, ax=None):

(continues on next page)

486 Chapter 28. Covariance Stationary Processes

http://statsmodels.sourceforge.net/
https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/arma.py
http://quantecon.org/quantecon-py

Advanced Quantitative Economics with Python

(continued from previous page)

if ax is None:
ax = plt.gca()

w, spect = arma.spectral_density(two_pi=False)
ax.semilogy(w, spect)
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),

title='Spectral density', xlabel='frequency', ylabel='spectrum')
return ax

def plot_autocovariance(arma, ax=None):
if ax is None:

ax = plt.gca()
acov = arma.autocovariance()
ax.stem(list(range(len(acov))), acov)
ax.set(xlim=(-0.5, len(acov) - 0.5), title='Autocovariance',

xlabel='time', ylabel='autocovariance')
return ax

def plot_simulation(arma, ax=None):
if ax is None:

ax = plt.gca()
x_out = arma.simulation()
ax.plot(x_out)
ax.set(title='Sample path', xlabel='time', ylabel='state space')
return ax

def quad_plot(arma):
"""
Plots the impulse response, spectral_density, autocovariance,
and one realization of the process.

"""
num_rows, num_cols = 2, 2
fig, axes = plt.subplots(num_rows, num_cols, figsize=(10, 7))
plot_functions = [plot_impulse_response,

plot_spectral_density,
plot_autocovariance,
plot_simulation]

for plot_func, ax in zip(plot_functions, axes.flatten()):
plot_func(arma, ax)

plt.tight_layout()
plt.show()

Now let’s call these functions to generate plots.
As a warmup, let’s make sure things look right when we for the pure white noise model 𝑋𝑡 = 𝜖𝑡.

ϕ = 0.0
θ = 0.0
arma = qe.ARMA(ϕ, θ)
quad_plot(arma)

/usr/share/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/cbook/
↪__init__.py:1340: ComplexWarning: Casting complex values to real discards the␣
↪imaginary part
return np.asarray(x, float)

(continues on next page)

28.4. Implementation 487

Advanced Quantitative Economics with Python

(continued from previous page)

/tmp/ipykernel_5951/4271821819.py:15: UserWarning: Attempt to set non-positive␣
↪ylim on a log-scaled axis will be ignored.
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),

/usr/share/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/
↪transforms.py:995: ComplexWarning: Casting complex values to real discards the␣
↪imaginary part
self._points[:, 1] = interval

If we look carefully, things look good: the spectrum is the flat line at 100 at the very top of the spectrum graphs, which
is at it should be.
Also

• the variance equals 1 = 1
2𝜋 ∫𝜋

−𝜋 1𝑑𝜔 as it should.
• the covariogram and impulse response look as they should.
• it is actually challenging to visualize a time series realization of white noise – a sequence of surprises – but this too
looks pretty good.

To get some more examples, as our laboratory we’ll replicate quartets of graphs that [LS18] use to teach “how to read
spectral densities”.
Ljunqvist and Sargent’s first model is 𝑋𝑡 = 1.3𝑋𝑡−1 − .7𝑋𝑡−2 + 𝜖𝑡

ϕ = 1.3, -.7
θ = 0.0
arma = qe.ARMA(ϕ, θ)
quad_plot(arma)

488 Chapter 28. Covariance Stationary Processes

Advanced Quantitative Economics with Python

/tmp/ipykernel_5951/4271821819.py:15: UserWarning: Attempt to set non-positive␣
↪ylim on a log-scaled axis will be ignored.
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),

Ljungqvist and Sargent’s second model is 𝑋𝑡 = .9𝑋𝑡−1 + 𝜖𝑡

ϕ = 0.9
θ = -0.0
arma = qe.ARMA(ϕ, θ)
quad_plot(arma)

/tmp/ipykernel_5951/4271821819.py:15: UserWarning: Attempt to set non-positive␣
↪ylim on a log-scaled axis will be ignored.
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),

28.4. Implementation 489

Advanced Quantitative Economics with Python

Ljungqvist and Sargent’s third model is 𝑋𝑡 = .8𝑋𝑡−4 + 𝜖𝑡

ϕ = 0., 0., 0., .8
θ = -0.0
arma = qe.ARMA(ϕ, θ)
quad_plot(arma)

/tmp/ipykernel_5951/4271821819.py:15: UserWarning: Attempt to set non-positive␣
↪ylim on a log-scaled axis will be ignored.
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),

490 Chapter 28. Covariance Stationary Processes

Advanced Quantitative Economics with Python

Ljungqvist and Sargent’s fourth model is 𝑋𝑡 = .98𝑋𝑡−1 + 𝜖𝑡 − .7𝜖𝑡−1

ϕ = .98
θ = -0.7
arma = qe.ARMA(ϕ, θ)
quad_plot(arma)

/tmp/ipykernel_5951/4271821819.py:15: UserWarning: Attempt to set non-positive␣
↪ylim on a log-scaled axis will be ignored.
ax.set(xlim=(0, np.pi), ylim=(0, np.max(spect)),

28.4. Implementation 491

Advanced Quantitative Economics with Python

28.4.2 Explanation

The call
arma = ARMA(ϕ, θ, σ)

creates an instance arma that represents the ARMA(𝑝, 𝑞) model

𝑋𝑡 = 𝜙1𝑋𝑡−1 + ... + 𝜙𝑝𝑋𝑡−𝑝 + 𝜖𝑡 + 𝜃1𝜖𝑡−1 + ... + 𝜃𝑞𝜖𝑡−𝑞

If ϕ and θ are arrays or sequences, then the interpretation will be
• ϕ holds the vector of parameters (𝜙1, 𝜙2, ..., 𝜙𝑝).
• θ holds the vector of parameters (𝜃1, 𝜃2, ..., 𝜃𝑞).

The parameter σ is always a scalar, the standard deviation of the white noise.
We also permit ϕ and θ to be scalars, in which case the model will be interpreted as

𝑋𝑡 = 𝜙𝑋𝑡−1 + 𝜖𝑡 + 𝜃𝜖𝑡−1

The two numerical packages most useful for working with ARMA models are scipy.signal and numpy.fft.
The package scipy.signal expects the parameters to be passed into its functions in a manner consistent with the
alternative ARMA notation (28.8).
For example, the impulse response sequence {𝜓𝑡} discussed above can be obtained usingscipy.signal.dimpulse,
and the function call should be of the form
times, ψ = dimpulse((ma_poly, ar_poly, 1), n=impulse_length)

492 Chapter 28. Covariance Stationary Processes

Advanced Quantitative Economics with Python

where ma_poly and ar_poly correspond to the polynomials in (28.7) — that is,
• ma_poly is the vector (1, 𝜃1, 𝜃2, … , 𝜃𝑞)
• ar_poly is the vector (1, −𝜙1, −𝜙2, … , −𝜙𝑝)

To this end, we also maintain the arrays ma_poly and ar_poly as instance data, with their values computed automat-
ically from the values of phi and theta supplied by the user.
If the user decides to change the value of either theta or phi ex-post by assignments such as arma.phi = (0.5,
0.2) or arma.theta = (0, -0.1).
then ma_poly and ar_poly should update automatically to reflect these new parameters.
This is achieved in our implementation by using descriptors.

28.4.3 Computing the Autocovariance Function

As discussed above, for ARMA processes the spectral density has a simple representation that is relatively easy to calculate.
Given this fact, the easiest way to obtain the autocovariance function is to recover it from the spectral density via the
inverse Fourier transform.
Here we use NumPy’s Fourier transform package np.fft, which wraps a standard Fortran-based package called FFTPACK.
A look at the np.fft documentation shows that the inverse transform np.fft.ifft takes a given sequence 𝐴0, 𝐴1, … , 𝐴𝑛−1
and returns the sequence 𝑎0, 𝑎1, … , 𝑎𝑛−1 defined by

𝑎𝑘 = 1
𝑛

𝑛−1
∑
𝑡=0

𝐴𝑡𝑒𝑖𝑘2𝜋𝑡/𝑛

Thus, if we set 𝐴𝑡 = 𝑓(𝜔𝑡), where 𝑓 is the spectral density and 𝜔𝑡 ∶= 2𝜋𝑡/𝑛, then

𝑎𝑘 = 1
𝑛

𝑛−1
∑
𝑡=0

𝑓(𝜔𝑡)𝑒𝑖𝜔𝑡𝑘 = 1
2𝜋

2𝜋
𝑛

𝑛−1
∑
𝑡=0

𝑓(𝜔𝑡)𝑒𝑖𝜔𝑡𝑘, 𝜔𝑡 ∶= 2𝜋𝑡/𝑛

For 𝑛 sufficiently large, we then have

𝑎𝑘 ≈ 1
2𝜋 ∫

2𝜋

0
𝑓(𝜔)𝑒𝑖𝜔𝑘𝑑𝜔 = 1

2𝜋 ∫
𝜋

−𝜋
𝑓(𝜔)𝑒𝑖𝜔𝑘𝑑𝜔

(You can check the last equality)
In view of (28.14), we have now shown that, for 𝑛 sufficiently large, 𝑎𝑘 ≈ 𝛾(𝑘) — which is exactly what we want to
compute.

28.4. Implementation 493

https://python-programming.quantecon.org/python_advanced_features.html#descriptors
http://docs.scipy.org/doc/numpy/reference/routines.fft.html

Advanced Quantitative Economics with Python

494 Chapter 28. Covariance Stationary Processes

CHAPTER

TWENTYNINE

ESTIMATION OF SPECTRA

Contents

• Estimation of Spectra

– Overview

– Periodograms

– Smoothing

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

29.1 Overview

In a previous lecture, we covered some fundamental properties of covariance stationary linear stochastic processes.
One objective for that lecture was to introduce spectral densities — a standard and very useful technique for analyzing
such processes.
In this lecture, we turn to the problem of estimating spectral densities and other related quantities from data.
Estimates of the spectral density are computed using what is known as a periodogram — which in turn is computed via
the famous fast Fourier transform.
Once the basic technique has been explained, we will apply it to the analysis of several key macroeconomic time series.
For supplementary reading, see [Sar87] or [CC08].
Let’s start with some standard imports:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from quantecon import ARMA, periodogram, ar_periodogram

495

https://en.wikipedia.org/wiki/Fast_Fourier_transform

Advanced Quantitative Economics with Python

29.2 Periodograms

Recall that the spectral density 𝑓 of a covariance stationary process with autocorrelation function 𝛾 can be written

𝑓(𝜔) = 𝛾(0) + 2 ∑
𝑘≥1

𝛾(𝑘) cos(𝜔𝑘), 𝜔 ∈ ℝ

Now consider the problem of estimating the spectral density of a given time series, when 𝛾 is unknown.
In particular, let 𝑋0, … , 𝑋𝑛−1 be 𝑛 consecutive observations of a single time series that is assumed to be covariance
stationary.
The most common estimator of the spectral density of this process is the periodogram of 𝑋0, … , 𝑋𝑛−1, which is defined
as

𝐼(𝜔) ∶= 1
𝑛 ∣

𝑛−1
∑
𝑡=0

𝑋𝑡𝑒𝑖𝑡𝜔∣
2

, 𝜔 ∈ ℝ (29.1)

(Recall that |𝑧| denotes the modulus of complex number 𝑧)
Alternatively, 𝐼(𝜔) can be expressed as

𝐼(𝜔) = 1
𝑛

⎧{
⎨{⎩

[
𝑛−1
∑
𝑡=0

𝑋𝑡 cos(𝜔𝑡)]
2

+ [
𝑛−1
∑
𝑡=0

𝑋𝑡 sin(𝜔𝑡)]
2⎫}
⎬}⎭

It is straightforward to show that the function 𝐼 is even and 2𝜋-periodic (i.e., 𝐼(𝜔) = 𝐼(−𝜔) and 𝐼(𝜔 + 2𝜋) = 𝐼(𝜔) for
all 𝜔 ∈ ℝ).
From these two results, you will be able to verify that the values of 𝐼 on [0, 𝜋] determine the values of 𝐼 on all of ℝ.
The next section helps to explain the connection between the periodogram and the spectral density.

29.2.1 Interpretation

To interpret the periodogram, it is convenient to focus on its values at the Fourier frequencies

𝜔𝑗 ∶= 2𝜋𝑗
𝑛 , 𝑗 = 0, … , 𝑛 − 1

In what sense is 𝐼(𝜔𝑗) an estimate of 𝑓(𝜔𝑗)?
The answer is straightforward, although it does involve some algebra.
With a bit of effort, one can show that for any integer 𝑗 > 0,

𝑛−1
∑
𝑡=0

𝑒𝑖𝑡𝜔𝑗 =
𝑛−1
∑
𝑡=0

exp{𝑖2𝜋𝑗 𝑡
𝑛} = 0

Letting �̄� denote the sample mean 𝑛−1 ∑𝑛−1
𝑡=0 𝑋𝑡, we then have

𝑛𝐼(𝜔𝑗) = ∣
𝑛−1
∑
𝑡=0

(𝑋𝑡 − �̄�)𝑒𝑖𝑡𝜔𝑗 ∣
2

=
𝑛−1
∑
𝑡=0

(𝑋𝑡 − �̄�)𝑒𝑖𝑡𝜔𝑗
𝑛−1
∑
𝑟=0

(𝑋𝑟 − �̄�)𝑒−𝑖𝑟𝜔𝑗

By carefully working through the sums, one can transform this to

𝑛𝐼(𝜔𝑗) =
𝑛−1
∑
𝑡=0

(𝑋𝑡 − �̄�)2 + 2
𝑛−1
∑
𝑘=1

𝑛−1
∑
𝑡=𝑘

(𝑋𝑡 − �̄�)(𝑋𝑡−𝑘 − �̄�) cos(𝜔𝑗𝑘)

496 Chapter 29. Estimation of Spectra

Advanced Quantitative Economics with Python

Now let

̂𝛾(𝑘) ∶= 1
𝑛

𝑛−1
∑
𝑡=𝑘

(𝑋𝑡 − �̄�)(𝑋𝑡−𝑘 − �̄�), 𝑘 = 0, 1, … , 𝑛 − 1

This is the sample autocovariance function, the natural “plug-in estimator” of the autocovariance function 𝛾.
(“Plug-in estimator” is an informal term for an estimator found by replacing expectations with sample means)
With this notation, we can now write

𝐼(𝜔𝑗) = ̂𝛾(0) + 2
𝑛−1
∑
𝑘=1

̂𝛾(𝑘) cos(𝜔𝑗𝑘)

Recalling our expression for 𝑓 given above, we see that 𝐼(𝜔𝑗) is just a sample analog of 𝑓(𝜔𝑗).

29.2.2 Calculation

Let’s now consider how to compute the periodogram as defined in (29.1).
There are already functions available that will do this for us — an example is statsmodels.tsa.stattools.
periodogram in the statsmodels package.
However, it is very simple to replicate their results, and this will give us a platform to make useful extensions.
The most common way to calculate the periodogram is via the discrete Fourier transform, which in turn is implemented
through the fast Fourier transform algorithm.
In general, given a sequence 𝑎0, … , 𝑎𝑛−1, the discrete Fourier transform computes the sequence

𝐴𝑗 ∶=
𝑛−1
∑
𝑡=0

𝑎𝑡 exp{𝑖2𝜋 𝑡𝑗
𝑛 } , 𝑗 = 0, … , 𝑛 − 1

With numpy.fft.fft imported as fft and 𝑎0, … , 𝑎𝑛−1 stored in NumPy array a, the function call fft(a) returns
the values 𝐴0, … , 𝐴𝑛−1 as a NumPy array.
It follows that when the data 𝑋0, … , 𝑋𝑛−1 are stored in array X, the values 𝐼(𝜔𝑗) at the Fourier frequencies, which are
given by

1
𝑛 ∣

𝑛−1
∑
𝑡=0

𝑋𝑡 exp{𝑖2𝜋 𝑡𝑗
𝑛 }∣

2

, 𝑗 = 0, … , 𝑛 − 1

can be computed by np.abs(fft(X))**2 / len(X).

Note: TheNumPy functionabs acts elementwise, and correctly handles complex numbers (by computing their modulus,
which is exactly what we need).

A function called periodogram that puts all this together can be found here.
Let’s generate some data for this function using the ARMA class from QuantEcon.py (see the lecture on linear processes
for more details).
Here’s a code snippet that, once the preceding code has been run, generates data from the process

𝑋𝑡 = 0.5𝑋𝑡−1 + 𝜖𝑡 − 0.8𝜖𝑡−2 (29.2)

where {𝜖𝑡} is white noise with unit variance, and compares the periodogram to the actual spectral density

29.2. Periodograms 497

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/estspec.py
https://github.com/QuantEcon/QuantEcon.py

Advanced Quantitative Economics with Python

n = 40 # Data size
ϕ, θ = 0.5, (0, -0.8) # AR and MA parameters
lp = ARMA(ϕ, θ)
X = lp.simulation(ts_length=n)

fig, ax = plt.subplots()
x, y = periodogram(X)
ax.plot(x, y, 'b-', lw=2, alpha=0.5, label='periodogram')
x_sd, y_sd = lp.spectral_density(two_pi=False, res=120)
ax.plot(x_sd, y_sd, 'r-', lw=2, alpha=0.8, label='spectral density')
ax.legend()
plt.show()

/usr/share/miniconda3/envs/quantecon/lib/python3.11/site-packages/matplotlib/cbook/
↪__init__.py:1340: ComplexWarning: Casting complex values to real discards the␣
↪imaginary part
return np.asarray(x, float)

This estimate looks rather disappointing, but the data size is only 40, so perhaps it’s not surprising that the estimate is
poor.
However, if we try again with n = 1200 the outcome is not much better
The periodogram is far too irregular relative to the underlying spectral density.
This brings us to our next topic.

498 Chapter 29. Estimation of Spectra

Advanced Quantitative Economics with Python

29.2. Periodograms 499

Advanced Quantitative Economics with Python

29.3 Smoothing

There are two related issues here.
One is that, given the way the fast Fourier transform is implemented, the number of points 𝜔 at which 𝐼(𝜔) is estimated
increases in line with the amount of data.
In other words, although we have more data, we are also using it to estimate more values.
A second issue is that densities of all types are fundamentally hard to estimate without parametric assumptions.
Typically, nonparametric estimation of densities requires some degree of smoothing.
The standard way that smoothing is applied to periodograms is by taking local averages.
In other words, the value 𝐼(𝜔𝑗) is replaced with a weighted average of the adjacent values

𝐼(𝜔𝑗−𝑝), 𝐼(𝜔𝑗−𝑝+1), … , 𝐼(𝜔𝑗), … , 𝐼(𝜔𝑗+𝑝)

This weighted average can be written as

𝐼𝑆(𝜔𝑗) ∶=
𝑝

∑
ℓ=−𝑝

𝑤(ℓ)𝐼(𝜔𝑗+ℓ) (29.3)

where the weights 𝑤(−𝑝), … , 𝑤(𝑝) are a sequence of 2𝑝 + 1 nonnegative values summing to one.
In general, larger values of 𝑝 indicate more smoothing — more on this below.
The next figure shows the kind of sequence typically used.
Note the smaller weights towards the edges and larger weights in the center, so that more distant values from 𝐼(𝜔𝑗) have
less weight than closer ones in the sum (29.3).

def hanning_window(M):
w = [0.5 - 0.5 * np.cos(2 * np.pi * n/(M-1)) for n in range(M)]
return w

window = hanning_window(25) / np.abs(sum(hanning_window(25)))
x = np.linspace(-12, 12, 25)
fig, ax = plt.subplots(figsize=(9, 7))
ax.plot(x, window)
ax.set_title("Hanning window")
ax.set_ylabel("Weights")
ax.set_xlabel("Position in sequence of weights")
plt.show()

500 Chapter 29. Estimation of Spectra

Advanced Quantitative Economics with Python

29.3.1 Estimation with Smoothing

Our next step is to provide code that will not only estimate the periodogram but also provide smoothing as required.
Such functions have been written in estspec.py and are available once you’ve installed QuantEcon.py.
The GitHub listing displays three functions, smooth(), periodogram(), ar_periodogram(). We will discuss
the first two here and the third one below.
The periodogram() function returns a periodogram, optionally smoothed via the smooth() function.
Regarding the smooth() function, since smoothing adds a nontrivial amount of computation, we have applied a fairly
terse array-centric method based around np.convolve.
Readers are left either to explore or simply to use this code according to their interests.
The next three figures each show smoothed and unsmoothed periodograms, as well as the population or “true” spectral
density.
(The model is the same as before — see equation (29.2) — and there are 400 observations)
From the top figure to bottom, the window length is varied from small to large.
In looking at the figure, we can see that for this model and data size, the window length chosen in the middle figure
provides the best fit.
Relative to this value, the first window length provides insufficient smoothing, while the third gives too much smoothing.

29.3. Smoothing 501

https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/estspec.py
http://quantecon.org/quantecon-py
https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/estspec.py

Advanced Quantitative Economics with Python

502 Chapter 29. Estimation of Spectra

Advanced Quantitative Economics with Python

Of course in real estimation problems, the true spectral density is not visible and the choice of appropriate smoothing will
have to be made based on judgement/priors or some other theory.

29.3.2 Pre-Filtering and Smoothing

In the code listing, we showed three functions from the file estspec.py.
The third function in the file (ar_periodogram()) adds a pre-processing step to periodogram smoothing.
First, we describe the basic idea, and after that we give the code.
The essential idea is to

1. Transform the data in order to make estimation of the spectral density more efficient.
2. Compute the periodogram associated with the transformed data.
3. Reverse the effect of the transformation on the periodogram, so that it now estimates the spectral density of the

original process.
Step 1 is called pre-filtering or pre-whitening, while step 3 is called recoloring.
The first step is called pre-whitening because the transformation is usually designed to turn the data into something closer
to white noise.
Why would this be desirable in terms of spectral density estimation?
The reason is that we are smoothing our estimated periodogram based on estimated values at nearby points — recall
(29.3).
The underlying assumption that makes this a good idea is that the true spectral density is relatively regular — the value
of 𝐼(𝜔) is close to that of 𝐼(𝜔′) when 𝜔 is close to 𝜔′.
This will not be true in all cases, but it is certainly true for white noise.
For white noise, 𝐼 is as regular as possible — it is a constant function.
In this case, values of 𝐼(𝜔′) at points 𝜔′ near to 𝜔 provided the maximum possible amount of information about the value
𝐼(𝜔).
Another way to put this is that if 𝐼 is relatively constant, then we can use a large amount of smoothing without introducing
too much bias.

29.3.3 The AR(1) Setting

Let’s examine this idea more carefully in a particular setting — where the data are assumed to be generated by an AR(1)
process.
(More general ARMA settings can be handled using similar techniques to those described below)
Suppose in particular that {𝑋𝑡} is covariance stationary and AR(1), with

𝑋𝑡+1 = 𝜇 + 𝜙𝑋𝑡 + 𝜖𝑡+1 (29.4)

where 𝜇 and 𝜙 ∈ (−1, 1) are unknown parameters and {𝜖𝑡} is white noise.
It follows that if we regress 𝑋𝑡+1 on 𝑋𝑡 and an intercept, the residuals will approximate white noise.
Let

• 𝑔 be the spectral density of {𝜖𝑡} — a constant function, as discussed above
• 𝐼0 be the periodogram estimated from the residuals — an estimate of 𝑔

29.3. Smoothing 503

https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/estspec.py

Advanced Quantitative Economics with Python

• 𝑓 be the spectral density of {𝑋𝑡} — the object we are trying to estimate
In view of an earlier result we obtained while discussing ARMA processes, 𝑓 and 𝑔 are related by

𝑓(𝜔) = ∣ 1
1 − 𝜙𝑒𝑖𝜔 ∣

2
𝑔(𝜔) (29.5)

This suggests that the recoloring step, which constructs an estimate 𝐼 of 𝑓 from 𝐼0, should set

𝐼(𝜔) = ∣ 1
1 − ̂𝜙𝑒𝑖𝜔

∣
2

𝐼0(𝜔)

where ̂𝜙 is the OLS estimate of 𝜙.
The code for ar_periodogram()— the third function in estspec.py— does exactly this. (See the code here).
The next figure shows realizations of the two kinds of smoothed periodograms

1. “standard smoothed periodogram”, the ordinary smoothed periodogram, and
2. “AR smoothed periodogram”, the pre-whitened and recolored one generated by ar_periodogram()

The periodograms are calculated from time series drawn from (29.4) with 𝜇 = 0 and 𝜙 = −0.9.
Each time series is of length 150.
The difference between the three subfigures is just randomness — each one uses a different draw of the time series.
In all cases, periodograms are fit with the “hamming” window and window length of 65.
Overall, the fit of the AR smoothed periodogram is much better, in the sense of being closer to the true spectral density.

29.4 Exercises

Exercise 29.4.1
Replicate this figure (modulo randomness).
The model is as in equation (29.2) and there are 400 observations.
For the smoothed periodogram, the window type is “hamming”.

Solution to Exercise 29.4.1

Data
n = 400
ϕ = 0.5
θ = 0, -0.8
lp = ARMA(ϕ, θ)
X = lp.simulation(ts_length=n)

fig, ax = plt.subplots(3, 1, figsize=(10, 12))

for i, wl in enumerate((15, 55, 175)): # Window lengths

x, y = periodogram(X)
ax[i].plot(x, y, 'b-', lw=2, alpha=0.5, label='periodogram')

(continues on next page)

504 Chapter 29. Estimation of Spectra

https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/estspec.py

Advanced Quantitative Economics with Python

29.4. Exercises 505

Advanced Quantitative Economics with Python

(continued from previous page)

x_sd, y_sd = lp.spectral_density(two_pi=False, res=120)
ax[i].plot(x_sd, y_sd, 'r-', lw=2, alpha=0.8, label='spectral density')

x, y_smoothed = periodogram(X, window='hamming', window_len=wl)
ax[i].plot(x, y_smoothed, 'k-', lw=2, label='smoothed periodogram')

ax[i].legend()
ax[i].set_title(f'window length = {wl}')

plt.show()

506 Chapter 29. Estimation of Spectra

Advanced Quantitative Economics with Python

Exercise 29.4.2
Replicate this figure (modulo randomness).
The model is as in equation (29.4), with 𝜇 = 0, 𝜙 = −0.9 and 150 observations in each time series.
All periodograms are fit with the “hamming” window and window length of 65.

29.4. Exercises 507

Advanced Quantitative Economics with Python

Solution to Exercise 29.4.2

lp = ARMA(-0.9)
wl = 65

fig, ax = plt.subplots(3, 1, figsize=(10,12))

for i in range(3):
X = lp.simulation(ts_length=150)
ax[i].set_xlim(0, np.pi)

x_sd, y_sd = lp.spectral_density(two_pi=False, res=180)
ax[i].semilogy(x_sd, y_sd, 'r-', lw=2, alpha=0.75,

label='spectral density')

x, y_smoothed = periodogram(X, window='hamming', window_len=wl)
ax[i].semilogy(x, y_smoothed, 'k-', lw=2, alpha=0.75,

label='standard smoothed periodogram')

x, y_ar = ar_periodogram(X, window='hamming', window_len=wl)
ax[i].semilogy(x, y_ar, 'b-', lw=2, alpha=0.75,

label='AR smoothed periodogram')

ax[i].legend(loc='upper left')
plt.show()

508 Chapter 29. Estimation of Spectra

Advanced Quantitative Economics with Python

29.4. Exercises 509

Advanced Quantitative Economics with Python

510 Chapter 29. Estimation of Spectra

CHAPTER

THIRTY

ADDITIVE AND MULTIPLICATIVE FUNCTIONALS

Contents

• Additive and Multiplicative Functionals

– Overview

– A Particular Additive Functional

– Dynamics

– Code

– More About the Multiplicative Martingale

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

30.1 Overview

Many economic time series display persistent growth that prevents them from being asymptotically stationary and ergodic.
For example, outputs, prices, and dividends typically display irregular but persistent growth.
Asymptotic stationarity and ergodicity are key assumptions needed to make it possible to learn by applying statistical
methods.
But there are good ways to model time series that have persistent growth that still enable statistical learning based on a
law of large numbers for an asymptotically stationary and ergodic process.
Thus, [Han12] described two classes of time series models that accommodate growth.
They are

1. additive functionals that display random “arithmetic growth”
2. multiplicative functionals that display random “geometric growth”

These two classes of processes are closely connected.
If a process {𝑦𝑡} is an additive functional and 𝜙𝑡 = exp(𝑦𝑡), then {𝜙𝑡} is a multiplicative functional.
In this lecture, we describe both additive functionals and multiplicative functionals.
We also describe and compute decompositions of additive and multiplicative processes into four components:

511

Advanced Quantitative Economics with Python

1. a constant
2. a trend component
3. an asymptotically stationary component
4. a martingale

We describe how to construct, simulate, and interpret these components.
More details about these concepts and algorithms can be found in Hansen [Han12] and Hansen and Sargent [HS24].
Let’s start with some imports:

import numpy as np
import scipy.linalg as la
import quantecon as qe
import matplotlib.pyplot as plt
%matplotlib inline
from scipy.stats import norm, lognorm

30.2 A Particular Additive Functional

[Han12] describes a general class of additive functionals.
This lecture focuses on a subclass of these: a scalar process {𝑦𝑡}∞

𝑡=0 whose increments are driven by a Gaussian vector
autoregression.
Our special additive functional displays interesting time series behavior while also being easy to construct, simulate, and
analyze by using linear state-space tools.
We construct our additive functional from two pieces, the first of which is a first-order vector autoregression (VAR)

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝑧𝑡+1 (30.1)

Here
• 𝑥𝑡 is an 𝑛 × 1 vector,
• 𝐴 is an 𝑛 × 𝑛 stable matrix (all eigenvalues lie within the open unit circle),
• 𝑧𝑡+1 ∼ 𝑁(0, 𝐼) is an 𝑚 × 1 IID shock,
• 𝐵 is an 𝑛 × 𝑚 matrix, and
• 𝑥0 ∼ 𝑁(𝜇0, Σ0) is a random initial condition for 𝑥

The second piece is an equation that expresses increments of {𝑦𝑡}∞
𝑡=0 as linear functions of

• a scalar constant 𝜈,
• the vector 𝑥𝑡, and
• the same Gaussian vector 𝑧𝑡+1 that appears in the VAR (30.1)

In particular,

𝑦𝑡+1 − 𝑦𝑡 = 𝜈 + 𝐷𝑥𝑡 + 𝐹𝑧𝑡+1 (30.2)

Here 𝑦0 ∼ 𝑁(𝜇𝑦0, Σ𝑦0) is a random initial condition for 𝑦.
The nonstationary random process {𝑦𝑡}∞

𝑡=0 displays systematic but random arithmetic growth.

512 Chapter 30. Additive and Multiplicative Functionals

Advanced Quantitative Economics with Python

30.2.1 Linear State-Space Representation

A convenient way to represent our additive functional is to use a linear state space system.
To do this, we set up state and observation vectors

̂𝑥𝑡 = ⎡⎢
⎣

1
𝑥𝑡
𝑦𝑡

⎤⎥
⎦

and ̂𝑦𝑡 = [𝑥𝑡
𝑦𝑡

]

Next we construct a linear system

⎡⎢
⎣

1
𝑥𝑡+1
𝑦𝑡+1

⎤⎥
⎦

= ⎡⎢
⎣

1 0 0
0 𝐴 0
𝜈 𝐷 1

⎤⎥
⎦

⎡⎢
⎣

1
𝑥𝑡
𝑦𝑡

⎤⎥
⎦

+ ⎡⎢
⎣

0
𝐵
𝐹

⎤⎥
⎦

𝑧𝑡+1

[𝑥𝑡
𝑦𝑡

] = [0 𝐼 0
0 0 1] ⎡⎢

⎣

1
𝑥𝑡
𝑦𝑡

⎤⎥
⎦

This can be written as

̂𝑥𝑡+1 = ̂𝐴 ̂𝑥𝑡 + �̂�𝑧𝑡+1

̂𝑦𝑡 = �̂� ̂𝑥𝑡

which is a standard linear state space system.
To study it, we could map it into an instance of LinearStateSpace from QuantEcon.py.
But here we will use a different set of code for simulation, for reasons described below.

30.3 Dynamics

Let’s run some simulations to build intuition.
In doing so we’ll assume that 𝑧𝑡+1 is scalar and that ̃𝑥𝑡 follows a 4th-order scalar autoregression.

̃𝑥𝑡+1 = 𝜙1 ̃𝑥𝑡 + 𝜙2 ̃𝑥𝑡−1 + 𝜙3 ̃𝑥𝑡−2 + 𝜙4 ̃𝑥𝑡−3 + 𝜎𝑧𝑡+1 (30.3)

in which the zeros 𝑧 of the polynomial

𝜙(𝑧) = (1 − 𝜙1𝑧 − 𝜙2𝑧2 − 𝜙3𝑧3 − 𝜙4𝑧4)

are strictly greater than unity in absolute value.
(Being a zero of 𝜙(𝑧) means that 𝜙(𝑧) = 0)
Let the increment in {𝑦𝑡} obey

𝑦𝑡+1 − 𝑦𝑡 = 𝜈 + ̃𝑥𝑡 + 𝜎𝑧𝑡+1

with an initial condition for 𝑦0.
While (30.3) is not a first order system like (30.1), we know that it can be mapped into a first order system.

• For an example of such a mapping, see this example.
In fact, this whole model can be mapped into the additive functional system definition in (30.1) – (30.2) by appropriate
selection of the matrices 𝐴, 𝐵, 𝐷, 𝐹 .
You can try writing these matrices down now as an exercise — correct expressions appear in the code below.

30.3. Dynamics 513

https://python-intro.quantecon.org/linear_models.html
https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/lss.py
http://quantecon.org/quantecon-py
https://python.quantecon.org/linear_models.html#second-order-difference-equation

Advanced Quantitative Economics with Python

30.3.1 Simulation

When simulating we embed our variables into a bigger system.
This system also constructs the components of the decompositions of 𝑦𝑡 and of exp(𝑦𝑡) proposed by Hansen [Han12].
All of these objects are computed using the code below

class AMF_LSS_VAR:
"""
This class transforms an additive (multiplicative)
functional into a QuantEcon linear state space system.
"""

def __init__(self, A, B, D, F=None, ν=None):
Unpack required elements
self.nx, self.nk = B.shape
self.A, self.B = A, B

Checking the dimension of D (extended from the scalar case)
if len(D.shape) > 1 and D.shape[0] != 1:

self.nm = D.shape[0]
self.D = D

elif len(D.shape) > 1 and D.shape[0] == 1:
self.nm = 1
self.D = D

else:
self.nm = 1
self.D = np.expand_dims(D, 0)

Create space for additive decomposition
self.add_decomp = None
self.mult_decomp = None

Set F
if not np.any(F):

self.F = np.zeros((self.nk, 1))
else:

self.F = F

Set ν
if not np.any(ν):

self.ν = np.zeros((self.nm, 1))
elif type(ν) == float:

self.ν = np.asarray([[ν]])
elif len(ν.shape) == 1:

self.ν = np.expand_dims(ν, 1)
else:

self.ν = ν

if self.ν.shape[0] != self.D.shape[0]:
raise ValueError("The dimension of ν is inconsistent with D!")

Construct BIG state space representation
self.lss = self.construct_ss()

def construct_ss(self):
"""

(continues on next page)

514 Chapter 30. Additive and Multiplicative Functionals

Advanced Quantitative Economics with Python

(continued from previous page)

This creates the state space representation that can be passed
into the quantecon LSS class.
"""
Pull out useful info
nx, nk, nm = self.nx, self.nk, self.nm
A, B, D, F, ν = self.A, self.B, self.D, self.F, self.ν
if self.add_decomp:

ν, H, g = self.add_decomp
else:

ν, H, g = self.additive_decomp()

Auxiliary blocks with 0's and 1's to fill out the lss matrices
nx0c = np.zeros((nx, 1))
nx0r = np.zeros(nx)
nx1 = np.ones(nx)
nk0 = np.zeros(nk)
ny0c = np.zeros((nm, 1))
ny0r = np.zeros(nm)
ny1m = np.eye(nm)
ny0m = np.zeros((nm, nm))
nyx0m = np.zeros_like(D)

Build A matrix for LSS
Order of states is: [1, t, xt, yt, mt]
A1 = np.hstack([1, 0, nx0r, ny0r, ny0r]) # Transition for 1
A2 = np.hstack([1, 1, nx0r, ny0r, ny0r]) # Transition for t
Transition for x_{t+1}
A3 = np.hstack([nx0c, nx0c, A, nyx0m.T, nyx0m.T])
Transition for y_{t+1}
A4 = np.hstack([ν, ny0c, D, ny1m, ny0m])
Transition for m_{t+1}
A5 = np.hstack([ny0c, ny0c, nyx0m, ny0m, ny1m])
Abar = np.vstack([A1, A2, A3, A4, A5])

Build B matrix for LSS
Bbar = np.vstack([nk0, nk0, B, F, H])

Build G matrix for LSS
Order of observation is: [xt, yt, mt, st, tt]
Selector for x_{t}
G1 = np.hstack([nx0c, nx0c, np.eye(nx), nyx0m.T, nyx0m.T])
G2 = np.hstack([ny0c, ny0c, nyx0m, ny1m, ny0m]) # Selector for y_{t}
Selector for martingale
G3 = np.hstack([ny0c, ny0c, nyx0m, ny0m, ny1m])
G4 = np.hstack([ny0c, ny0c, -g, ny0m, ny0m]) # Selector for stationary
G5 = np.hstack([ny0c, ν, nyx0m, ny0m, ny0m]) # Selector for trend
Gbar = np.vstack([G1, G2, G3, G4, G5])

Build H matrix for LSS
Hbar = np.zeros((Gbar.shape[0], nk))

Build LSS type
x0 = np.hstack([1, 0, nx0r, ny0r, ny0r])
S0 = np.zeros((len(x0), len(x0)))
lss = qe.LinearStateSpace(Abar, Bbar, Gbar, Hbar, mu_0=x0, Sigma_0=S0)

(continues on next page)

30.3. Dynamics 515

Advanced Quantitative Economics with Python

(continued from previous page)

return lss

def additive_decomp(self):
"""
Return values for the martingale decomposition

- ν : unconditional mean difference in Y
- H : coefficient for the (linear) martingale component (κ_a)
- g : coefficient for the stationary component g(x)
- Y_0 : it should be the function of X_0 (for now set it to 0.0)

"""
I = np.identity(self.nx)
A_res = la.solve(I - self.A, I)
g = self.D @ A_res
H = self.F + self.D @ A_res @ self.B

return self.ν, H, g

def multiplicative_decomp(self):
"""
Return values for the multiplicative decomposition (Example 5.4.4.)

- ν_tilde : eigenvalue
- H : vector for the Jensen term

"""
ν, H, g = self.additive_decomp()
ν_tilde = ν + (.5)*np.expand_dims(np.diag(H @ H.T), 1)

return ν_tilde, H, g

def loglikelihood_path(self, x, y):
A, B, D, F = self.A, self.B, self.D, self.F
k, T = y.shape
FF = F @ F.T
FFinv = la.inv(FF)
temp = y[:, 1:] - y[:, :-1] - D @ x[:, :-1]
obs = temp * FFinv * temp
obssum = np.cumsum(obs)
scalar = (np.log(la.det(FF)) + k*np.log(2*np.pi))*np.arange(1, T)

return -(.5)*(obssum + scalar)

def loglikelihood(self, x, y):
llh = self.loglikelihood_path(x, y)

return llh[-1]

516 Chapter 30. Additive and Multiplicative Functionals

Advanced Quantitative Economics with Python

Plotting

The code below adds some functions that generate plots for instances of the AMF_LSS_VAR class.

def plot_given_paths(amf, T, ypath, mpath, spath, tpath,
mbounds, sbounds, horline=0, show_trend=True):

Allocate space
trange = np.arange(T)

Create figure
fig, ax = plt.subplots(2, 2, sharey=True, figsize=(15, 8))

Plot all paths together
ax[0, 0].plot(trange, ypath[0, :], label="y_t", color="k")
ax[0, 0].plot(trange, mpath[0, :], label="m_t", color="m")
ax[0, 0].plot(trange, spath[0, :], label="s_t", color="g")
if show_trend:

ax[0, 0].plot(trange, tpath[0, :], label="t_t", color="r")
ax[0, 0].axhline(horline, color="k", linestyle="-.")
ax[0, 0].set_title("One Path of All Variables")
ax[0, 0].legend(loc="upper left")

Plot Martingale Component
ax[0, 1].plot(trange, mpath[0, :], "m")
ax[0, 1].plot(trange, mpath.T, alpha=0.45, color="m")
ub = mbounds[1, :]
lb = mbounds[0, :]

ax[0, 1].fill_between(trange, lb, ub, alpha=0.25, color="m")
ax[0, 1].set_title("Martingale Components for Many Paths")
ax[0, 1].axhline(horline, color="k", linestyle="-.")

Plot Stationary Component
ax[1, 0].plot(spath[0, :], color="g")
ax[1, 0].plot(spath.T, alpha=0.25, color="g")
ub = sbounds[1, :]
lb = sbounds[0, :]
ax[1, 0].fill_between(trange, lb, ub, alpha=0.25, color="g")
ax[1, 0].axhline(horline, color="k", linestyle="-.")
ax[1, 0].set_title("Stationary Components for Many Paths")

Plot Trend Component
if show_trend:

ax[1, 1].plot(tpath.T, color="r")
ax[1, 1].set_title("Trend Components for Many Paths")
ax[1, 1].axhline(horline, color="k", linestyle="-.")

return fig

def plot_additive(amf, T, npaths=25, show_trend=True):
"""
Plots for the additive decomposition.
Acts on an instance amf of the AMF_LSS_VAR class

"""
Pull out right sizes so we know how to increment

(continues on next page)

30.3. Dynamics 517

Advanced Quantitative Economics with Python

(continued from previous page)

nx, nk, nm = amf.nx, amf.nk, amf.nm

Allocate space (nm is the number of additive functionals -
we want npaths for each)
mpath = np.empty((nm*npaths, T))
mbounds = np.empty((nm*2, T))
spath = np.empty((nm*npaths, T))
sbounds = np.empty((nm*2, T))
tpath = np.empty((nm*npaths, T))
ypath = np.empty((nm*npaths, T))

Simulate for as long as we wanted
moment_generator = amf.lss.moment_sequence()
Pull out population moments
for t in range (T):

tmoms = next(moment_generator)
ymeans = tmoms[1]
yvar = tmoms[3]

Lower and upper bounds - for each additive functional
for ii in range(nm):

li, ui = ii*2, (ii+1)*2
mscale = np.sqrt(yvar[nx+nm+ii, nx+nm+ii])
sscale = np.sqrt(yvar[nx+2*nm+ii, nx+2*nm+ii])
if mscale == 0.0:

mscale = 1e-12 # avoids a RuntimeWarning from calculating ppf
if sscale == 0.0: # of normal distribution with std dev = 0.

sscale = 1e-12 # sets std dev to small value instead

madd_dist = norm(ymeans[nx+nm+ii], mscale)
sadd_dist = norm(ymeans[nx+2*nm+ii], sscale)

mbounds[li:ui, t] = madd_dist.ppf([0.01, .99])
sbounds[li:ui, t] = sadd_dist.ppf([0.01, .99])

Pull out paths
for n in range(npaths):

x, y = amf.lss.simulate(T)
for ii in range(nm):

ypath[npaths*ii+n, :] = y[nx+ii, :]
mpath[npaths*ii+n, :] = y[nx+nm + ii, :]
spath[npaths*ii+n, :] = y[nx+2*nm + ii, :]
tpath[npaths*ii+n, :] = y[nx+3*nm + ii, :]

add_figs = []

for ii in range(nm):
li, ui = npaths*(ii), npaths*(ii+1)
LI, UI = 2*(ii), 2*(ii+1)
add_figs.append(plot_given_paths(amf, T,

ypath[li:ui,:],
mpath[li:ui,:],
spath[li:ui,:],
tpath[li:ui,:],
mbounds[LI:UI,:],
sbounds[LI:UI,:],

(continues on next page)

518 Chapter 30. Additive and Multiplicative Functionals

Advanced Quantitative Economics with Python

(continued from previous page)

show_trend=show_trend))

add_figs[ii].suptitle(f'Additive decomposition of y_{ii+1}',
fontsize=14)

return add_figs

def plot_multiplicative(amf, T, npaths=25, show_trend=True):
"""
Plots for the multiplicative decomposition

"""
Pull out right sizes so we know how to increment
nx, nk, nm = amf.nx, amf.nk, amf.nm
Matrices for the multiplicative decomposition
ν_tilde, H, g = amf.multiplicative_decomp()

Allocate space (nm is the number of functionals -
we want npaths for each)
mpath_mult = np.empty((nm*npaths, T))
mbounds_mult = np.empty((nm*2, T))
spath_mult = np.empty((nm*npaths, T))
sbounds_mult = np.empty((nm*2, T))
tpath_mult = np.empty((nm*npaths, T))
ypath_mult = np.empty((nm*npaths, T))

Simulate for as long as we wanted
moment_generator = amf.lss.moment_sequence()
Pull out population moments
for t in range(T):

tmoms = next(moment_generator)
ymeans = tmoms[1]
yvar = tmoms[3]

Lower and upper bounds - for each multiplicative functional
for ii in range(nm):

li, ui = ii*2, (ii+1)*2
Mdist = lognorm(np.sqrt(yvar[nx+nm+ii, nx+nm+ii]).item(),

scale=np.exp(ymeans[nx+nm+ii] \
- t * (.5)
* np.expand_dims(

np.diag(H @ H.T),
1
)[ii]

).item()
)

Sdist = lognorm(np.sqrt(yvar[nx+2*nm+ii, nx+2*nm+ii]).item(),
scale = np.exp(-ymeans[nx+2*nm+ii]).item())

mbounds_mult[li:ui, t] = Mdist.ppf([.01, .99])
sbounds_mult[li:ui, t] = Sdist.ppf([.01, .99])

Pull out paths
for n in range(npaths):

x, y = amf.lss.simulate(T)
for ii in range(nm):

(continues on next page)

30.3. Dynamics 519

Advanced Quantitative Economics with Python

(continued from previous page)

ypath_mult[npaths*ii+n, :] = np.exp(y[nx+ii, :])
mpath_mult[npaths*ii+n, :] = np.exp(y[nx+nm + ii, :] \

- np.arange(T)*(.5)
* np.expand_dims(np.diag(H

@ H.T),
1)[ii]

)
spath_mult[npaths*ii+n, :] = 1/np.exp(-y[nx+2*nm + ii, :])
tpath_mult[npaths*ii+n, :] = np.exp(y[nx+3*nm + ii, :]

+ np.arange(T)*(.5)
* np.expand_dims(np.diag(H

@ H.T),
1)[ii]

)

mult_figs = []

for ii in range(nm):
li, ui = npaths*(ii), npaths*(ii+1)
LI, UI = 2*(ii), 2*(ii+1)

mult_figs.append(plot_given_paths(amf,T,
ypath_mult[li:ui,:],
mpath_mult[li:ui,:],
spath_mult[li:ui,:],
tpath_mult[li:ui,:],
mbounds_mult[LI:UI,:],
sbounds_mult[LI:UI,:],
1,
show_trend=show_trend))

mult_figs[ii].suptitle(f'Multiplicative decomposition of \
y_{ii+1}', fontsize=14)

return mult_figs

def plot_martingale_paths(amf, T, mpath, mbounds, horline=1, show_trend=False):
Allocate space
trange = np.arange(T)

Create figure
fig, ax = plt.subplots(1, 1, figsize=(10, 6))

Plot Martingale Component
ub = mbounds[1, :]
lb = mbounds[0, :]
ax.fill_between(trange, lb, ub, color="#ffccff")
ax.axhline(horline, color="k", linestyle="-.")
ax.plot(trange, mpath.T, linewidth=0.25, color="#4c4c4c")

return fig

def plot_martingales(amf, T, npaths=25):

Pull out right sizes so we know how to increment
nx, nk, nm = amf.nx, amf.nk, amf.nm
Matrices for the multiplicative decomposition

(continues on next page)

520 Chapter 30. Additive and Multiplicative Functionals

Advanced Quantitative Economics with Python

(continued from previous page)

ν_tilde, H, g = amf.multiplicative_decomp()

Allocate space (nm is the number of functionals -
we want npaths for each)
mpath_mult = np.empty((nm*npaths, T))
mbounds_mult = np.empty((nm*2, T))

Simulate for as long as we wanted
moment_generator = amf.lss.moment_sequence()
Pull out population moments
for t in range (T):

tmoms = next(moment_generator)
ymeans = tmoms[1]
yvar = tmoms[3]

Lower and upper bounds - for each functional
for ii in range(nm):

li, ui = ii*2, (ii+1)*2
Mdist = lognorm(np.sqrt(yvar[nx+nm+ii, nx+nm+ii]).item(),

scale= np.exp(ymeans[nx+nm+ii] \
- t * (.5)
* np.expand_dims(

np.diag(H @ H.T),
1)[ii]

).item()
)

mbounds_mult[li:ui, t] = Mdist.ppf([.01, .99])

Pull out paths
for n in range(npaths):

x, y = amf.lss.simulate(T)
for ii in range(nm):

mpath_mult[npaths*ii+n, :] = np.exp(y[nx+nm + ii, :] \
- np.arange(T) * (.5)
* np.expand_dims(np.diag(H

@ H.T),
1)[ii]

)

mart_figs = []

for ii in range(nm):
li, ui = npaths*(ii), npaths*(ii+1)
LI, UI = 2*(ii), 2*(ii+1)
mart_figs.append(plot_martingale_paths(amf, T, mpath_mult[li:ui, :],

mbounds_mult[LI:UI, :],
horline=1))

mart_figs[ii].suptitle(f'Martingale components for many paths of \
y_{ii+1}', fontsize=14)

return mart_figs

For now, we just plot 𝑦𝑡 and 𝑥𝑡, postponing until later a description of exactly how we compute them.

30.3. Dynamics 521

Advanced Quantitative Economics with Python

ϕ_1, ϕ_2, ϕ_3, ϕ_4 = 0.5, -0.2, 0, 0.5
σ = 0.01
ν = 0.01 # Growth rate

A matrix should be n x n
A = np.array([[ϕ_1, ϕ_2, ϕ_3, ϕ_4],

[1, 0, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, 0]])

B matrix should be n x k
B = np.array([[σ, 0, 0, 0]]).T

D = np.array([1, 0, 0, 0]) @ A
F = np.array([1, 0, 0, 0]) @ B

amf = AMF_LSS_VAR(A, B, D, F, ν=ν)

T = 150
x, y = amf.lss.simulate(T)

fig, ax = plt.subplots(2, 1, figsize=(10, 9))

ax[0].plot(np.arange(T), y[amf.nx, :], color='k')
ax[0].set_title('Path of y_t')
ax[1].plot(np.arange(T), y[0, :], color='g')
ax[1].axhline(0, color='k', linestyle='-.')
ax[1].set_title('Associated path of x_t')
plt.show()

522 Chapter 30. Additive and Multiplicative Functionals

Advanced Quantitative Economics with Python

Notice the irregular but persistent growth in 𝑦𝑡.

30.3.2 Decomposition

Hansen and Sargent [HS24] describe how to construct a decomposition of an additive functional into four parts:
• a constant inherited from initial values 𝑥0 and 𝑦0

• a linear trend
• a martingale
• an (asymptotically) stationary component

To attain this decomposition for the particular class of additive functionals defined by (30.1) and (30.2), we first construct
the matrices

𝐻 ∶= 𝐹 + 𝐷(𝐼 − 𝐴)−1𝐵
𝑔 ∶= 𝐷(𝐼 − 𝐴)−1

30.3. Dynamics 523

Advanced Quantitative Economics with Python

Then the Hansen [Han12], [HS24] decomposition is

𝑦𝑡 = 𝑡𝜈⏟
trend component

+

Martingale component
⏞𝑡
∑
𝑗=1

𝐻𝑧𝑗 − 𝑔𝑥𝑡⏟
stationary component

+
initial conditions
⏞𝑔𝑥0 + 𝑦0

At this stage, you should pause and verify that 𝑦𝑡+1 − 𝑦𝑡 satisfies (30.2).
It is convenient for us to introduce the following notation:

• 𝜏𝑡 = 𝜈𝑡 , a linear, deterministic trend
• 𝑚𝑡 = ∑𝑡

𝑗=1 𝐻𝑧𝑗, a martingale with time 𝑡 + 1 increment 𝐻𝑧𝑡+1

• 𝑠𝑡 = 𝑔𝑥𝑡, an (asymptotically) stationary component
We want to characterize and simulate components 𝜏𝑡, 𝑚𝑡, 𝑠𝑡 of the decomposition.
A convenient way to do this is to construct an appropriate instance of a linear state space system by using LinearStateSpace
from QuantEcon.py.
This will allow us to use the routines in LinearStateSpace to study dynamics.
To start, observe that, under the dynamics in (30.1) and (30.2) and with the definitions just given,

⎡
⎢
⎢
⎢
⎣

1
𝑡 + 1
𝑥𝑡+1
𝑦𝑡+1
𝑚𝑡+1

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 0 0 0 0
1 1 0 0 0
0 0 𝐴 0 0
𝜈 0 𝐷 1 0
0 0 0 0 1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

1
𝑡

𝑥𝑡
𝑦𝑡
𝑚𝑡

⎤
⎥
⎥
⎥
⎦

+
⎡
⎢
⎢
⎢
⎣

0
0
𝐵
𝐹
𝐻

⎤
⎥
⎥
⎥
⎦

𝑧𝑡+1

and

⎡
⎢
⎢
⎢
⎣

𝑥𝑡
𝑦𝑡
𝜏𝑡
𝑚𝑡
𝑠𝑡

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

0 0 𝐼 0 0
0 0 0 1 0
0 𝜈 0 0 0
0 0 0 0 1
0 0 −𝑔 0 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

1
𝑡

𝑥𝑡
𝑦𝑡
𝑚𝑡

⎤
⎥
⎥
⎥
⎦

With

̃𝑥 ∶=
⎡
⎢
⎢
⎢
⎣

1
𝑡

𝑥𝑡
𝑦𝑡
𝑚𝑡

⎤
⎥
⎥
⎥
⎦

and ̃𝑦 ∶=
⎡
⎢
⎢
⎢
⎣

𝑥𝑡
𝑦𝑡
𝜏𝑡
𝑚𝑡
𝑠𝑡

⎤
⎥
⎥
⎥
⎦

we can write this as the linear state space system

̃𝑥𝑡+1 = ̃𝐴 ̃𝑥𝑡 + �̃�𝑧𝑡+1

̃𝑦𝑡 = �̃� ̃𝑥𝑡

By picking out components of ̃𝑦𝑡, we can track all variables of interest.

524 Chapter 30. Additive and Multiplicative Functionals

https://python-intro.quantecon.org/linear_models.html
https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/lss.py
http://quantecon.org/quantecon-py
https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/lss.py

Advanced Quantitative Economics with Python

30.4 Code

The class AMF_LSS_VAR mentioned above does all that we want to study our additive functional.
In fact, AMF_LSS_VAR does more because it allows us to study an associated multiplicative functional as well.
(A hint that it does more is the name of the class – here AMF stands for “additive and multiplicative functional” – the
code computes and displays objects associated with multiplicative functionals too.)
Let’s use this code (embedded above) to explore the example process described above.
If you run the code that first simulated that example again and then the method call you will generate (modulo randomness)
the plot

plot_additive(amf, T)
plt.show()

When we plot multiple realizations of a component in the 2nd, 3rd, and 4th panels, we also plot the population 95%
probability coverage sets computed using the LinearStateSpace class.
We have chosen to simulate many paths, all starting from the same non-random initial conditions 𝑥0, 𝑦0 (you can tell this
from the shape of the 95% probability coverage shaded areas).
Notice tell-tale signs of these probability coverage shaded areas

• the purple one for the martingale component 𝑚𝑡 grows with
√

𝑡
• the green one for the stationary component 𝑠𝑡 converges to a constant band

30.4. Code 525

Advanced Quantitative Economics with Python

30.4.1 Associated Multiplicative Functional

Where {𝑦𝑡} is our additive functional, let 𝑀𝑡 = exp(𝑦𝑡).
As mentioned above, the process {𝑀𝑡} is called a multiplicative functional.
Corresponding to the additive decomposition described above we have a multiplicative decomposition of 𝑀𝑡

𝑀𝑡
𝑀0

= exp(𝑡𝜈) exp(
𝑡

∑
𝑗=1

𝐻 ⋅ 𝑍𝑗) exp(𝐷(𝐼 − 𝐴)−1𝑥0 − 𝐷(𝐼 − 𝐴)−1𝑥𝑡)

or

𝑀𝑡
𝑀0

= exp (̃𝜈𝑡) (𝑀𝑡
𝑀0

) (̃𝑒(𝑋0)
̃𝑒(𝑥𝑡)

)

where

̃𝜈 = 𝜈 + 𝐻 ⋅ 𝐻
2 , 𝑀𝑡 = exp(

𝑡
∑
𝑗=1

(𝐻 ⋅ 𝑧𝑗 − 𝐻 ⋅ 𝐻
2)), 𝑀0 = 1

and

̃𝑒(𝑥) = exp[𝑔(𝑥)] = exp[𝐷(𝐼 − 𝐴)−1𝑥]

An instance of class AMF_LSS_VAR (above) includes this associated multiplicative functional as an attribute.
Let’s plot this multiplicative functional for our example.
If you run the code that first simulated that example again and then the method call in the cell below you’ll obtain the graph
in the next cell.

plot_multiplicative(amf, T)
plt.show()

526 Chapter 30. Additive and Multiplicative Functionals

Advanced Quantitative Economics with Python

As before, when we plottedmultiple realizations of a component in the 2nd, 3rd, and 4th panels, we also plotted population
95% confidence bands computed using the LinearStateSpace class.
Comparing this figure and the last also helps show how geometric growth differs from arithmetic growth.
The top right panel of the above graph shows a panel of martingales associated with the panel of 𝑀𝑡 = exp(𝑦𝑡) that we
have generated for a limited horizon 𝑇 .
It is interesting to how the martingale behaves as 𝑇 → +∞.
Let’s see what happens when we set 𝑇 = 12000 instead of 150.

30.4.2 Peculiar Large Sample Property

Hansen and Sargent [HS24] (ch. 8) describe the following two properties of the martingale component 𝑀𝑡 of the multi-
plicative decomposition

• while 𝐸0𝑀𝑡 = 1 for all 𝑡 ≥ 0, nevertheless …
• as 𝑡 → +∞, 𝑀𝑡 converges to zero almost surely

The first property follows from the fact that 𝑀𝑡 is a multiplicative martingale with initial condition 𝑀0 = 1.
The second is a peculiar property noted and proved by Hansen and Sargent [HS24].

The following simulation of many paths of 𝑀𝑡 illustrates both properties

np.random.seed(10021987)
plot_martingales(amf, 12000)
plt.show()

30.4. Code 527

Advanced Quantitative Economics with Python

The dotted line in the above graph is the mean 𝐸�̃�𝑡 = 1 of the martingale.
It remains constant at unity, illustrating the first property.
The purple 95 percent frequency coverage interval collapses around zero, illustrating the second property.

30.5 More About the Multiplicative Martingale

Let’s drill down and study probability distribution of the multiplicative martingale {𝑀𝑡}∞
𝑡=0 in more detail.

As we have seen, it has representation

𝑀𝑡 = exp(
𝑡

∑
𝑗=1

(𝐻 ⋅ 𝑧𝑗 − 𝐻 ⋅ 𝐻
2)), 𝑀0 = 1

where 𝐻 = [𝐹 + 𝐷(𝐼 − 𝐴)−1𝐵].
It follows that log𝑀𝑡 ∼ 𝒩(− 𝑡𝐻⋅𝐻

2 , 𝑡𝐻 ⋅ 𝐻) and that consequently 𝑀𝑡 is log normal.

30.5.1 Simulating a Multiplicative Martingale Again

Next, we want a program to simulate the likelihood ratio process {�̃�𝑡}∞
𝑡=0.

In particular, we want to simulate 5000 sample paths of length 𝑇 for the case in which 𝑥 is a scalar and [𝐴, 𝐵, 𝐷, 𝐹] =
[0.8, 0.001, 1.0, 0.01] and 𝜈 = 0.005.
After accomplishing this, we want to display and study histograms of �̃� 𝑖

𝑇 for various values of 𝑇 .
Here is code that accomplishes these tasks.

30.5.2 Sample Paths

Let’s write a program to simulate sample paths of {𝑥𝑡, 𝑦𝑡}∞
𝑡=0.

We’ll do this by formulating the additive functional as a linear state space model and putting the LinearStateSpace class
to work.

class AMF_LSS_VAR:
"""
This class is written to transform a scalar additive functional
into a linear state space system.
"""
def __init__(self, A, B, D, F=0.0, ν=0.0):

Unpack required elements
self.A, self.B, self.D, self.F, self.ν = A, B, D, F, ν

Create space for additive decomposition
self.add_decomp = None
self.mult_decomp = None

Construct BIG state space representation
self.lss = self.construct_ss()

def construct_ss(self):

(continues on next page)

528 Chapter 30. Additive and Multiplicative Functionals

https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/lss.py

Advanced Quantitative Economics with Python

(continued from previous page)

"""
This creates the state space representation that can be passed
into the quantecon LSS class.
"""
Pull out useful info
A, B, D, F, ν = self.A, self.B, self.D, self.F, self.ν
nx, nk, nm = 1, 1, 1
if self.add_decomp:

ν, H, g = self.add_decomp
else:

ν, H, g = self.additive_decomp()

Build A matrix for LSS
Order of states is: [1, t, xt, yt, mt]
A1 = np.hstack([1, 0, 0, 0, 0]) # Transition for 1
A2 = np.hstack([1, 1, 0, 0, 0]) # Transition for t
A3 = np.hstack([0, 0, A, 0, 0]) # Transition for x_{t+1}
A4 = np.hstack([ν, 0, D, 1, 0]) # Transition for y_{t+1}
A5 = np.hstack([0, 0, 0, 0, 1]) # Transition for m_{t+1}
Abar = np.vstack([A1, A2, A3, A4, A5])

Build B matrix for LSS
Bbar = np.vstack([0, 0, B, F, H])

Build G matrix for LSS
Order of observation is: [xt, yt, mt, st, tt]
G1 = np.hstack([0, 0, 1, 0, 0]) # Selector for x_{t}
G2 = np.hstack([0, 0, 0, 1, 0]) # Selector for y_{t}
G3 = np.hstack([0, 0, 0, 0, 1]) # Selector for martingale
G4 = np.hstack([0, 0, -g, 0, 0]) # Selector for stationary
G5 = np.hstack([0, ν, 0, 0, 0]) # Selector for trend
Gbar = np.vstack([G1, G2, G3, G4, G5])

Build H matrix for LSS
Hbar = np.zeros((1, 1))

Build LSS type
x0 = np.hstack([1, 0, 0, 0, 0])
S0 = np.zeros((5, 5))
lss = qe.LinearStateSpace(Abar, Bbar, Gbar, Hbar,

mu_0=x0, Sigma_0=S0)

return lss

def additive_decomp(self):
"""
Return values for the martingale decomposition (Proposition 4.3.3.)

- ν : unconditional mean difference in Y
- H : coefficient for the (linear) martingale component (kappa_a)
- g : coefficient for the stationary component g(x)
- Y_0 : it should be the function of X_0 (for now set it to 0.0)

"""
A_res = 1 / (1 - self.A)
g = self.D * A_res
H = self.F + self.D * A_res * self.B

(continues on next page)

30.5. More About the Multiplicative Martingale 529

Advanced Quantitative Economics with Python

(continued from previous page)

return self.ν, H, g

def multiplicative_decomp(self):
"""
Return values for the multiplicative decomposition (Example 5.4.4.)

- ν_tilde : eigenvalue
- H : vector for the Jensen term

"""
ν, H, g = self.additive_decomp()
ν_tilde = ν + (.5) * H**2

return ν_tilde, H, g

def loglikelihood_path(self, x, y):
A, B, D, F = self.A, self.B, self.D, self.F
T = y.T.size
FF = F**2
FFinv = 1 / FF
temp = y[1:] - y[:-1] - D * x[:-1]
obs = temp * FFinv * temp
obssum = np.cumsum(obs)
scalar = (np.log(FF) + np.log(2 * np.pi)) * np.arange(1, T)

return (-0.5) * (obssum + scalar)

def loglikelihood(self, x, y):
llh = self.loglikelihood_path(x, y)

return llh[-1]

The heavy lifting is done inside the AMF_LSS_VAR class.
The following code adds some simple functions that make it straightforward to generate sample paths from an instance of
AMF_LSS_VAR.

def simulate_xy(amf, T):
"Simulate individual paths."
foo, bar = amf.lss.simulate(T)
x = bar[0, :]
y = bar[1, :]

return x, y

def simulate_paths(amf, T=150, I=5000):
"Simulate multiple independent paths."

Allocate space
storeX = np.empty((I, T))
storeY = np.empty((I, T))

for i in range(I):
Do specific simulation
x, y = simulate_xy(amf, T)

Fill in our storage matrices
storeX[i, :] = x

(continues on next page)

530 Chapter 30. Additive and Multiplicative Functionals

Advanced Quantitative Economics with Python

(continued from previous page)

storeY[i, :] = y

return storeX, storeY

def population_means(amf, T=150):
Allocate Space
xmean = np.empty(T)
ymean = np.empty(T)

Pull out moment generator
moment_generator = amf.lss.moment_sequence()

for tt in range (T):
tmoms = next(moment_generator)
ymeans = tmoms[1]
xmean[tt] = ymeans[0]
ymean[tt] = ymeans[1]

return xmean, ymean

Now that we have these functions in our toolkit, let’s apply them to run some simulations.

def simulate_martingale_components(amf, T=1000, I=5000):
Get the multiplicative decomposition
ν, H, g = amf.multiplicative_decomp()

Allocate space
add_mart_comp = np.empty((I, T))

Simulate and pull out additive martingale component
for i in range(I):

foo, bar = amf.lss.simulate(T)

Martingale component is third component
add_mart_comp[i, :] = bar[2, :]

mul_mart_comp = np.exp(add_mart_comp - (np.arange(T) * H**2)/2)

return add_mart_comp, mul_mart_comp

Build model
amf_2 = AMF_LSS_VAR(0.8, 0.001, 1.0, 0.01,.005)

amc, mmc = simulate_martingale_components(amf_2, 1000, 5000)

amcT = amc[:, -1]
mmcT = mmc[:, -1]

print("The (min, mean, max) of additive Martingale component in period T is")
print(f"\t ({np.min(amcT)}, {np.mean(amcT)}, {np.max(amcT)})")

print("The (min, mean, max) of multiplicative Martingale component \
in period T is")
print(f"\t ({np.min(mmcT)}, {np.mean(mmcT)}, {np.max(mmcT)})")

30.5. More About the Multiplicative Martingale 531

Advanced Quantitative Economics with Python

The (min, mean, max) of additive Martingale component in period T is
(-1.8379907335579106, 0.011040789361757435, 1.4697384727035145)

The (min, mean, max) of multiplicative Martingale component in period T is
(0.14222026893384476, 1.006753060146832, 3.8858858377907133)

Let’s plot the probability density functions for log𝑀𝑡 for 𝑡 = 100, 500, 1000, 10000, 100000.
Then let’s use the plots to investigate how these densities evolve through time.

We will plot the densities of log𝑀𝑡 for different values of 𝑡.

Note: scipy.stats.lognorm expects you to pass the standard deviation first (𝑡𝐻 ⋅ 𝐻) and then the exponent of
the mean as a keyword argument scale (scale=np.exp(-t * H2 / 2)).

• See the documentation here.
This is peculiar, so make sure you are careful in working with the log normal distribution.

Here is some code that tackles these tasks

def Mtilde_t_density(amf, t, xmin=1e-8, xmax=5.0, npts=5000):

Pull out the multiplicative decomposition
νtilde, H, g = amf.multiplicative_decomp()
H2 = H*H

The distribution
mdist = lognorm(np.sqrt(t*H2), scale=np.exp(-t*H2/2))
x = np.linspace(xmin, xmax, npts)
pdf = mdist.pdf(x)

return x, pdf

def logMtilde_t_density(amf, t, xmin=-15.0, xmax=15.0, npts=5000):

Pull out the multiplicative decomposition
νtilde, H, g = amf.multiplicative_decomp()
H2 = H*H

The distribution
lmdist = norm(-t*H2/2, np.sqrt(t*H2))
x = np.linspace(xmin, xmax, npts)
pdf = lmdist.pdf(x)

return x, pdf

times_to_plot = [10, 100, 500, 1000, 2500, 5000]
dens_to_plot = map(lambda t: Mtilde_t_density(amf_2, t, xmin=1e-8, xmax=6.0),

times_to_plot)
ldens_to_plot = map(lambda t: logMtilde_t_density(amf_2, t, xmin=-10.0,

xmax=10.0), times_to_plot)

fig, ax = plt.subplots(3, 2, figsize=(14, 14))
ax = ax.flatten()

(continues on next page)

532 Chapter 30. Additive and Multiplicative Functionals

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm.html#scipy.stats.lognorm

Advanced Quantitative Economics with Python

(continued from previous page)

fig.suptitle(r"Densities of \tilde{M}_t", fontsize=18, y=1.02)
for (it, dens_t) in enumerate(dens_to_plot):

x, pdf = dens_t
ax[it].set_title(f"Density for time {times_to_plot[it]}")
ax[it].fill_between(x, np.zeros_like(pdf), pdf)

plt.tight_layout()
plt.show()

These probability density functions help us understand mechanics underlying the peculiar property of our multiplicative
martingale

• As 𝑇 grows, most of the probability mass shifts leftward toward zero.

30.5. More About the Multiplicative Martingale 533

Advanced Quantitative Economics with Python

• For example, note that most mass is near 1 for 𝑇 = 10 or 𝑇 = 100 but most of it is near 0 for 𝑇 = 5000.
• As 𝑇 grows, the tail of the density of 𝑀𝑇 lengthens toward the right.

• Enough mass moves toward the right tail to keep 𝐸𝑀𝑇 = 1 even as most mass in the distribution of 𝑀𝑇 collapses
around 0.

30.5.3 Multiplicative Martingale as Likelihood Ratio Process

This lecture studies likelihood processes and likelihood ratio processes.
A likelihood ratio process is a multiplicative martingale with mean unity.
Likelihood ratio processes exhibit the peculiar property that naturally also appears here.

534 Chapter 30. Additive and Multiplicative Functionals

https://python.quantecon.org/likelihood_ratio_process.html
https://python.quantecon.org/likelihood_ratio_process.html

CHAPTER

THIRTYONE

CLASSICAL CONTROL WITH LINEAR ALGEBRA

Contents

• Classical Control with Linear Algebra

– Overview

– A Control Problem

– Finite Horizon Theory

– Infinite Horizon Limit

– Undiscounted Problems

– Implementation

– Exercises

31.1 Overview

In an earlier lecture Linear Quadratic Dynamic Programming Problems, we have studied how to solve a special class
of dynamic optimization and prediction problems by applying the method of dynamic programming. In this class of
problems

• the objective function is quadratic in states and controls.
• the one-step transition function is linear.
• shocks are IID Gaussian or martingale differences.

In this lecture and a companion lecture Classical Filtering with Linear Algebra, we study the classical theory of linear-
quadratic (LQ) optimal control problems.
The classical approach does not use the two closely related methods – dynamic programming and Kalman filtering –
that we describe in other lectures, namely, Linear Quadratic Dynamic Programming Problems and A First Look at the
Kalman Filter.
Instead, they use either

• 𝑧-transform and lag operator methods, or
• matrix decompositions applied to linear systems of first-order conditions for optimum problems.

In this lecture and the sequel Classical Filtering with Linear Algebra, we mostly rely on elementary linear algebra.
The main tool from linear algebra we’ll put to work here is LU decomposition.

535

https://python-intro.quantecon.org/lqcontrol.html
https://python-intro.quantecon.org/lqcontrol.html
https://python-intro.quantecon.org/kalman.html
https://python-intro.quantecon.org/kalman.html
https://en.wikipedia.org/wiki/LU_decomposition

Advanced Quantitative Economics with Python

We’ll begin with discrete horizon problems.
Then we’ll view infinite horizon problems as appropriate limits of these finite horizon problems.
Later, we will examine the close connection between LQ control and least-squares prediction and filtering problems.
These classes of problems are connected in the sense that to solve each, essentially the same mathematics is used.
Let’s start with some standard imports:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

31.1.1 References

Useful references include [Whi63], [HS80], [Orf88], [AP91], and [Mut60].

31.2 A Control Problem

Let 𝐿 be the lag operator, so that, for sequence {𝑥𝑡} we have 𝐿𝑥𝑡 = 𝑥𝑡−1.
More generally, let 𝐿𝑘𝑥𝑡 = 𝑥𝑡−𝑘 with 𝐿0𝑥𝑡 = 𝑥𝑡 and

𝑑(𝐿) = 𝑑0 + 𝑑1𝐿 + … + 𝑑𝑚𝐿𝑚

where 𝑑0, 𝑑1, … , 𝑑𝑚 is a given scalar sequence.
Consider the discrete-time control problem

max
{𝑦𝑡}

lim
𝑁→∞

𝑁
∑
𝑡=0

𝛽𝑡 {𝑎𝑡𝑦𝑡 − 1
2 ℎ𝑦2

𝑡 − 1
2 [𝑑(𝐿)𝑦𝑡]

2} , (31.1)

where
• ℎ is a positive parameter and 𝛽 ∈ (0, 1) is a discount factor.
• {𝑎𝑡}𝑡≥0 is a sequence of exponential order less than 𝛽−1/2, by which we mean lim𝑡→∞ 𝛽 𝑡

2 𝑎𝑡 = 0.
Maximization in (31.1) is subject to initial conditions for 𝑦−1, 𝑦−2 … , 𝑦−𝑚.
Maximization is over infinite sequences {𝑦𝑡}𝑡≥0.

31.2.1 Example

The formulation of the LQ problem given above is broad enough to encompass many useful models.
As a simple illustration, recall that in LQ Control: Foundations we consider a monopolist facing stochastic demand shocks
and adjustment costs.
Let’s consider a deterministic version of this problem, where the monopolist maximizes the discounted sum

∞
∑
𝑡=0

𝛽𝑡𝜋𝑡

536 Chapter 31. Classical Control with Linear Algebra

https://python-intro.quantecon.org/lqcontrol.html

Advanced Quantitative Economics with Python

and

𝜋𝑡 = 𝑝𝑡𝑞𝑡 − 𝑐𝑞𝑡 − 𝛾(𝑞𝑡+1 − 𝑞𝑡)2 with 𝑝𝑡 = 𝛼0 − 𝛼1𝑞𝑡 + 𝑑𝑡

In this expression, 𝑞𝑡 is output, 𝑐 is average cost of production, and 𝑑𝑡 is a demand shock.
The term 𝛾(𝑞𝑡+1 − 𝑞𝑡)2 represents adjustment costs.
You will be able to confirm that the objective function can be rewritten as (31.1) when

• 𝑎𝑡 ∶= 𝛼0 + 𝑑𝑡 − 𝑐
• ℎ ∶= 2𝛼1

• 𝑑(𝐿) ∶= √2𝛾(𝐼 − 𝐿)
Further examples of this problem for factor demand, economic growth, and government policy problems are given in ch.
IX of [Sar87].

31.3 Finite Horizon Theory

We first study a finite 𝑁 version of the problem.
Later we will study an infinite horizon problem solution as a limiting version of a finite horizon problem.
(This will require being careful because the limits as 𝑁 → ∞ of the necessary and sufficient conditions for maximizing
finite 𝑁 versions of (31.1) are not sufficient for maximizing (31.1))
We begin by

1. fixing 𝑁 > 𝑚,
2. differentiating the finite version of (31.1) with respect to 𝑦0, 𝑦1, … , 𝑦𝑁 , and
3. setting these derivatives to zero.

For 𝑡 = 0, … , 𝑁 − 𝑚 these first-order necessary conditions are the Euler equations.
For 𝑡 = 𝑁 − 𝑚 + 1, … , 𝑁 , the first-order conditions are a set of terminal conditions.
Consider the term

𝐽 =
𝑁

∑
𝑡=0

𝛽𝑡[𝑑(𝐿)𝑦𝑡][𝑑(𝐿)𝑦𝑡]

=
𝑁

∑
𝑡=0

𝛽𝑡 (𝑑0 𝑦𝑡 + 𝑑1 𝑦𝑡−1 + ⋯ + 𝑑𝑚 𝑦𝑡−𝑚) (𝑑0 𝑦𝑡 + 𝑑1 𝑦𝑡−1 + ⋯ + 𝑑𝑚 𝑦𝑡−𝑚)

Differentiating 𝐽 with respect to 𝑦𝑡 for 𝑡 = 0, 1, … , 𝑁 − 𝑚 gives

𝜕𝐽
𝜕𝑦𝑡

= 2𝛽𝑡 𝑑0 𝑑(𝐿)𝑦𝑡 + 2𝛽𝑡+1 𝑑1 𝑑(𝐿)𝑦𝑡+1 + ⋯ + 2𝛽𝑡+𝑚 𝑑𝑚 𝑑(𝐿)𝑦𝑡+𝑚

= 2𝛽𝑡 (𝑑0 + 𝑑1 𝛽𝐿−1 + 𝑑2 𝛽2 𝐿−2 + ⋯ + 𝑑𝑚 𝛽𝑚 𝐿−𝑚) 𝑑(𝐿)𝑦𝑡

We can write this more succinctly as

𝜕𝐽
𝜕𝑦𝑡

= 2𝛽𝑡 𝑑(𝛽𝐿−1) 𝑑(𝐿)𝑦𝑡 (31.2)

31.3. Finite Horizon Theory 537

Advanced Quantitative Economics with Python

Differentiating 𝐽 with respect to 𝑦𝑡 for 𝑡 = 𝑁 − 𝑚 + 1, … , 𝑁 gives

𝜕𝐽
𝜕𝑦𝑁

= 2𝛽𝑁 𝑑0 𝑑(𝐿)𝑦𝑁

𝜕𝐽
𝜕𝑦𝑁−1

= 2𝛽𝑁−1 [𝑑0 + 𝛽 𝑑1 𝐿−1] 𝑑(𝐿)𝑦𝑁−1

⋮ ⋮
𝜕𝐽

𝜕𝑦𝑁−𝑚+1
= 2𝛽𝑁−𝑚+1 [𝑑0 + 𝛽𝐿−1 𝑑1 + ⋯ + 𝛽𝑚−1 𝐿−𝑚+1 𝑑𝑚−1]𝑑(𝐿)𝑦𝑁−𝑚+1

(31.3)

With these preliminaries under our belts, we are ready to differentiate (31.1).
Differentiating (31.1) with respect to 𝑦𝑡 for 𝑡 = 0, … , 𝑁 − 𝑚 gives the Euler equations

[ℎ + 𝑑 (𝛽𝐿−1) 𝑑(𝐿)]𝑦𝑡 = 𝑎𝑡, 𝑡 = 0, 1, … , 𝑁 − 𝑚 (31.4)

The system of equations (31.4) forms a 2×𝑚 order linear difference equation that must hold for the values of 𝑡 indicated.
Differentiating (31.1) with respect to 𝑦𝑡 for 𝑡 = 𝑁 − 𝑚 + 1, … , 𝑁 gives the terminal conditions

𝛽𝑁(𝑎𝑁 − ℎ𝑦𝑁 − 𝑑0 𝑑(𝐿)𝑦𝑁) = 0
𝛽𝑁−1 (𝑎𝑁−1 − ℎ𝑦𝑁−1 − (𝑑0 + 𝛽 𝑑1 𝐿−1) 𝑑(𝐿) 𝑦𝑁−1) = 0

⋮ ⋮ = 0

𝛽𝑁−𝑚+1(𝑎𝑁−𝑚+1 − ℎ𝑦𝑁−𝑚+1 − (𝑑0 + 𝛽𝐿−1𝑑1 + ⋯ + 𝛽𝑚−1𝐿−𝑚+1𝑑𝑚−1)𝑑(𝐿)𝑦𝑁−𝑚+1) = 0

(31.5)

In the finite 𝑁 problem, we want simultaneously to solve (31.4) subject to the 𝑚 initial conditions 𝑦−1, … , 𝑦−𝑚 and the
𝑚 terminal conditions (31.5).
These conditions uniquely pin down the solution of the finite 𝑁 problem.
That is, for the finite 𝑁 problem, conditions (31.4) and (31.5) are necessary and sufficient for a maximum, by concavity
of the objective function.
Next, we describe how to obtain the solution using matrix methods.

31.3.1 Matrix Methods

Let’s look at how linear algebra can be used to tackle and shed light on the finite horizon LQ control problem.

A Single Lag Term

Let’s begin with the special case in which 𝑚 = 1.
We want to solve the system of 𝑁 + 1 linear equations

[ℎ + 𝑑 (𝛽𝐿−1) 𝑑 (𝐿)]𝑦𝑡 = 𝑎𝑡, 𝑡 = 0, 1, … , 𝑁 − 1
𝛽𝑁 [𝑎𝑁 − ℎ 𝑦𝑁 − 𝑑0 𝑑 (𝐿)𝑦𝑁] = 0 (31.6)

where 𝑑(𝐿) = 𝑑0 + 𝑑1𝐿.
These equations are to be solved for 𝑦0, 𝑦1, … , 𝑦𝑁 as functions of 𝑎0, 𝑎1, … , 𝑎𝑁 and 𝑦−1.
Let

𝜙(𝐿) = 𝜙0 + 𝜙1𝐿 + 𝛽𝜙1𝐿−1 = ℎ + 𝑑(𝛽𝐿−1)𝑑(𝐿) = (ℎ + 𝑑2
0 + 𝑑2

1) + 𝑑1𝑑0𝐿 + 𝑑1𝑑0𝛽𝐿−1

538 Chapter 31. Classical Control with Linear Algebra

Advanced Quantitative Economics with Python

Then we can represent (31.6) as the matrix equation

⎡
⎢
⎢
⎢
⎢
⎣

(𝜙0 − 𝑑2
1) 𝜙1 0 0 … … 0

𝛽𝜙1 𝜙0 𝜙1 0 … … 0
0 𝛽𝜙1 𝜙0 𝜙1 … … 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
0 … … … 𝛽𝜙1 𝜙0 𝜙1
0 … … … 0 𝛽𝜙1 𝜙0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑦𝑁
𝑦𝑁−1
𝑦𝑁−2

⋮
𝑦1
𝑦0

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑎𝑁
𝑎𝑁−1
𝑎𝑁−2

⋮
𝑎1

𝑎0 − 𝜙1𝑦−1

⎤
⎥
⎥
⎥
⎥
⎦

(31.7)

or

𝑊 ̄𝑦 = ̄𝑎 (31.8)

Notice how we have chosen to arrange the 𝑦𝑡’s in reverse time order.
The matrix 𝑊 on the left side of (31.7) is “almost” a Toeplitz matrix (where each descending diagonal is constant).
There are two sources of deviation from the form of a Toeplitz matrix

1. The first element differs from the remaining diagonal elements, reflecting the terminal condition.
2. The sub-diagonal elements equal 𝛽 time the super-diagonal elements.

The solution of (31.8) can be expressed in the form

̄𝑦 = 𝑊 −1 ̄𝑎 (31.9)

which represents each element 𝑦𝑡 of ̄𝑦 as a function of the entire vector ̄𝑎.
That is, 𝑦𝑡 is a function of past, present, and future values of 𝑎’s, as well as of the initial condition 𝑦−1.

An Alternative Representation

An alternative way to express the solution to (31.7) or (31.8) is in so-called feedback-feedforward form.
The idea here is to find a solution expressing 𝑦𝑡 as a function of past 𝑦’s and current and future 𝑎’s.
To achieve this solution, one can use an LU decomposition of 𝑊 .
There always exists a decomposition of 𝑊 of the form 𝑊 = 𝐿𝑈 where

• 𝐿 is an (𝑁 + 1) × (𝑁 + 1) lower triangular matrix.
• 𝑈 is an (𝑁 + 1) × (𝑁 + 1) upper triangular matrix.

The factorization can be normalized so that the diagonal elements of 𝑈 are unity.
Using the LU representation in (31.9), we obtain

𝑈 ̄𝑦 = 𝐿−1 ̄𝑎 (31.10)

Since 𝐿−1 is lower triangular, this representation expresses 𝑦𝑡 as a function of
• lagged 𝑦’s (via the term 𝑈 ̄𝑦), and
• current and future 𝑎’s (via the term 𝐿−1 ̄𝑎)

Because there are zeros everywhere in the matrix on the left of (31.7) except on the diagonal, super-diagonal, and sub-
diagonal, the 𝐿𝑈 decomposition takes

• 𝐿 to be zero except in the diagonal and the leading sub-diagonal.
• 𝑈 to be zero except on the diagonal and the super-diagonal.

31.3. Finite Horizon Theory 539

https://en.wikipedia.org/wiki/Toeplitz_matrix
https://en.wikipedia.org/wiki/LU_decomposition

Advanced Quantitative Economics with Python

Thus, (31.10) has the form

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 𝑈12 0 0 … 0 0
0 1 𝑈23 0 … 0 0
0 0 1 𝑈34 … 0 0
0 0 0 1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 … 1 𝑈𝑁,𝑁+1
0 0 0 0 … 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑦𝑁
𝑦𝑁−1
𝑦𝑁−2
𝑦𝑁−3

⋮
𝑦1
𝑦0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝐿−1
11 0 0 … 0

𝐿−1
21 𝐿−1

22 0 … 0
𝐿−1

31 𝐿−1
32 𝐿−1

33 … 0
⋮ ⋮ ⋮ ⋱ ⋮

𝐿−1
𝑁,1 𝐿−1

𝑁,2 𝐿−1
𝑁,3 … 0

𝐿−1
𝑁+1,1 𝐿−1

𝑁+1,2 𝐿−1
𝑁+1,3 … 𝐿−1

𝑁+1 𝑁+1

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑎𝑁
𝑎𝑁−1
𝑎𝑁−2

⋮
𝑎1

𝑎0 − 𝜙1𝑦−1

⎤
⎥
⎥
⎥
⎥
⎦

where 𝐿−1
𝑖𝑗 is the (𝑖, 𝑗) element of 𝐿−1 and 𝑈𝑖𝑗 is the (𝑖, 𝑗) element of 𝑈 .

Note how the left side for a given 𝑡 involves 𝑦𝑡 and one lagged value 𝑦𝑡−1 while the right side involves all future values of
the forcing process 𝑎𝑡, 𝑎𝑡+1, … , 𝑎𝑁 .

Additional Lag Terms

We briefly indicate how this approach extends to the problem with 𝑚 > 1.
Assume that 𝛽 = 1 and let 𝐷𝑚+1 be the (𝑚 + 1) × (𝑚 + 1) symmetric matrix whose elements are determined from the
following formula:

𝐷𝑗𝑘 = 𝑑0𝑑𝑘−𝑗 + 𝑑1𝑑𝑘−𝑗+1 + … + 𝑑𝑗−1𝑑𝑘−1, 𝑘 ≥ 𝑗

Let 𝐼𝑚+1 be the (𝑚 + 1) × (𝑚 + 1) identity matrix.
Let 𝜙𝑗 be the coefficients in the expansion 𝜙(𝐿) = ℎ + 𝑑(𝐿−1)𝑑(𝐿).
Then the first order conditions (31.4) and (31.5) can be expressed as:

(𝐷𝑚+1 + ℎ𝐼𝑚+1)
⎡
⎢⎢
⎣

𝑦𝑁
𝑦𝑁−1

⋮
𝑦𝑁−𝑚

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

𝑎𝑁
𝑎𝑁−1

⋮
𝑎𝑁−𝑚

⎤
⎥⎥
⎦

+ 𝑀
⎡
⎢⎢
⎣

𝑦𝑁−𝑚+1
𝑦𝑁−𝑚−2

⋮
𝑦𝑁−2𝑚

⎤
⎥⎥
⎦

where 𝑀 is (𝑚 + 1) × 𝑚 and

𝑀𝑖𝑗 = {𝐷𝑖−𝑗, 𝑚+1 for 𝑖 > 𝑗
0 for 𝑖 ≤ 𝑗

𝜙𝑚𝑦𝑁−1 + 𝜙𝑚−1𝑦𝑁−2 + … + 𝜙0𝑦𝑁−𝑚−1 + 𝜙1𝑦𝑁−𝑚−2+
… + 𝜙𝑚𝑦𝑁−2𝑚−1 = 𝑎𝑁−𝑚−1

𝜙𝑚𝑦𝑁−2 + 𝜙𝑚−1𝑦𝑁−3 + … + 𝜙0𝑦𝑁−𝑚−2 + 𝜙1𝑦𝑁−𝑚−3+
… + 𝜙𝑚𝑦𝑁−2𝑚−2 = 𝑎𝑁−𝑚−2

⋮
𝜙𝑚𝑦𝑚+1 + 𝜙𝑚−1𝑦𝑚 + + … + 𝜙0𝑦1 + 𝜙1𝑦0 + 𝜙𝑚𝑦−𝑚+1 = 𝑎1

𝜙𝑚𝑦𝑚 + 𝜙𝑚−1𝑦𝑚−1 + 𝜙𝑚−2 + … + 𝜙0𝑦0 + 𝜙1𝑦−1 + … + 𝜙𝑚𝑦−𝑚 = 𝑎0

As before, we can express this equation as 𝑊 ̄𝑦 = ̄𝑎.

540 Chapter 31. Classical Control with Linear Algebra

Advanced Quantitative Economics with Python

The matrix on the left of this equation is “almost” Toeplitz, the exception being the leading𝑚×𝑚 submatrix in the upper
left-hand corner.
We can represent the solution in feedback-feedforward form by obtaining a decomposition 𝐿𝑈 = 𝑊 , and obtain

𝑈 ̄𝑦 = 𝐿−1 ̄𝑎 (31.11)

𝑡
∑
𝑗=0

𝑈−𝑡+𝑁+1, −𝑡+𝑁+𝑗+1 𝑦𝑡−𝑗 =
𝑁−𝑡
∑
𝑗=0

𝐿−𝑡+𝑁+1, −𝑡+𝑁+1−𝑗 ̄𝑎𝑡+𝑗 ,

𝑡 = 0, 1, … , 𝑁
where 𝐿−1

𝑡,𝑠 is the element in the (𝑡, 𝑠) position of 𝐿, and similarly for 𝑈 .
The left side of equation (31.11) is the “feedback” part of the optimal control law for 𝑦𝑡, while the right-hand side is the
“feedforward” part.
We note that there is a different control law for each 𝑡.
Thus, in the finite horizon case, the optimal control law is time-dependent.
It is natural to suspect that as 𝑁 → ∞, (31.11) becomes equivalent to the solution of our infinite horizon problem, which
below we shall show can be expressed as

𝑐(𝐿)𝑦𝑡 = 𝑐(𝛽𝐿−1)−1𝑎𝑡 ,

so that as 𝑁 → ∞ we expect that for each fixed 𝑡, 𝑈−1
𝑡,𝑡−𝑗 → 𝑐𝑗 and 𝐿𝑡,𝑡+𝑗 approaches the coefficient on 𝐿−𝑗 in the

expansion of 𝑐(𝛽𝐿−1)−1.
This suspicion is true under general conditions that we shall study later.
For now, we note that by creating the matrix 𝑊 for large 𝑁 and factoring it into the 𝐿𝑈 form, good approximations to
𝑐(𝐿) and 𝑐(𝛽𝐿−1)−1 can be obtained.

31.4 Infinite Horizon Limit

For the infinite horizon problem, we propose to discover first-order necessary conditions by taking the limits of (31.4)
and (31.5) as 𝑁 → ∞.
This approach is valid, and the limits of (31.4) and (31.5) as 𝑁 approaches infinity are first-order necessary conditions
for a maximum.
However, for the infinite horizon problem with 𝛽 < 1, the limits of (31.4) and (31.5) are, in general, not sufficient for a
maximum.
That is, the limits of (31.5) do not provide enough information uniquely to determine the solution of the Euler equation
(31.4) that maximizes (31.1).
As we shall see below, a side condition on the path of 𝑦𝑡 that together with (31.4) is sufficient for an optimum is

∞
∑
𝑡=0

𝛽𝑡 ℎ𝑦2
𝑡 < ∞ (31.12)

All paths that satisfy the Euler equations, except the one that we shall select below, violate this condition and, therefore,
evidently lead to (much) lower values of (31.1) than does the optimal path selected by the solution procedure below.
Consider the characteristic equation associated with the Euler equation

ℎ + 𝑑 (𝛽𝑧−1) 𝑑 (𝑧) = 0 (31.13)

31.4. Infinite Horizon Limit 541

Advanced Quantitative Economics with Python

Notice that if ̃𝑧 is a root of equation (31.13), then so is 𝛽 ̃𝑧−1.
Thus, the roots of (31.13) come in “𝛽-reciprocal” pairs.
Assume that the roots of (31.13) are distinct.
Let the roots be, in descending order according to their moduli, 𝑧1, 𝑧2, … , 𝑧2𝑚.
From the reciprocal pairs property and the assumption of distinct roots, it follows that |𝑧𝑗| > √𝛽 for 𝑗 ≤ 𝑚 and |𝑧𝑗| <√𝛽 for 𝑗 > 𝑚.
It also follows that 𝑧2𝑚−𝑗 = 𝛽𝑧−1

𝑗+1, 𝑗 = 0, 1, … , 𝑚 − 1.
Therefore, the characteristic polynomial on the left side of (31.13) can be expressed as

ℎ + 𝑑(𝛽𝑧−1)𝑑(𝑧) = 𝑧−𝑚𝑧0(𝑧 − 𝑧1) ⋯ (𝑧 − 𝑧𝑚)(𝑧 − 𝑧𝑚+1) ⋯ (𝑧 − 𝑧2𝑚)
= 𝑧−𝑚𝑧0(𝑧 − 𝑧1)(𝑧 − 𝑧2) ⋯ (𝑧 − 𝑧𝑚)(𝑧 − 𝛽𝑧−1

𝑚) ⋯ (𝑧 − 𝛽𝑧−1
2)(𝑧 − 𝛽𝑧−1

1) (31.14)

where 𝑧0 is a constant.
In (31.14), we substitute (𝑧 − 𝑧𝑗) = −𝑧𝑗(1 − 1

𝑧𝑗
𝑧) and (𝑧 − 𝛽𝑧−1

𝑗) = 𝑧(1 − 𝛽
𝑧𝑗

𝑧−1) for 𝑗 = 1, … , 𝑚 to get

ℎ + 𝑑(𝛽𝑧−1)𝑑(𝑧) = (−1)𝑚(𝑧0𝑧1 ⋯ 𝑧𝑚)(1 − 1
𝑧1

𝑧) ⋯ (1 − 1
𝑧𝑚

𝑧)(1 − 1
𝑧1

𝛽𝑧−1) ⋯ (1 − 1
𝑧𝑚

𝛽𝑧−1)

Now define 𝑐(𝑧) = ∑𝑚
𝑗=0 𝑐𝑗 𝑧𝑗 as

𝑐 (𝑧) = [(−1)𝑚𝑧0 𝑧1 ⋯ 𝑧𝑚]
1/2

(1 − 𝑧
𝑧1

) (1 − 𝑧
𝑧2

) ⋯ (1 − 𝑧
𝑧𝑚

) (31.15)

Notice that (31.14) can be written

ℎ + 𝑑 (𝛽𝑧−1) 𝑑 (𝑧) = 𝑐 (𝛽𝑧−1) 𝑐 (𝑧) (31.16)

It is useful to write (31.15) as

𝑐(𝑧) = 𝑐0(1 − 𝜆1 𝑧) … (1 − 𝜆𝑚𝑧) (31.17)

where

𝑐0 = [(−1)𝑚 𝑧0 𝑧1 ⋯ 𝑧𝑚]1/2 ; 𝜆𝑗 = 1
𝑧𝑗

, 𝑗 = 1, … , 𝑚

Since |𝑧𝑗| > √𝛽 for 𝑗 = 1, … , 𝑚 it follows that |𝜆𝑗| < 1/√𝛽 for 𝑗 = 1, … , 𝑚.
Using (31.17), we can express the factorization (31.16) as

ℎ + 𝑑(𝛽𝑧−1)𝑑(𝑧) = 𝑐2
0(1 − 𝜆1𝑧) ⋯ (1 − 𝜆𝑚𝑧)(1 − 𝜆1𝛽𝑧−1) ⋯ (1 − 𝜆𝑚𝛽𝑧−1)

In sum, we have constructed a factorization (31.16) of the characteristic polynomial for the Euler equation in which the
zeros of 𝑐(𝑧) exceed 𝛽1/2 in modulus, and the zeros of 𝑐 (𝛽𝑧−1) are less than 𝛽1/2 in modulus.
Using (31.16), we now write the Euler equation as

𝑐(𝛽𝐿−1) 𝑐 (𝐿) 𝑦𝑡 = 𝑎𝑡

The unique solution of the Euler equation that satisfies condition (31.12) is

𝑐(𝐿) 𝑦𝑡 = 𝑐 (𝛽𝐿−1)−1𝑎𝑡 (31.18)

This can be established by using an argument paralleling that in chapter IX of [Sar87].

542 Chapter 31. Classical Control with Linear Algebra

Advanced Quantitative Economics with Python

To exhibit the solution in a form paralleling that of [Sar87], we use (31.17) to write (31.18) as

(1 − 𝜆1𝐿) ⋯ (1 − 𝜆𝑚𝐿)𝑦𝑡 = 𝑐−2
0 𝑎𝑡

(1 − 𝛽𝜆1𝐿−1) ⋯ (1 − 𝛽𝜆𝑚𝐿−1) (31.19)

Using partial fractions, we can write the characteristic polynomial on the right side of (31.19) as
𝑚

∑
𝑗=1

𝐴𝑗
1 − 𝜆𝑗 𝛽𝐿−1 where 𝐴𝑗 ∶= 𝑐−2

0
∏𝑖≠𝑗(1 − 𝜆𝑖

𝜆𝑗
)

Then (31.19) can be written

(1 − 𝜆1𝐿) ⋯ (1 − 𝜆𝑚𝐿)𝑦𝑡 =
𝑚

∑
𝑗=1

𝐴𝑗
1 − 𝜆𝑗 𝛽𝐿−1 𝑎𝑡

or

(1 − 𝜆1𝐿) ⋯ (1 − 𝜆𝑚𝐿)𝑦𝑡 =
𝑚

∑
𝑗=1

𝐴𝑗
∞

∑
𝑘=0

(𝜆𝑗𝛽)𝑘 𝑎𝑡+𝑘 (31.20)

Equation (31.20) expresses the optimum sequence for 𝑦𝑡 in terms of 𝑚 lagged 𝑦’s, and 𝑚 weighted infinite geometric
sums of future 𝑎𝑡’s.
Furthermore, (31.20) is the unique solution of the Euler equation that satisfies the initial conditions and condition (31.12).
In effect, condition (31.12) compels us to solve the “unstable” roots of ℎ + 𝑑(𝛽𝑧−1)𝑑(𝑧) forward (see [Sar87]).
The step of factoring the polynomial ℎ + 𝑑(𝛽𝑧−1) 𝑑(𝑧) into 𝑐 (𝛽𝑧−1)𝑐 (𝑧), where the zeros of 𝑐 (𝑧) all have modulus
exceeding

√𝛽, is central to solving the problem.
We note two features of the solution (31.20)

• Since |𝜆𝑗| < 1/√𝛽 for all 𝑗, it follows that (𝜆𝑗 𝛽) < √𝛽.
• The assumption that {𝑎𝑡} is of exponential order less than 1/√𝛽 is sufficient to guarantee that the geometric sums
of future 𝑎𝑡’s on the right side of (31.20) converge.

We immediately see that those sums will converge under the weaker condition that {𝑎𝑡} is of exponential order less than
𝜙−1 where 𝜙 = max {𝛽𝜆𝑖, 𝑖 = 1, … , 𝑚}.
Note that with 𝑎𝑡 identically zero, (31.20) implies that in general |𝑦𝑡| eventually grows exponentially at a rate given by
max𝑖 |𝜆𝑖|.
The condition max𝑖 |𝜆𝑖| < 1/√𝛽 guarantees that condition (31.12) is satisfied.
In fact, max𝑖 |𝜆𝑖| < 1/√𝛽 is a necessary condition for (31.12) to hold.
Were (31.12) not satisfied, the objective function would diverge to −∞, implying that the 𝑦𝑡 path could not be optimal.
For example, with 𝑎𝑡 = 0, for all 𝑡, it is easy to describe a naive (nonoptimal) policy for {𝑦𝑡, 𝑡 ≥ 0} that gives a finite
value of (31.17).
We can simply let 𝑦𝑡 = 0 for 𝑡 ≥ 0.
This policy involves at most 𝑚 nonzero values of ℎ𝑦2

𝑡 and [𝑑(𝐿)𝑦𝑡]2, and so yields a finite value of (31.1).
Therefore it is easy to dominate a path that violates (31.12).

31.4. Infinite Horizon Limit 543

https://en.wikipedia.org/wiki/Partial_fraction_decomposition

Advanced Quantitative Economics with Python

31.5 Undiscounted Problems

It is worthwhile focusing on a special case of the LQ problems above: the undiscounted problem that emerges when
𝛽 = 1.
In this case, the Euler equation is

(ℎ + 𝑑(𝐿−1)𝑑(𝐿)) 𝑦𝑡 = 𝑎𝑡

The factorization of the characteristic polynomial (31.16) becomes

(ℎ + 𝑑 (𝑧−1)𝑑(𝑧)) = 𝑐 (𝑧−1) 𝑐 (𝑧)

where

𝑐 (𝑧) = 𝑐0(1 − 𝜆1𝑧) … (1 − 𝜆𝑚𝑧)
𝑐0 = [(−1)𝑚𝑧0𝑧1 … 𝑧𝑚]

|𝜆𝑗| < 1 for 𝑗 = 1, … , 𝑚

𝜆𝑗 = 1
𝑧𝑗

for 𝑗 = 1, … , 𝑚

𝑧0 = constant

The solution of the problem becomes

(1 − 𝜆1𝐿) ⋯ (1 − 𝜆𝑚𝐿)𝑦𝑡 =
𝑚

∑
𝑗=1

𝐴𝑗
∞

∑
𝑘=0

𝜆𝑘
𝑗 𝑎𝑡+𝑘

31.5.1 Transforming Discounted to Undiscounted Problem

Discounted problems can always be converted into undiscounted problems via a simple transformation.
Consider problem (31.1) with 0 < 𝛽 < 1.
Define the transformed variables

̃𝑎𝑡 = 𝛽𝑡/2𝑎𝑡, ̃𝑦𝑡 = 𝛽𝑡/2𝑦𝑡 (31.21)

Then notice that 𝛽𝑡 [𝑑 (𝐿)𝑦𝑡]2 = [̃𝑑 (𝐿) ̃𝑦𝑡]2 with ̃𝑑 (𝐿) = ∑𝑚
𝑗=0

̃𝑑𝑗 𝐿𝑗 and ̃𝑑𝑗 = 𝛽𝑗/2𝑑𝑗.

Then the original criterion function (31.1) is equivalent to

lim
𝑁→∞

𝑁
∑
𝑡=0

{ ̃𝑎𝑡 ̃𝑦𝑡 − 1
2ℎ ̃𝑦2

𝑡 − 1
2[̃𝑑 (𝐿) ̃𝑦𝑡]2} (31.22)

which is to be maximized over sequences { ̃𝑦𝑡, 𝑡 = 0, …} subject to ̃𝑦−1, ⋯ , ̃𝑦−𝑚 given and { ̃𝑎𝑡, 𝑡 = 1, …} a known
bounded sequence.

The Euler equation for this problem is [ℎ + ̃𝑑 (𝐿−1) ̃𝑑 (𝐿)] ̃𝑦𝑡 = ̃𝑎𝑡.
The solution is

(1 − �̃�1𝐿) ⋯ (1 − �̃�𝑚𝐿) ̃𝑦𝑡 =
𝑚

∑
𝑗=1

̃𝐴𝑗
∞

∑
𝑘=0

�̃�𝑘
𝑗 ̃𝑎𝑡+𝑘

544 Chapter 31. Classical Control with Linear Algebra

Advanced Quantitative Economics with Python

or

̃𝑦𝑡 = ̃𝑓1 ̃𝑦𝑡−1 + ⋯ + ̃𝑓𝑚 ̃𝑦𝑡−𝑚 +
𝑚

∑
𝑗=1

̃𝐴𝑗
∞

∑
𝑘=0

�̃�𝑘
𝑗 ̃𝑎𝑡+𝑘, (31.23)

where ̃𝑐 (𝑧−1) ̃𝑐 (𝑧) = ℎ + ̃𝑑 (𝑧−1) ̃𝑑 (𝑧), and where

[(−1)𝑚 ̃𝑧0 ̃𝑧1 … ̃𝑧𝑚]1/2(1 − �̃�1 𝑧) … (1 − �̃�𝑚 𝑧) = ̃𝑐 (𝑧), where |�̃�𝑗| < 1

We leave it to the reader to show that (31.23) implies the equivalent form of the solution

𝑦𝑡 = 𝑓1 𝑦𝑡−1 + ⋯ + 𝑓𝑚 𝑦𝑡−𝑚 +
𝑚

∑
𝑗=1

𝐴𝑗
∞

∑
𝑘=0

(𝜆𝑗 𝛽)𝑘 𝑎𝑡+𝑘

where

𝑓𝑗 = ̃𝑓𝑗 𝛽−𝑗/2, 𝐴𝑗 = ̃𝐴𝑗, 𝜆𝑗 = �̃�𝑗 𝛽−1/2 (31.24)

The transformations (31.21) and the inverse formulas (31.24) allow us to solve a discounted problem by first solving a
related undiscounted problem.

31.6 Implementation

Here’s the code that computes solutions to the LQ problem using the methods described above.

import numpy as np
import scipy.stats as spst
import scipy.linalg as la

class LQFilter:

def __init__(self, d, h, y_m, r=None, h_eps=None, β=None):
"""

Parameters

d : list or numpy.array (1-D or a 2-D column vector)
The order of the coefficients: [d_0, d_1, ..., d_m]

h : scalar
Parameter of the objective function (corresponding to the
quadratic term)

y_m : list or numpy.array (1-D or a 2-D column vector)
Initial conditions for y

r : list or numpy.array (1-D or a 2-D column vector)
The order of the coefficients: [r_0, r_1, ..., r_k]
(optional, if not defined -> deterministic problem)

β : scalar
Discount factor (optional, default value is one)

"""

self.h = h
self.d = np.asarray(d)
self.m = self.d.shape[0] - 1

(continues on next page)

31.6. Implementation 545

Advanced Quantitative Economics with Python

(continued from previous page)

self.y_m = np.asarray(y_m)

if self.m == self.y_m.shape[0]:
self.y_m = self.y_m.reshape(self.m, 1)

else:
raise ValueError("y_m must be of length m = {self.m:d}")

#---
Define the coefficients of ϕ upfront
#---
ϕ = np.zeros(2 * self.m + 1)
for i in range(- self.m, self.m + 1):

ϕ[self.m - i] = np.sum(np.diag(self.d.reshape(self.m + 1, 1) \
@ self.d.reshape(1, self.m + 1),
k=-i
)

)
ϕ[self.m] = ϕ[self.m] + self.h
self.ϕ = ϕ

#---
If r is given calculate the vector ϕ_r
#---
if r is None:

pass
else:

self.r = np.asarray(r)
self.k = self.r.shape[0] - 1
ϕ_r = np.zeros(2 * self.k + 1)
for i in range(- self.k, self.k + 1):

ϕ_r[self.k - i] = np.sum(np.diag(self.r.reshape(self.k + 1, 1) \
@ self.r.reshape(1, self.k + 1),
k=-i
)

)
if h_eps is None:

self.ϕ_r = ϕ_r
else:

ϕ_r[self.k] = ϕ_r[self.k] + h_eps
self.ϕ_r = ϕ_r

#---
If β is given, define the transformed variables
#---
if β is None:

self.β = 1
else:

self.β = β
self.d = self.β**(np.arange(self.m + 1)/2) * self.d
self.y_m = self.y_m * (self.β**(- np.arange(1, self.m + 1)/2)) \

.reshape(self.m, 1)

def construct_W_and_Wm(self, N):
"""
This constructs the matrices W and W_m for a given number of periods N
"""

(continues on next page)

546 Chapter 31. Classical Control with Linear Algebra

Advanced Quantitative Economics with Python

(continued from previous page)

m = self.m
d = self.d

W = np.zeros((N + 1, N + 1))
W_m = np.zeros((N + 1, m))

#---------------------------------------
Terminal conditions
#---------------------------------------

D_m1 = np.zeros((m + 1, m + 1))
M = np.zeros((m + 1, m))

(1) Constuct the D_{m+1} matrix using the formula

for j in range(m + 1):
for k in range(j, m + 1):

D_m1[j, k] = d[:j + 1] @ d[k - j: k + 1]

Make the matrix symmetric
D_m1 = D_m1 + D_m1.T - np.diag(np.diag(D_m1))

(2) Construct the M matrix using the entries of D_m1

for j in range(m):
for i in range(j + 1, m + 1):

M[i, j] = D_m1[i - j - 1, m]

#--
Euler equations for t = 0, 1, ..., N-(m+1)
#--
ϕ = self.ϕ

W[:(m + 1), :(m + 1)] = D_m1 + self.h * np.eye(m + 1)
W[:(m + 1), (m + 1):(2 * m + 1)] = M

for i, row in enumerate(np.arange(m + 1, N + 1 - m)):
W[row, (i + 1):(2 * m + 2 + i)] = ϕ

for i in range(1, m + 1):
W[N - m + i, -(2 * m + 1 - i):] = ϕ[:-i]

for i in range(m):
W_m[N - i, :(m - i)] = ϕ[(m + 1 + i):]

return W, W_m

def roots_of_characteristic(self):
"""
This function calculates z_0 and the 2m roots of the characteristic
equation associated with the Euler equation (1.7)

Note:

numpy.poly1d(roots, True) defines a polynomial using its roots that can

(continues on next page)

31.6. Implementation 547

Advanced Quantitative Economics with Python

(continued from previous page)

be evaluated at any point. If x_1, x_2, ... , x_m are the roots then
p(x) = (x - x_1)(x - x_2)...(x - x_m)

"""
m = self.m
ϕ = self.ϕ

Calculate the roots of the 2m-polynomial
roots = np.roots(ϕ)
Sort the roots according to their length (in descending order)
roots_sorted = roots[np.argsort(abs(roots))[::-1]]

z_0 = ϕ.sum() / np.poly1d(roots, True)(1)
z_1_to_m = roots_sorted[:m] # We need only those outside the unit circle

λ = 1 / z_1_to_m

return z_1_to_m, z_0, λ

def coeffs_of_c(self):
'''
This function computes the coefficients {c_j, j = 0, 1, ..., m} for

c(z) = sum_{j = 0}^{m} c_j z^j

Based on the expression (1.9). The order is
c_coeffs = [c_0, c_1, ..., c_{m-1}, c_m]

'''
z_1_to_m, z_0 = self.roots_of_characteristic()[:2]

c_0 = (z_0 * np.prod(z_1_to_m).real * (- 1)**self.m)**(.5)
c_coeffs = np.poly1d(z_1_to_m, True).c * z_0 / c_0

return c_coeffs[::-1]

def solution(self):
"""
This function calculates {λ_j, j=1,...,m} and {A_j, j=1,...,m}
of the expression (1.15)
"""
λ = self.roots_of_characteristic()[2]
c_0 = self.coeffs_of_c()[-1]

A = np.zeros(self.m, dtype=complex)
for j in range(self.m):

denom = 1 - λ/λ[j]
A[j] = c_0**(-2) / np.prod(denom[np.arange(self.m) != j])

return λ, A

def construct_V(self, N):
'''
This function constructs the covariance matrix for x^N (see section 6)
for a given period N
'''
V = np.zeros((N, N))
ϕ_r = self.ϕ_r

(continues on next page)

548 Chapter 31. Classical Control with Linear Algebra

Advanced Quantitative Economics with Python

(continued from previous page)

for i in range(N):
for j in range(N):

if abs(i-j) <= self.k:
V[i, j] = ϕ_r[self.k + abs(i-j)]

return V

def simulate_a(self, N):
"""
Assuming that the u's are normal, this method draws a random path
for x^N
"""
V = self.construct_V(N + 1)
d = spst.multivariate_normal(np.zeros(N + 1), V)

return d.rvs()

def predict(self, a_hist, t):
"""
This function implements the prediction formula discussed in section 6 (1.59)
It takes a realization for a^N, and the period in which the prediction is
formed

Output: E[abar | a_t, a_{t-1}, ..., a_1, a_0]
"""

N = np.asarray(a_hist).shape[0] - 1
a_hist = np.asarray(a_hist).reshape(N + 1, 1)
V = self.construct_V(N + 1)

aux_matrix = np.zeros((N + 1, N + 1))
aux_matrix[:(t + 1), :(t + 1)] = np.eye(t + 1)
L = la.cholesky(V).T
Ea_hist = la.inv(L) @ aux_matrix @ L @ a_hist

return Ea_hist

def optimal_y(self, a_hist, t=None):
"""
- if t is NOT given it takes a_hist (list or numpy.array) as a
deterministic a_t

- if t is given, it solves the combined control prediction problem
(section 7)(by default, t == None -> deterministic)

for a given sequence of a_t (either deterministic or a particular
realization), it calculates the optimal y_t sequence using the method
of the lecture

Note:

scipy.linalg.lu normalizes L, U so that L has unit diagonal elements
To make things consistent with the lecture, we need an auxiliary
diagonal matrix D which renormalizes L and U
"""

N = np.asarray(a_hist).shape[0] - 1

(continues on next page)

31.6. Implementation 549

Advanced Quantitative Economics with Python

(continued from previous page)

W, W_m = self.construct_W_and_Wm(N)

L, U = la.lu(W, permute_l=True)
D = np.diag(1 / np.diag(U))
U = D @ U
L = L @ np.diag(1 / np.diag(D))

J = np.fliplr(np.eye(N + 1))

if t is None: # If the problem is deterministic

a_hist = J @ np.asarray(a_hist).reshape(N + 1, 1)

#--
Transform the 'a' sequence if β is given
#--
if self.β != 1:

a_hist = a_hist * (self.β**(np.arange(N + 1) / 2))[::-1] \
.reshape(N + 1, 1)

a_bar = a_hist - W_m @ self.y_m # a_bar from the lecture
Uy = np.linalg.solve(L, a_bar) # U @ y_bar = L^{-1}
y_bar = np.linalg.solve(U, Uy) # y_bar = U^{-1}L^{-1}

Reverse the order of y_bar with the matrix J
J = np.fliplr(np.eye(N + self.m + 1))
y_hist : concatenated y_m and y_bar
y_hist = J @ np.vstack([y_bar, self.y_m])

#--
Transform the optimal sequence back if β is given
#--
if self.β != 1:

y_hist = y_hist * (self.β**(- np.arange(-self.m, N + 1)/2)) \
.reshape(N + 1 + self.m, 1)

return y_hist, L, U, y_bar

else: # If the problem is stochastic and we look at it

Ea_hist = self.predict(a_hist, t).reshape(N + 1, 1)
Ea_hist = J @ Ea_hist

a_bar = Ea_hist - W_m @ self.y_m # a_bar from the lecture
Uy = np.linalg.solve(L, a_bar) # U @ y_bar = L^{-1}
y_bar = np.linalg.solve(U, Uy) # y_bar = U^{-1}L^{-1}

Reverse the order of y_bar with the matrix J
J = np.fliplr(np.eye(N + self.m + 1))
y_hist : concatenated y_m and y_bar
y_hist = J @ np.vstack([y_bar, self.y_m])

return y_hist, L, U, y_bar

550 Chapter 31. Classical Control with Linear Algebra

Advanced Quantitative Economics with Python

31.6.1 Example

In this application, we’ll have one lag, with

𝑑(𝐿)𝑦𝑡 = 𝛾(𝐼 − 𝐿)𝑦𝑡 = 𝛾(𝑦𝑡 − 𝑦𝑡−1)

Suppose for the moment that 𝛾 = 0.
Then the intertemporal component of the LQ problem disappears, and the agent simply wants to maximize 𝑎𝑡𝑦𝑡 − ℎ𝑦2

𝑡 /2
in each period.
This means that the agent chooses 𝑦𝑡 = 𝑎𝑡/ℎ.
In the following we’ll set ℎ = 1, so that the agent just wants to track the {𝑎𝑡} process.
However, as we increase 𝛾, the agent gives greater weight to a smooth time path.
Hence {𝑦𝑡} evolves as a smoothed version of {𝑎𝑡}.
The {𝑎𝑡} sequence we’ll choose as a stationary cyclic process plus some white noise.
Here’s some code that generates a plot when 𝛾 = 0.8

Set seed and generate a_t sequence
np.random.seed(123)
n = 100
a_seq = np.sin(np.linspace(0, 5 * np.pi, n)) + 2 + 0.1 * np.random.randn(n)

def plot_simulation(γ=0.8, m=1, h=1, y_m=2):

d = γ * np.asarray([1, -1])
y_m = np.asarray(y_m).reshape(m, 1)

testlq = LQFilter(d, h, y_m)
y_hist, L, U, y = testlq.optimal_y(a_seq)
y = y[::-1] # Reverse y

Plot simulation results

fig, ax = plt.subplots(figsize=(10, 6))
p_args = {'lw' : 2, 'alpha' : 0.6}
time = range(len(y))
ax.plot(time, a_seq / h, 'k-o', ms=4, lw=2, alpha=0.6, label='a_t')
ax.plot(time, y, 'b-o', ms=4, lw=2, alpha=0.6, label='y_t')
ax.set(title=rf'Dynamics with $\gamma = {γ}$',

xlabel='Time',
xlim=(0, max(time))
)

ax.legend()
ax.grid()
plt.show()

plot_simulation()

31.6. Implementation 551

Advanced Quantitative Economics with Python

Here’s what happens when we change 𝛾 to 5.0

plot_simulation(γ=5)

552 Chapter 31. Classical Control with Linear Algebra

Advanced Quantitative Economics with Python

And here’s 𝛾 = 10

plot_simulation(γ=10)

31.6. Implementation 553

Advanced Quantitative Economics with Python

31.7 Exercises

Exercise 31.7.1
Consider solving a discounted version (𝛽 < 1) of problem (31.1), as follows.
Convert (31.1) to the undiscounted problem (31.22).
Let the solution of (31.22) in feedback form be

(1 − �̃�1𝐿) ⋯ (1 − �̃�𝑚𝐿) ̃𝑦𝑡 =
𝑚

∑
𝑗=1

̃𝐴𝑗
∞

∑
𝑘=0

�̃�𝑘
𝑗 ̃𝑎𝑡+𝑘

or

̃𝑦𝑡 = ̃𝑓1 ̃𝑦𝑡−1 + ⋯ + ̃𝑓𝑚 ̃𝑦𝑡−𝑚 +
𝑚

∑
𝑗=1

̃𝐴𝑗
∞

∑
𝑘=0

�̃�𝑘
𝑗 ̃𝑎𝑡+𝑘 (31.25)

Here
• ℎ + ̃𝑑(𝑧−1) ̃𝑑(𝑧) = ̃𝑐(𝑧−1) ̃𝑐(𝑧)
• ̃𝑐(𝑧) = [(−1)𝑚 ̃𝑧0 ̃𝑧1 ⋯ ̃𝑧𝑚]1/2(1 − �̃�1𝑧) ⋯ (1 − �̃�𝑚𝑧)

where the ̃𝑧𝑗 are the zeros of ℎ + ̃𝑑(𝑧−1) ̃𝑑(𝑧).
Prove that (31.25) implies that the solution for 𝑦𝑡 in feedback form is

𝑦𝑡 = 𝑓1𝑦𝑡−1 + … + 𝑓𝑚𝑦𝑡−𝑚 +
𝑚

∑
𝑗=1

𝐴𝑗
∞

∑
𝑘=0

𝛽𝑘𝜆𝑘
𝑗 𝑎𝑡+𝑘

554 Chapter 31. Classical Control with Linear Algebra

Advanced Quantitative Economics with Python

where 𝑓𝑗 = ̃𝑓𝑗𝛽−𝑗/2, 𝐴𝑗 = ̃𝐴𝑗, and 𝜆𝑗 = �̃�𝑗𝛽−1/2.

Exercise 31.7.2
Solve the optimal control problem, maximize

2
∑
𝑡=0

{𝑎𝑡𝑦𝑡 − 1
2[(1 − 2𝐿)𝑦𝑡]2}

subject to 𝑦−1 given, and {𝑎𝑡} a known bounded sequence.
Express the solution in the “feedback form” (31.20), giving numerical values for the coefficients.
Make sure that the boundary conditions (31.5) are satisfied.

Note: This problem differs from the problem in the text in one important way: instead of ℎ > 0 in (31.1), ℎ = 0. This
has an important influence on the solution.

Exercise 31.7.3
Solve the infinite time-optimal control problem to maximize

lim
𝑁→∞

𝑁
∑
𝑡=0

− 1
2[(1 − 2𝐿)𝑦𝑡]2,

subject to 𝑦−1 given. Prove that the solution is

𝑦𝑡 = 2𝑦𝑡−1 = 2𝑡+1𝑦−1 𝑡 > 0

Exercise 31.7.4
Solve the infinite time problem, to maximize

lim
𝑁→∞

𝑁
∑
𝑡=0

(.0000001) 𝑦2
𝑡 − 1

2[(1 − 2𝐿)𝑦𝑡]2

subject to 𝑦−1 given. Prove that the solution 𝑦𝑡 = 2𝑦𝑡−1 violates condition (31.12), and so is not optimal.
Prove that the optimal solution is approximately 𝑦𝑡 = .5𝑦𝑡−1.

31.7. Exercises 555

Advanced Quantitative Economics with Python

556 Chapter 31. Classical Control with Linear Algebra

CHAPTER

THIRTYTWO

CLASSICAL PREDICTION AND FILTERING WITH LINEAR ALGEBRA

Contents

• Classical Prediction and Filtering With Linear Algebra

– Overview

– Finite Dimensional Prediction

– Combined Finite Dimensional Control and Prediction

– Infinite Horizon Prediction and Filtering Problems

– Exercises

32.1 Overview

This is a sequel to the earlier lecture Classical Control with Linear Algebra.
That lecture used linear algebra – in particular, the LU decomposition – to formulate and solve a class of linear-quadratic
optimal control problems.
In this lecture, we’ll be using a closely related decomposition, the Cholesky decomposition, to solve linear prediction and
filtering problems.
We exploit the useful fact that there is an intimate connection between two superficially different classes of problems:

• deterministic linear-quadratic (LQ) optimal control problems
• linear least squares prediction and filtering problems

The first class of problems involves no randomness, while the second is all about randomness.
Nevertheless, essentially the same mathematics solves both types of problem.
This connection, which is often termed “duality,” is present whether one uses “classical” or “recursive” solution procedures.
In fact, we saw duality at work earlier when we formulated control and prediction problems recursively in lectures LQ
dynamic programming problems, A first look at the Kalman filter, and The permanent income model.
A useful consequence of duality is that

• With every LQ control problem, there is implicitly affiliated a linear least squares prediction or filtering problem.
• With every linear least squares prediction or filtering problem there is implicitly affiliated a LQ control problem.

557

https://en.wikipedia.org/wiki/LU_decomposition
https://en.wikipedia.org/wiki/Cholesky_decomposition
https://python-intro.quantecon.org/lqcontrol.html
https://python-intro.quantecon.org/lqcontrol.html
https://python-intro.quantecon.org/kalman.html
https://python-intro.quantecon.org/perm_income.html

Advanced Quantitative Economics with Python

An understanding of these connections has repeatedly proved useful in cracking interesting applied problems.
For example, Sargent [Sar87] [chs. IX, XIV] and Hansen and Sargent [HS80] formulated and solved control and filtering
problems using 𝑧-transform methods.
In this lecture, we begin to investigate these ideas by using mostly elementary linear algebra.
This is the main purpose and focus of the lecture.
However, after showing matrix algebra formulas, we’ll summarize classic infinite-horizon formulas built on 𝑧-transform
and lag operator methods.
And we’ll occasionally refer to some of these formulas from the infinite dimensional problems as we present the finite
time formulas and associated linear algebra.
We’ll start with the following standard import:

import numpy as np

32.1.1 References

Useful references include [Whi63], [HS80], [Orf88], [AP91], and [Mut60].

32.2 Finite Dimensional Prediction

Let (𝑥1, 𝑥2, … , 𝑥𝑇)′ = 𝑥 be a 𝑇 × 1 vector of random variables with mean 𝔼𝑥 = 0 and covariance matrix 𝔼𝑥𝑥′ = 𝑉 .
Here 𝑉 is a 𝑇 × 𝑇 positive definite matrix.
The 𝑖, 𝑗 component 𝐸𝑥𝑖𝑥𝑗 of 𝑉 is the inner product between 𝑥𝑖 and 𝑥𝑗.
We regard the random variables as being ordered in time so that 𝑥𝑡 is thought of as the value of some economic variable
at time 𝑡.
For example, 𝑥𝑡 could be generated by the random process described by the Wold representation presented in equation
(32.16) in the section below on infinite dimensional prediction and filtering.
In that case, 𝑉𝑖𝑗 is given by the coefficient on 𝑧∣𝑖−𝑗∣ in the expansion of 𝑔𝑥(𝑧) = 𝑑(𝑧) 𝑑(𝑧−1) + ℎ, which equals ℎ +
∑∞

𝑘=0 𝑑𝑘𝑑𝑘+∣𝑖−𝑗∣.
We want to construct 𝑗 step ahead linear least squares predictors of the form

�̂� [𝑥𝑇 |𝑥𝑇 −𝑗, 𝑥𝑇 −𝑗+1, … , 𝑥1]

where �̂� is the linear least squares projection operator.
(Sometimes �̂� is called the wide-sense expectations operator)
To find linear least squares predictors it is helpful first to construct a 𝑇 × 1 vector 𝜀 of random variables that form an
orthonormal basis for the vector of random variables 𝑥.
The key insight here comes from noting that because the covariance matrix 𝑉 of 𝑥 is a positive definite and symmetric,
there exists a (Cholesky) decomposition of 𝑉 such that

𝑉 = 𝐿−1(𝐿−1)′

and

𝐿 𝑉 𝐿′ = 𝐼

558 Chapter 32. Classical Prediction and Filtering With Linear Algebra

Advanced Quantitative Economics with Python

where 𝐿 and 𝐿−1 are both lower triangular.
Form the 𝑇 × 1 random vector 𝜀 = 𝐿𝑥.
The random vector 𝜀 is an orthonormal basis for 𝑥 because

• 𝐿 is nonsingular
• 𝔼 𝜀 𝜀′ = 𝐿𝔼𝑥𝑥′𝐿′ = 𝐼
• 𝑥 = 𝐿−1𝜀

It is enlightening to write out and interpret the equations 𝐿𝑥 = 𝜀 and 𝐿−1𝜀 = 𝑥.
First, we’ll write 𝐿𝑥 = 𝜀

𝐿11𝑥1 = 𝜀1
𝐿21𝑥1 + 𝐿22𝑥2 = 𝜀2

⋮
𝐿𝑇 1 𝑥1 … + 𝐿𝑇 𝑇 𝑥𝑇 = 𝜀𝑇

(32.1)

or
𝑡−1
∑
𝑗=0

𝐿𝑡,𝑡−𝑗 𝑥𝑡−𝑗 = 𝜀𝑡, 𝑡 = 1, 2, … 𝑇 (32.2)

Next, we write 𝐿−1𝜀 = 𝑥

𝑥1 = 𝐿−1
11 𝜀1

𝑥2 = 𝐿−1
22 𝜀2 + 𝐿−1

21 𝜀1
⋮

𝑥𝑇 = 𝐿−1
𝑇 𝑇 𝜀𝑇 + 𝐿−1

𝑇 ,𝑇 −1𝜀𝑇 −1 … + 𝐿−1
𝑇 ,1𝜀1

, (32.3)

or

𝑥𝑡 =
𝑡−1
∑
𝑗=0

𝐿−1
𝑡,𝑡−𝑗 𝜀𝑡−𝑗 (32.4)

where 𝐿−1
𝑖,𝑗 denotes the 𝑖, 𝑗 element of 𝐿−1.

From (32.2), it follows that 𝜀𝑡 is in the linear subspace spanned by 𝑥𝑡, 𝑥𝑡−1, … , 𝑥1.
From (32.4) it follows that that 𝑥𝑡 is in the linear subspace spanned by 𝜀𝑡, 𝜀𝑡−1, … , 𝜀1.
Equation (32.2) forms a sequence of autoregressions that for 𝑡 = 1, … , 𝑇 express 𝑥𝑡 as linear functions of 𝑥𝑠, 𝑠 =
1, … , 𝑡 − 1 and a random variable (𝐿𝑡,𝑡)−1𝜀𝑡 that is orthogonal to each componenent of 𝑥𝑠, 𝑠 = 1, … , 𝑡 − 1.
(Here (𝐿𝑡,𝑡)−1 denotes the reciprocal of 𝐿𝑡,𝑡 while 𝐿−1

𝑡,𝑡 denotes the 𝑡, 𝑡 element of 𝐿−1).
The equivalence of the subspaces spanned by 𝜀𝑡, … , 𝜀1 and 𝑥𝑡, … , 𝑥1 means that for 𝑡 − 1 ≥ 𝑚 ≥ 1

�̂�[𝑥𝑡 ∣ 𝑥𝑡−𝑚, 𝑥𝑡−𝑚−1, … , 𝑥1] = �̂�[𝑥𝑡 ∣ 𝜀𝑡−𝑚, 𝜀𝑡−𝑚−1, … , 𝜀1] (32.5)

To proceed, it is useful to drill down and note that for 𝑡 − 1 ≥ 𝑚 ≥ 1 we can rewrite (32.4) in the form of the moving
average representation

𝑥𝑡 =
𝑚−1
∑
𝑗=0

𝐿−1
𝑡,𝑡−𝑗 𝜀𝑡−𝑗 +

𝑡−1
∑
𝑗=𝑚

𝐿−1
𝑡,𝑡−𝑗 𝜀𝑡−𝑗 (32.6)

32.2. Finite Dimensional Prediction 559

Advanced Quantitative Economics with Python

Representation (32.6) is an orthogonal decomposition of 𝑥𝑡 into a part ∑𝑡−1
𝑗=𝑚 𝐿−1

𝑡,𝑡−𝑗 𝜀𝑡−𝑗 that lies in the space spanned
by [𝑥𝑡−𝑚, 𝑥𝑡−𝑚+1, … , 𝑥1] and an orthogonal component ∑𝑡−1

𝑗=𝑚 𝐿−1
𝑡,𝑡−𝑗 𝜀𝑡−𝑗 that does not lie in that space but instead in

a linear space knowns as its orthogonal complement.
It follows that

�̂�[𝑥𝑡 ∣ 𝑥𝑡−𝑚, 𝑥𝑡−𝑚−1, … , 𝑥1] =
𝑚−1
∑
𝑗=0

𝐿−1
𝑡,𝑡−𝑗 𝜀𝑡−𝑗

32.2.1 Implementation

Here’s the code that computes solutions to LQ control and filtering problems using the methods described here and in
Classical Control with Linear Algebra.

import numpy as np
import scipy.stats as spst
import scipy.linalg as la

class LQFilter:

def __init__(self, d, h, y_m, r=None, h_eps=None, β=None):
"""

Parameters

d : list or numpy.array (1-D or a 2-D column vector)
The order of the coefficients: [d_0, d_1, ..., d_m]

h : scalar
Parameter of the objective function (corresponding to the
quadratic term)

y_m : list or numpy.array (1-D or a 2-D column vector)
Initial conditions for y

r : list or numpy.array (1-D or a 2-D column vector)
The order of the coefficients: [r_0, r_1, ..., r_k]
(optional, if not defined -> deterministic problem)

β : scalar
Discount factor (optional, default value is one)

"""

self.h = h
self.d = np.asarray(d)
self.m = self.d.shape[0] - 1

self.y_m = np.asarray(y_m)

if self.m == self.y_m.shape[0]:
self.y_m = self.y_m.reshape(self.m, 1)

else:
raise ValueError("y_m must be of length m = {self.m:d}")

#---
Define the coefficients of ϕ upfront
#---
ϕ = np.zeros(2 * self.m + 1)
for i in range(- self.m, self.m + 1):

(continues on next page)

560 Chapter 32. Classical Prediction and Filtering With Linear Algebra

Advanced Quantitative Economics with Python

(continued from previous page)

ϕ[self.m - i] = np.sum(np.diag(self.d.reshape(self.m + 1, 1) \
@ self.d.reshape(1, self.m + 1),
k=-i
)

)
ϕ[self.m] = ϕ[self.m] + self.h
self.ϕ = ϕ

#---
If r is given calculate the vector ϕ_r
#---
if r is None:

pass
else:

self.r = np.asarray(r)
self.k = self.r.shape[0] - 1
ϕ_r = np.zeros(2 * self.k + 1)
for i in range(- self.k, self.k + 1):

ϕ_r[self.k - i] = np.sum(np.diag(self.r.reshape(self.k + 1, 1) \
@ self.r.reshape(1, self.k + 1),
k=-i
)

)
if h_eps is None:

self.ϕ_r = ϕ_r
else:

ϕ_r[self.k] = ϕ_r[self.k] + h_eps
self.ϕ_r = ϕ_r

#---
If β is given, define the transformed variables
#---
if β is None:

self.β = 1
else:

self.β = β
self.d = self.β**(np.arange(self.m + 1)/2) * self.d
self.y_m = self.y_m * (self.β**(- np.arange(1, self.m + 1)/2)) \

.reshape(self.m, 1)

def construct_W_and_Wm(self, N):
"""
This constructs the matrices W and W_m for a given number of periods N
"""

m = self.m
d = self.d

W = np.zeros((N + 1, N + 1))
W_m = np.zeros((N + 1, m))

#---------------------------------------
Terminal conditions
#---------------------------------------

D_m1 = np.zeros((m + 1, m + 1))

(continues on next page)

32.2. Finite Dimensional Prediction 561

Advanced Quantitative Economics with Python

(continued from previous page)

M = np.zeros((m + 1, m))

(1) Constuct the D_{m+1} matrix using the formula

for j in range(m + 1):
for k in range(j, m + 1):

D_m1[j, k] = d[:j + 1] @ d[k - j: k + 1]

Make the matrix symmetric
D_m1 = D_m1 + D_m1.T - np.diag(np.diag(D_m1))

(2) Construct the M matrix using the entries of D_m1

for j in range(m):
for i in range(j + 1, m + 1):

M[i, j] = D_m1[i - j - 1, m]

#--
Euler equations for t = 0, 1, ..., N-(m+1)
#--
ϕ = self.ϕ

W[:(m + 1), :(m + 1)] = D_m1 + self.h * np.eye(m + 1)
W[:(m + 1), (m + 1):(2 * m + 1)] = M

for i, row in enumerate(np.arange(m + 1, N + 1 - m)):
W[row, (i + 1):(2 * m + 2 + i)] = ϕ

for i in range(1, m + 1):
W[N - m + i, -(2 * m + 1 - i):] = ϕ[:-i]

for i in range(m):
W_m[N - i, :(m - i)] = ϕ[(m + 1 + i):]

return W, W_m

def roots_of_characteristic(self):
"""
This function calculates z_0 and the 2m roots of the characteristic
equation associated with the Euler equation (1.7)

Note:

numpy.poly1d(roots, True) defines a polynomial using its roots that can
be evaluated at any point. If x_1, x_2, ... , x_m are the roots then

p(x) = (x - x_1)(x - x_2)...(x - x_m)
"""
m = self.m
ϕ = self.ϕ

Calculate the roots of the 2m-polynomial
roots = np.roots(ϕ)
Sort the roots according to their length (in descending order)
roots_sorted = roots[np.argsort(abs(roots))[::-1]]

z_0 = ϕ.sum() / np.poly1d(roots, True)(1)

(continues on next page)

562 Chapter 32. Classical Prediction and Filtering With Linear Algebra

Advanced Quantitative Economics with Python

(continued from previous page)

z_1_to_m = roots_sorted[:m] # We need only those outside the unit circle

λ = 1 / z_1_to_m

return z_1_to_m, z_0, λ

def coeffs_of_c(self):
'''
This function computes the coefficients {c_j, j = 0, 1, ..., m} for

c(z) = sum_{j = 0}^{m} c_j z^j

Based on the expression (1.9). The order is
c_coeffs = [c_0, c_1, ..., c_{m-1}, c_m]

'''
z_1_to_m, z_0 = self.roots_of_characteristic()[:2]

c_0 = (z_0 * np.prod(z_1_to_m).real * (- 1)**self.m)**(.5)
c_coeffs = np.poly1d(z_1_to_m, True).c * z_0 / c_0

return c_coeffs[::-1]

def solution(self):
"""
This function calculates {λ_j, j=1,...,m} and {A_j, j=1,...,m}
of the expression (1.15)
"""
λ = self.roots_of_characteristic()[2]
c_0 = self.coeffs_of_c()[-1]

A = np.zeros(self.m, dtype=complex)
for j in range(self.m):

denom = 1 - λ/λ[j]
A[j] = c_0**(-2) / np.prod(denom[np.arange(self.m) != j])

return λ, A

def construct_V(self, N):
'''
This function constructs the covariance matrix for x^N (see section 6)
for a given period N
'''
V = np.zeros((N, N))
ϕ_r = self.ϕ_r

for i in range(N):
for j in range(N):

if abs(i-j) <= self.k:
V[i, j] = ϕ_r[self.k + abs(i-j)]

return V

def simulate_a(self, N):
"""
Assuming that the u's are normal, this method draws a random path
for x^N
"""

(continues on next page)

32.2. Finite Dimensional Prediction 563

Advanced Quantitative Economics with Python

(continued from previous page)

V = self.construct_V(N + 1)
d = spst.multivariate_normal(np.zeros(N + 1), V)

return d.rvs()

def predict(self, a_hist, t):
"""
This function implements the prediction formula discussed in section 6 (1.59)
It takes a realization for a^N, and the period in which the prediction is
formed

Output: E[abar | a_t, a_{t-1}, ..., a_1, a_0]
"""

N = np.asarray(a_hist).shape[0] - 1
a_hist = np.asarray(a_hist).reshape(N + 1, 1)
V = self.construct_V(N + 1)

aux_matrix = np.zeros((N + 1, N + 1))
aux_matrix[:(t + 1), :(t + 1)] = np.eye(t + 1)
L = la.cholesky(V).T
Ea_hist = la.inv(L) @ aux_matrix @ L @ a_hist

return Ea_hist

def optimal_y(self, a_hist, t=None):
"""
- if t is NOT given it takes a_hist (list or numpy.array) as a
deterministic a_t

- if t is given, it solves the combined control prediction problem
(section 7)(by default, t == None -> deterministic)

for a given sequence of a_t (either deterministic or a particular
realization), it calculates the optimal y_t sequence using the method
of the lecture

Note:

scipy.linalg.lu normalizes L, U so that L has unit diagonal elements
To make things consistent with the lecture, we need an auxiliary
diagonal matrix D which renormalizes L and U
"""

N = np.asarray(a_hist).shape[0] - 1
W, W_m = self.construct_W_and_Wm(N)

L, U = la.lu(W, permute_l=True)
D = np.diag(1 / np.diag(U))
U = D @ U
L = L @ np.diag(1 / np.diag(D))

J = np.fliplr(np.eye(N + 1))

if t is None: # If the problem is deterministic

a_hist = J @ np.asarray(a_hist).reshape(N + 1, 1)

(continues on next page)

564 Chapter 32. Classical Prediction and Filtering With Linear Algebra

Advanced Quantitative Economics with Python

(continued from previous page)

#--
Transform the 'a' sequence if β is given
#--
if self.β != 1:

a_hist = a_hist * (self.β**(np.arange(N + 1) / 2))[::-1] \
.reshape(N + 1, 1)

a_bar = a_hist - W_m @ self.y_m # a_bar from the lecture
Uy = np.linalg.solve(L, a_bar) # U @ y_bar = L^{-1}
y_bar = np.linalg.solve(U, Uy) # y_bar = U^{-1}L^{-1}

Reverse the order of y_bar with the matrix J
J = np.fliplr(np.eye(N + self.m + 1))
y_hist : concatenated y_m and y_bar
y_hist = J @ np.vstack([y_bar, self.y_m])

#--
Transform the optimal sequence back if β is given
#--
if self.β != 1:

y_hist = y_hist * (self.β**(- np.arange(-self.m, N + 1)/2)) \
.reshape(N + 1 + self.m, 1)

return y_hist, L, U, y_bar

else: # If the problem is stochastic and we look at it

Ea_hist = self.predict(a_hist, t).reshape(N + 1, 1)
Ea_hist = J @ Ea_hist

a_bar = Ea_hist - W_m @ self.y_m # a_bar from the lecture
Uy = np.linalg.solve(L, a_bar) # U @ y_bar = L^{-1}
y_bar = np.linalg.solve(U, Uy) # y_bar = U^{-1}L^{-1}

Reverse the order of y_bar with the matrix J
J = np.fliplr(np.eye(N + self.m + 1))
y_hist : concatenated y_m and y_bar
y_hist = J @ np.vstack([y_bar, self.y_m])

return y_hist, L, U, y_bar

Let’s use this code to tackle two interesting examples.

32.2.2 Example 1

Consider a stochastic process with moving average representation

𝑥𝑡 = (1 − 2𝐿)𝜀𝑡

where 𝜀𝑡 is a serially uncorrelated random process with mean zero and variance unity.
If we were to use the tools associated with infinite dimensional prediction and filtering to be described below, we would
use the Wiener-Kolmogorov formula (32.21) to compute the linear least squares forecasts 𝔼[𝑥𝑡+𝑗 ∣ 𝑥𝑡, 𝑥𝑡−1, …], for
𝑗 = 1, 2.

32.2. Finite Dimensional Prediction 565

Advanced Quantitative Economics with Python

But we can do everything we want by instead using our finite dimensional tools and setting 𝑑 = 𝑟, generating an instance
of LQFilter, then invoking pertinent methods of LQFilter.

m = 1
y_m = np.asarray([.0]).reshape(m, 1)
d = np.asarray([1, -2])
r = np.asarray([1, -2])
h = 0.0
example = LQFilter(d, h, y_m, r=d)

The Wold representation is computed by example.coeffs_of_c().
Let’s check that it “flips roots” as required

example.coeffs_of_c()

array([2., -1.])

example.roots_of_characteristic()

(array([2.]), -2.0, array([0.5]))

Now let’s form the covariance matrix of a time series vector of length 𝑁 and put it in 𝑉 .
Then we’ll take a Cholesky decomposition of 𝑉 = 𝐿−1𝐿−1 and use it to form the vector of “moving average represen-
tations” 𝑥 = 𝐿−1𝜀 and the vector of “autoregressive representations” 𝐿𝑥 = 𝜀.

V = example.construct_V(N=5)
print(V)

[[5. -2. 0. 0. 0.]
[-2. 5. -2. 0. 0.]
[0. -2. 5. -2. 0.]
[0. 0. -2. 5. -2.]
[0. 0. 0. -2. 5.]]

Notice how the lower rows of the “moving average representations” are converging to the appropriate infinite historyWold
representation to be described below when we study infinite horizon-prediction and filtering

Li = np.linalg.cholesky(V)
print(Li)

[[2.23606798 0. 0. 0. 0.]
[-0.89442719 2.04939015 0. 0. 0.]
[0. -0.97590007 2.01186954 0. 0.]
[0. 0. -0.99410024 2.00293902 0.]
[0. 0. 0. -0.99853265 2.000733]]

Notice how the lower rows of the “autoregressive representations” are converging to the appropriate infinite-history au-
toregressive representation to be described below when we study infinite horizon-prediction and filtering

L = np.linalg.inv(Li)
print(L)

566 Chapter 32. Classical Prediction and Filtering With Linear Algebra

Advanced Quantitative Economics with Python

[[0.4472136 0. 0. 0. 0.]
[0.19518001 0.48795004 0. 0. 0.]
[0.09467621 0.23669053 0.49705012 0. 0.]
[0.04698977 0.11747443 0.2466963 0.49926632 0.]
[0.02345182 0.05862954 0.12312203 0.24917554 0.49981682]]

32.2.3 Example 2

Consider a stochastic process 𝑋𝑡 with moving average representation

𝑋𝑡 = (1 −
√

2𝐿2)𝜀𝑡

where 𝜀𝑡 is a serially uncorrelated random process with mean zero and variance unity.
Let’s find a Wold moving average representation for 𝑥𝑡 that will prevail in the infinite-history context to be studied in
detail below.
To do this, we’ll use the Wiener-Kolomogorov formula (32.21) presented below to compute the linear least squares
forecasts �̂� [𝑋𝑡+𝑗 ∣ 𝑋𝑡−1, …] for 𝑗 = 1, 2, 3.
We proceed in the same way as in example 1

m = 2
y_m = np.asarray([.0, .0]).reshape(m, 1)
d = np.asarray([1, 0, -np.sqrt(2)])
r = np.asarray([1, 0, -np.sqrt(2)])
h = 0.0
example = LQFilter(d, h, y_m, r=d)
example.coeffs_of_c()

array([1.41421356, -0. , -1.])

example.roots_of_characteristic()

(array([1.18920712, -1.18920712]),
-1.4142135623731122,
array([0.84089642, -0.84089642]))

V = example.construct_V(N=8)
print(V)

[[3. 0. -1.41421356 0. 0. 0.
0. 0.]

[0. 3. 0. -1.41421356 0. 0.
0. 0.]

[-1.41421356 0. 3. 0. -1.41421356 0.
0. 0.]

[0. -1.41421356 0. 3. 0. -1.41421356
0. 0.]

[0. 0. -1.41421356 0. 3. 0.
-1.41421356 0.]

[0. 0. 0. -1.41421356 0. 3.

(continues on next page)

32.2. Finite Dimensional Prediction 567

Advanced Quantitative Economics with Python

(continued from previous page)

0. -1.41421356]
[0. 0. 0. 0. -1.41421356 0.
3. 0.]

[0. 0. 0. 0. 0. -1.41421356
0. 3.]]

Li = np.linalg.cholesky(V)
print(Li[-3:, :])

[[0. 0. 0. -0.9258201 0. 1.46385011
0. 0.]

[0. 0. 0. 0. -0.96609178 0.
1.43759058 0.]

[0. 0. 0. 0. 0. -0.96609178
0. 1.43759058]]

L = np.linalg.inv(Li)
print(L)

[[0.57735027 0. 0. 0. 0. 0.
0. 0.]

[0. 0.57735027 0. 0. 0. 0.
0. 0.]

[0.3086067 0. 0.65465367 0. 0. 0.
0. 0.]

[0. 0.3086067 0. 0.65465367 0. 0.
0. 0.]

[0.19518001 0. 0.41403934 0. 0.68313005 0.
0. 0.]

[0. 0.19518001 0. 0.41403934 0. 0.68313005
0. 0.]

[0.13116517 0. 0.27824334 0. 0.45907809 0.
0.69560834 0.]

[0. 0.13116517 0. 0.27824334 0. 0.45907809
0. 0.69560834]]

32.2.4 Prediction

It immediately follows from the “orthogonality principle” of least squares (see [AP91] or [Sar87] [ch. X]) that

�̂�[𝑥𝑡 ∣ 𝑥𝑡−𝑚, 𝑥𝑡−𝑚+1, … 𝑥1] =
𝑡−1
∑
𝑗=𝑚

𝐿−1
𝑡,𝑡−𝑗 𝜀𝑡−𝑗

= [𝐿−1
𝑡,1 𝐿−1

𝑡,2, … , 𝐿−1
𝑡,𝑡−𝑚 0 0 … 0]𝐿 𝑥

(32.7)

This can be interpreted as a finite-dimensional version of the Wiener-Kolmogorov 𝑚-step ahead prediction formula.
We can use (32.7) to represent the linear least squares projection of the vector 𝑥 conditioned on the first 𝑠 observations
[𝑥𝑠, 𝑥𝑠−1 … , 𝑥1].
We have

�̂�[𝑥 ∣ 𝑥𝑠, 𝑥𝑠−1, … , 𝑥1] = 𝐿−1 [𝐼𝑠 0
0 0(𝑡−𝑠)

] 𝐿𝑥 (32.8)

568 Chapter 32. Classical Prediction and Filtering With Linear Algebra

Advanced Quantitative Economics with Python

This formula will be convenient in representing the solution of control problems under uncertainty.
Equation (32.4) can be recognized as a finite dimensional version of a moving average representation.
Equation (32.2) can be viewed as a finite dimension version of an autoregressive representation.
Notice that even if the 𝑥𝑡 process is covariance stationary, so that 𝑉 is such that 𝑉𝑖𝑗 depends only on |𝑖−𝑗|, the coefficients
in the moving average representation are time-dependent, there being a different moving average for each 𝑡.
If 𝑥𝑡 is a covariance stationary process, the last row of 𝐿−1 converges to the coefficients in the Wold moving average
representation for {𝑥𝑡} as 𝑇 → ∞.
Further, if 𝑥𝑡 is covariance stationary, for fixed 𝑘 and 𝑗 > 0, 𝐿−1

𝑇 ,𝑇 −𝑗 converges to 𝐿−1
𝑇 −𝑘,𝑇 −𝑘−𝑗 as 𝑇 → ∞.

That is, the “bottom” rows of 𝐿−1 converge to each other and to the Wold moving average coefficients as 𝑇 → ∞.
This last observation gives one simple and widely-used practical way of forming a finite 𝑇 approximation to a Wold
moving average representation.
First, form the covariance matrix 𝔼𝑥𝑥′ = 𝑉 , then obtain the Cholesky decomposition 𝐿−1𝐿−1′ of 𝑉 , which can be
accomplished quickly on a computer.
The last row of 𝐿−1 gives the approximate Wold moving average coefficients.
This method can readily be generalized to multivariate systems.

32.3 Combined Finite Dimensional Control and Prediction

Consider the finite-dimensional control problem, maximize

𝔼
𝑁

∑
𝑡=0

{𝑎𝑡𝑦𝑡 − 1
2ℎ𝑦2

𝑡 − 1
2[𝑑(𝐿)𝑦𝑡]2} , ℎ > 0

where 𝑑(𝐿) = 𝑑0 + 𝑑1𝐿 + … + 𝑑𝑚𝐿𝑚, 𝐿 is the lag operator, ̄𝑎 = [𝑎𝑁 , 𝑎𝑁−1 … , 𝑎1, 𝑎0]′ a random vector with mean
zero and 𝔼 ̄𝑎 ̄𝑎′ = 𝑉 .
The variables 𝑦−1, … , 𝑦−𝑚 are given.
Maximization is over choices of 𝑦0, 𝑦1 … , 𝑦𝑁 , where 𝑦𝑡 is required to be a linear function of {𝑦𝑡−𝑠−1, 𝑡 + 𝑚 − 1 ≥
0; 𝑎𝑡−𝑠, 𝑡 ≥ 𝑠 ≥ 0}.
We saw in the lecture Classical Control with Linear Algebra that the solution of this problem under certainty could be
represented in the feedback-feedforward form

𝑈 ̄𝑦 = 𝐿−1 ̄𝑎 + 𝐾 ⎡⎢
⎣

𝑦−1
⋮

𝑦−𝑚

⎤⎥
⎦

for some (𝑁 + 1) × 𝑚 matrix 𝐾.

Using a version of formula (32.7), we can express �̂�[̄𝑎 ∣ 𝑎𝑠, 𝑎𝑠−1, … , 𝑎0] as

�̂�[̄𝑎 ∣ 𝑎𝑠, 𝑎𝑠−1, … , 𝑎0] = ̃𝑈−1 [0 0
0 𝐼(𝑠+1)

] ̃𝑈 ̄𝑎

where 𝐼(𝑠+1) is the (𝑠+1)×(𝑠+1) identity matrix, and 𝑉 = ̃𝑈−1 ̃𝑈−1′ , where ̃𝑈 is the upper triangular Cholesky factor
of the covariance matrix 𝑉 .
(We have reversed the time axis in dating the 𝑎’s relative to earlier)
The time axis can be reversed in representation (32.8) by replacing 𝐿 with 𝐿𝑇 .

32.3. Combined Finite Dimensional Control and Prediction 569

Advanced Quantitative Economics with Python

The optimal decision rule to use at time 0 ≤ 𝑡 ≤ 𝑁 is then given by the (𝑁 − 𝑡 + 1)th row of

𝑈 ̄𝑦 = 𝐿−1 ̃𝑈−1 [0 0
0 𝐼(𝑡+1)

] ̃𝑈 ̄𝑎 + 𝐾 ⎡⎢
⎣

𝑦−1
⋮

𝑦−𝑚

⎤⎥
⎦

32.4 Infinite Horizon Prediction and Filtering Problems

It is instructive to compare the finite-horizon formulas based on linear algebra decompositions of finite-dimensional co-
variance matrices with classic formulas for infinite horizon and infinite history prediction and control problems.
These classic infinite horizon formulas used the mathematics of 𝑧-transforms and lag operators.
We’ll meet interesting lag operator and 𝑧-transform counterparts to our finite horizon matrix formulas.
We pose two related prediction and filtering problems.
We let 𝑌𝑡 be a univariate 𝑚th order moving average, covariance stationary stochastic process,

𝑌𝑡 = 𝑑(𝐿)𝑢𝑡 (32.9)

where 𝑑(𝐿) = ∑𝑚
𝑗=0 𝑑𝑗𝐿𝑗, and 𝑢𝑡 is a serially uncorrelated stationary random process satisfying

𝔼𝑢𝑡 = 0

𝔼𝑢𝑡𝑢𝑠 = {1 if 𝑡 = 𝑠
0 otherwise

(32.10)

We impose no conditions on the zeros of 𝑑(𝑧).
A second covariance stationary process is 𝑋𝑡 given by

𝑋𝑡 = 𝑌𝑡 + 𝜀𝑡 (32.11)

where 𝜀𝑡 is a serially uncorrelated stationary random process with 𝔼𝜀𝑡 = 0 and 𝔼𝜀𝑡𝜀𝑠 = 0 for all distinct 𝑡 and 𝑠.
We also assume that 𝔼𝜀𝑡𝑢𝑠 = 0 for all 𝑡 and 𝑠.
The linear least squares prediction problem is to find the 𝐿2 random variable �̂�𝑡+𝑗 among linear combinations of
{𝑋𝑡, 𝑋𝑡−1, …} that minimizes 𝔼(�̂�𝑡+𝑗 − 𝑋𝑡+𝑗)2.

That is, the problem is to find a 𝛾𝑗(𝐿) = ∑∞
𝑘=0 𝛾𝑗𝑘 𝐿𝑘 such that ∑∞

𝑘=0 |𝛾𝑗𝑘|2 < ∞ and 𝔼[𝛾𝑗 (𝐿)𝑋𝑡 − 𝑋𝑡+𝑗]2 is
minimized.
The linear least squares filtering problem is to find a 𝑏 (𝐿) = ∑∞

𝑗=0 𝑏𝑗 𝐿𝑗 such that ∑∞
𝑗=0 |𝑏𝑗|2 < ∞ and 𝔼[𝑏 (𝐿)𝑋𝑡 −

𝑌𝑡]2 is minimized.
Interesting versions of these problems related to the permanent income theory were studied by [Mut60].

32.4.1 Problem Formulation

These problems are solved as follows.
The covariograms of 𝑌 and 𝑋 and their cross covariogram are, respectively,

𝐶𝑋(𝜏) = 𝔼𝑋𝑡𝑋𝑡−𝜏
𝐶𝑌 (𝜏) = 𝔼𝑌𝑡𝑌𝑡−𝜏 𝜏 = 0, ±1, ±2, …

𝐶𝑌 ,𝑋(𝜏) = 𝔼𝑌𝑡𝑋𝑡−𝜏

(32.12)

570 Chapter 32. Classical Prediction and Filtering With Linear Algebra

Advanced Quantitative Economics with Python

The covariance and cross-covariance generating functions are defined as

𝑔𝑋(𝑧) =
∞

∑
𝜏=−∞

𝐶𝑋(𝜏)𝑧𝜏

𝑔𝑌 (𝑧) =
∞

∑
𝜏=−∞

𝐶𝑌 (𝜏)𝑧𝜏

𝑔𝑌 𝑋(𝑧) =
∞

∑
𝜏=−∞

𝐶𝑌 𝑋(𝜏)𝑧𝜏

(32.13)

The generating functions can be computed by using the following facts.
Let 𝑣1𝑡 and 𝑣2𝑡 be two mutually and serially uncorrelated white noises with unit variances.
That is, 𝔼𝑣2

1𝑡 = 𝔼𝑣2
2𝑡 = 1, 𝔼𝑣1𝑡 = 𝔼𝑣2𝑡 = 0, 𝔼𝑣1𝑡𝑣2𝑠 = 0 for all 𝑡 and 𝑠, 𝔼𝑣1𝑡𝑣1𝑡−𝑗 = 𝔼𝑣2𝑡𝑣2𝑡−𝑗 = 0 for all 𝑗 ≠ 0.

Let 𝑥𝑡 and 𝑦𝑡 be two random processes given by

𝑦𝑡 = 𝐴(𝐿)𝑣1𝑡 + 𝐵(𝐿)𝑣2𝑡
𝑥𝑡 = 𝐶(𝐿)𝑣1𝑡 + 𝐷(𝐿)𝑣2𝑡

Then, as shown for example in [Sar87] [ch. XI], it is true that

𝑔𝑦(𝑧) = 𝐴(𝑧)𝐴(𝑧−1) + 𝐵(𝑧)𝐵(𝑧−1)
𝑔𝑥(𝑧) = 𝐶(𝑧)𝐶(𝑧−1) + 𝐷(𝑧)𝐷(𝑧−1)

𝑔𝑦𝑥(𝑧) = 𝐴(𝑧)𝐶(𝑧−1) + 𝐵(𝑧)𝐷(𝑧−1)
(32.14)

Applying these formulas to (32.9) – (32.12), we have

𝑔𝑌 (𝑧) = 𝑑(𝑧)𝑑(𝑧−1)
𝑔𝑋(𝑧) = 𝑑(𝑧)𝑑(𝑧−1) + ℎ

𝑔𝑌 𝑋(𝑧) = 𝑑(𝑧)𝑑(𝑧−1)
(32.15)

The key step in obtaining solutions to our problems is to factor the covariance generating function 𝑔𝑋(𝑧) of 𝑋.
The solutions of our problems are given by formulas due to Wiener and Kolmogorov.
These formulas utilize the Wold moving average representation of the 𝑋𝑡 process,

𝑋𝑡 = 𝑐 (𝐿) 𝜂𝑡 (32.16)

where 𝑐(𝐿) = ∑𝑚
𝑗=0 𝑐𝑗 𝐿𝑗, with

𝑐0𝜂𝑡 = 𝑋𝑡 − �̂�[𝑋𝑡|𝑋𝑡−1, 𝑋𝑡−2, …] (32.17)

Here �̂� is the linear least squares projection operator.
Equation (32.17) is the condition that 𝑐0𝜂𝑡 can be the one-step-ahead error in predicting 𝑋𝑡 from its own past values.
Condition (32.17) requires that 𝜂𝑡 lie in the closed linear space spanned by [𝑋𝑡, 𝑋𝑡−1, …].
This will be true if and only if the zeros of 𝑐(𝑧) do not lie inside the unit circle.
It is an implication of (32.17) that 𝜂𝑡 is a serially uncorrelated random process and that normalization can be imposed so
that 𝔼𝜂2

𝑡 = 1.
Consequently, an implication of (32.16) is that the covariance generating function of 𝑋𝑡 can be expressed as

𝑔𝑋(𝑧) = 𝑐 (𝑧) 𝑐 (𝑧−1) (32.18)

32.4. Infinite Horizon Prediction and Filtering Problems 571

Advanced Quantitative Economics with Python

It remains to discuss how 𝑐(𝐿) is to be computed.
Combining (32.14) and (32.18) gives

𝑑(𝑧) 𝑑(𝑧−1) + ℎ = 𝑐 (𝑧) 𝑐 (𝑧−1) (32.19)

Therefore, we have already shown constructively how to factor the covariance generating function 𝑔𝑋(𝑧) = 𝑑(𝑧) 𝑑 (𝑧−1)+
ℎ.
We now introduce the annihilation operator:

[
∞

∑
𝑗=−∞

𝑓𝑗 𝐿𝑗]
+

≡
∞

∑
𝑗=0

𝑓𝑗 𝐿𝑗 (32.20)

In words, []+ means “ignore negative powers of 𝐿”.
We have defined the solution of the prediction problem as �̂�[𝑋𝑡+𝑗|𝑋𝑡, 𝑋𝑡−1, …] = 𝛾𝑗 (𝐿)𝑋𝑡.
Assuming that the roots of 𝑐(𝑧) = 0 all lie outside the unit circle, the Wiener-Kolmogorov formula for 𝛾𝑗(𝐿) holds:

𝛾𝑗 (𝐿) = [𝑐(𝐿)
𝐿𝑗]

+
𝑐 (𝐿)−1 (32.21)

We have defined the solution of the filtering problem as �̂�[𝑌𝑡 ∣ 𝑋𝑡, 𝑋𝑡−1, …] = 𝑏(𝐿)𝑋𝑡.
The Wiener-Kolomogorov formula for 𝑏(𝐿) is

𝑏(𝐿) = [𝑔𝑌 𝑋(𝐿)
𝑐(𝐿−1)]

+
𝑐(𝐿)−1

or

𝑏(𝐿) = [𝑑(𝐿)𝑑(𝐿−1)
𝑐(𝐿−1)]

+
𝑐(𝐿)−1 (32.22)

Formulas (32.21) and (32.22) are discussed in detail in [Whi83] and [Sar87].
The interested reader can there find several examples of the use of these formulas in economics Some classic examples
using these formulas are due to [Mut60].
As an example of the usefulness of formula (32.22), we let 𝑋𝑡 be a stochastic process with Wold moving average repre-
sentation

𝑋𝑡 = 𝑐(𝐿)𝜂𝑡

where 𝔼𝜂2
𝑡 = 1, and 𝑐0𝜂𝑡 = 𝑋𝑡 − �̂�[𝑋𝑡|𝑋𝑡−1, …], 𝑐(𝐿) = ∑𝑚

𝑗=0 𝑐𝑗𝐿.
Suppose that at time 𝑡, we wish to predict a geometric sum of future 𝑋’s, namely

𝑦𝑡 ≡
∞

∑
𝑗=0

𝛿𝑗𝑋𝑡+𝑗 = 1
1 − 𝛿𝐿−1 𝑋𝑡

given knowledge of 𝑋𝑡, 𝑋𝑡−1, ….
We shall use (32.22) to obtain the answer.
Using the standard formulas (32.14), we have that

𝑔𝑦𝑥(𝑧) = (1 − 𝛿𝑧−1)𝑐(𝑧)𝑐(𝑧−1)
𝑔𝑥(𝑧) = 𝑐(𝑧)𝑐(𝑧−1)

572 Chapter 32. Classical Prediction and Filtering With Linear Algebra

Advanced Quantitative Economics with Python

Then (32.22) becomes

𝑏(𝐿) = [𝑐(𝐿)
1 − 𝛿𝐿−1]

+
𝑐(𝐿)−1 (32.23)

In order to evaluate the term in the annihilation operator, we use the following result from [HS80].
Proposition Let

• 𝑔(𝑧) = ∑∞
𝑗=0 𝑔𝑗 𝑧𝑗 where ∑∞

𝑗=0 |𝑔𝑗|2 < +∞.

• ℎ (𝑧−1) = (1 − 𝛿1𝑧−1) … (1 − 𝛿𝑛𝑧−1), where |𝛿𝑗| < 1, for 𝑗 = 1, … , 𝑛.
Then

[𝑔(𝑧)
ℎ(𝑧−1)]

+
= 𝑔(𝑧)

ℎ(𝑧−1) −
𝑛

∑
𝑗=1

𝛿𝑗𝑔(𝛿𝑗)
∏𝑛

𝑘=1
𝑘≠𝑗

(𝛿𝑗 − 𝛿𝑘) (1
𝑧 − 𝛿𝑗

) (32.24)

and, alternatively,

[𝑔(𝑧)
ℎ(𝑧−1)]

+
=

𝑛
∑
𝑗=1

𝐵𝑗 (𝑧𝑔(𝑧) − 𝛿𝑗𝑔(𝛿𝑗)
𝑧 − 𝛿𝑗

) (32.25)

where 𝐵𝑗 = 1/ ∏𝑛
𝑘=1
𝑘+𝑗

(1 − 𝛿𝑘/𝛿𝑗).

Applying formula (32.25) of the proposition to evaluating (32.23) with 𝑔(𝑧) = 𝑐(𝑧) and ℎ(𝑧−1) = 1 − 𝛿𝑧−1 gives

𝑏(𝐿) = [𝐿𝑐(𝐿) − 𝛿𝑐(𝛿)
𝐿 − 𝛿] 𝑐(𝐿)−1

or

𝑏(𝐿) = [1 − 𝛿𝑐(𝛿)𝐿−1𝑐(𝐿)−1

1 − 𝛿𝐿−1]

Thus, we have

�̂� [
∞

∑
𝑗=0

𝛿𝑗𝑋𝑡+𝑗|𝑋𝑡, 𝑥𝑡−1, …] = [1 − 𝛿𝑐(𝛿)𝐿−1𝑐(𝐿)−1

1 − 𝛿𝐿−1] 𝑋𝑡 (32.26)

This formula is useful in solving stochastic versions of problem 1 of lecture Classical Control with Linear Algebra in which
the randomness emerges because {𝑎𝑡} is a stochastic process.
The problem is to maximize

𝔼0 lim
𝑁→∞

𝑁
∑
𝑡−0

𝛽𝑡 [𝑎𝑡 𝑦𝑡 − 1
2 ℎ𝑦2

𝑡 − 1
2 [𝑑(𝐿)𝑦𝑡]2] (32.27)

where 𝔼𝑡 is mathematical expectation conditioned on information known at 𝑡, and where {𝑎𝑡} is a covariance stationary
stochastic process with Wold moving average representation

𝑎𝑡 = 𝑐(𝐿) 𝜂𝑡

where

𝑐(𝐿) =
�̃�

∑
𝑗=0

𝑐𝑗𝐿𝑗

32.4. Infinite Horizon Prediction and Filtering Problems 573

Advanced Quantitative Economics with Python

and

𝜂𝑡 = 𝑎𝑡 − �̂�[𝑎𝑡|𝑎𝑡−1, …]

The problem is to maximize (32.27) with respect to a contingency plan expressing 𝑦𝑡 as a function of information known
at 𝑡, which is assumed to be (𝑦𝑡−1, 𝑦𝑡−2, … , 𝑎𝑡, 𝑎𝑡−1, …).
The solution of this problem can be achieved in two steps.
First, ignoring the uncertainty, we can solve the problem assuming that {𝑎𝑡} is a known sequence.
The solution is, from above,

𝑐(𝐿)𝑦𝑡 = 𝑐(𝛽𝐿−1)−1𝑎𝑡

or

(1 − 𝜆1𝐿) … (1 − 𝜆𝑚𝐿)𝑦𝑡 =
𝑚

∑
𝑗=1

𝐴𝑗
∞

∑
𝑘=0

(𝜆𝑗𝛽)𝑘 𝑎𝑡+𝑘 (32.28)

Second, the solution of the problem under uncertainty is obtained by replacing the terms on the right-hand side of the
above expressions with their linear least squares predictors.
Using (32.26) and (32.28), we have the following solution

(1 − 𝜆1𝐿) … (1 − 𝜆𝑚𝐿)𝑦𝑡 =
𝑚

∑
𝑗=1

𝐴𝑗 [1 − 𝛽𝜆𝑗 𝑐(𝛽𝜆𝑗)𝐿−1𝑐(𝐿)−1

1 − 𝛽𝜆𝑗𝐿−1] 𝑎𝑡

Blaschke factors
The following is a useful piece of mathematics underlying “root flipping”.
Let 𝜋(𝑧) = ∑𝑚

𝑗=0 𝜋𝑗𝑧𝑗 and let 𝑧1, … , 𝑧𝑘 be the zeros of 𝜋(𝑧) that are inside the unit circle, 𝑘 < 𝑚.

Then define

𝜃(𝑧) = 𝜋(𝑧)((𝑧1𝑧 − 1)
(𝑧 − 𝑧1))((𝑧2𝑧 − 1)

(𝑧 − 𝑧2)) … ((𝑧𝑘𝑧 − 1)
(𝑧 − 𝑧𝑘))

The term multiplying 𝜋(𝑧) is termed a “Blaschke factor”.
Then it can be proved directly that

𝜃(𝑧−1)𝜃(𝑧) = 𝜋(𝑧−1)𝜋(𝑧)

and that the zeros of 𝜃(𝑧) are not inside the unit circle.

32.5 Exercises

Exercise 32.5.1
Let 𝑌𝑡 = (1 − 2𝐿)𝑢𝑡 where 𝑢𝑡 is a mean zero white noise with 𝔼𝑢2

𝑡 = 1. Let

𝑋𝑡 = 𝑌𝑡 + 𝜀𝑡

where 𝜀𝑡 is a serially uncorrelated white noise with 𝔼𝜀2
𝑡 = 9, and 𝔼𝜀𝑡𝑢𝑠 = 0 for all 𝑡 and 𝑠.

574 Chapter 32. Classical Prediction and Filtering With Linear Algebra

Advanced Quantitative Economics with Python

Find the Wold moving average representation for 𝑋𝑡.
Find a formula for the 𝐴1𝑗’s in

𝔼𝑋𝑡+1 ∣ 𝑋𝑡, 𝑋𝑡−1, … =
∞

∑
𝑗=0

𝐴1𝑗𝑋𝑡−𝑗

Find a formula for the 𝐴2𝑗’s in

�̂�𝑋𝑡+2 ∣ 𝑋𝑡, 𝑋𝑡−1, … =
∞

∑
𝑗=0

𝐴2𝑗𝑋𝑡−𝑗

Exercise 32.5.2
Multivariable Prediction: Let 𝑌𝑡 be an (𝑛 × 1) vector stochastic process with moving average representation

𝑌𝑡 = 𝐷(𝐿)𝑈𝑡

where 𝐷(𝐿) = ∑𝑚
𝑗=0 𝐷𝑗𝐿𝐽 , 𝐷𝑗 an 𝑛 × 𝑛 matrix, 𝑈𝑡 an (𝑛 × 1) vector white noise with 𝔼𝑈𝑡 = 0 for all 𝑡, 𝔼𝑈𝑡𝑈 ′

𝑠 = 0
for all 𝑠 ≠ 𝑡, and 𝔼𝑈𝑡𝑈 ′

𝑡 = 𝐼 for all 𝑡.
Let 𝜀𝑡 be an 𝑛 × 1 vector white noise with mean 0 and contemporaneous covariance matrix 𝐻 , where 𝐻 is a positive
definite matrix.
Let 𝑋𝑡 = 𝑌𝑡 + 𝜀𝑡.
Define the covariograms as 𝐶𝑋(𝜏) = 𝔼𝑋𝑡𝑋′

𝑡−𝜏 , 𝐶𝑌 (𝜏) = 𝔼𝑌𝑡𝑌 ′
𝑡−𝜏 , 𝐶𝑌 𝑋(𝜏) = 𝔼𝑌𝑡𝑋′

𝑡−𝜏 .
Then define the matrix covariance generating function, as in (31.21), only interpret all the objects in (31.21) as matrices.
Show that the covariance generating functions are given by

𝑔𝑦(𝑧) = 𝐷(𝑧)𝐷(𝑧−1)′

𝑔𝑋(𝑧) = 𝐷(𝑧)𝐷(𝑧−1)′ + 𝐻
𝑔𝑌 𝑋(𝑧) = 𝐷(𝑧)𝐷(𝑧−1)′

A factorization of 𝑔𝑋(𝑧) can be found (see [Roz67] or [Whi83]) of the form

𝐷(𝑧)𝐷(𝑧−1)′ + 𝐻 = 𝐶(𝑧)𝐶(𝑧−1)′, 𝐶(𝑧) =
𝑚

∑
𝑗=0

𝐶𝑗𝑧𝑗

where the zeros of |𝐶(𝑧)| do not lie inside the unit circle.
A vector Wold moving average representation of 𝑋𝑡 is then

𝑋𝑡 = 𝐶(𝐿)𝜂𝑡

where 𝜂𝑡 is an (𝑛 × 1) vector white noise that is “fundamental” for 𝑋𝑡.

That is, 𝑋𝑡 − �̂� [𝑋𝑡 ∣ 𝑋𝑡−1, 𝑋𝑡−2 …] = 𝐶0 𝜂𝑡.
The optimum predictor of 𝑋𝑡+𝑗 is

�̂� [𝑋𝑡+𝑗 ∣ 𝑋𝑡, 𝑋𝑡−1, …] = [𝐶(𝐿)
𝐿𝑗]

+
𝜂𝑡

If 𝐶(𝐿) is invertible, i.e., if the zeros of det 𝐶(𝑧) lie strictly outside the unit circle, then this formula can be written

�̂� [𝑋𝑡+𝑗 ∣ 𝑋𝑡, 𝑋𝑡−1, …] = [𝐶(𝐿)
𝐿𝐽]

+
𝐶(𝐿)−1 𝑋𝑡

32.5. Exercises 575

Advanced Quantitative Economics with Python

576 Chapter 32. Classical Prediction and Filtering With Linear Algebra

CHAPTER

THIRTYTHREE

KNOWING THE FORECASTS OF OTHERS

Contents

• Knowing the Forecasts of Others

– Introduction

– The Setting

– Tactics

– Equilibrium Conditions

– Equilibrium with 𝜃𝑡 stochastic but observed at 𝑡
– Guess-and-Verify Tactic

– Equilibrium with One Noisy Signal on 𝜃𝑡

– Equilibrium with Two Noisy Signals on 𝜃𝑡

– Key Step

– An observed common shock benchmark

– Comparison of All Signal Structures

– Notes on History of the Problem

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon
!conda install -y -c plotly plotly plotly-orca

33.1 Introduction

Robert E. Lucas, Jr. [REL75], Kenneth Kasa [Kas00], and Robert Townsend [Tow83] showed that putting decision mak-
ers into environments in which they want to infer persistent hidden state variables from equilibrium prices and quantities
can elongate and amplify impulse responses to aggregate shocks.
This provides a promising way to think about amplification mechanisms in business cycle models.
Townsend [Tow83] noted that living in such environments makes decision makers want to forecast forecasts of others.
This theme has been pursued for situations in which decision makers’ imperfect information forces them to pursue an
infinite recursion that involves forming beliefs about the beliefs of others (e.g., [AMS02]).

577

Advanced Quantitative Economics with Python

Lucas [REL75] side stepped having decision makers forecast the forecasts of other decision makers by assuming that they
simply pool their information before forecasting.
A pooling equilibrium like Lucas’s plays a prominent role in this lecture.
Because he didn’t assume such pooling, [Tow83] confronted the forecasting the forecasts of others problem.
To formulate the problem recursively required that Townsend define a decision maker’s state vector.
Townsend concluded that his original model required an intractable infinite dimensional state space.
Therefore, he constructed a more manageable approximating model in which a hidden Markov component of a demand
shock is revealed to all firms after a fixed, finite number of periods.
In this lecture, we illustrate again the theme that finding the state is an art by showing how to formulate Townsend’s
original model in terms of a low-dimensional state space.
We show that Townsend’s model shares equilibrium prices and quantities with those that prevail in a pooling equilibrium.
That finding emerged from a line of research about Townsend’s model that built on [PCL86] and that culminated in [PS05]
.
Rather than directly deploying the [PCL86]machinery here, we shall instead implement a sneaky guess-and-verify tactic.

• We first compute a pooling equilibrium and represent it as an instance of a linear state-space system provided by
the Python class quantecon.LinearStateSpace.

• Leaving the state-transition equation for the pooling equilibrium unaltered, we alter the observation vector for a
firm to match what it is in Townsend’s original model. So rather than directly observing the signal received by firms
in the other industry, a firm sees the equilibrium price of the good produced by the other industry.

• We compute a population linear least squares regression of the noisy signal at time 𝑡 that firms in the other industry
would receive in a pooling equilibrium on time 𝑡 information that a firm receives in Townsend’s original model.

• The 𝑅2 in this regression equals 1.
• That verifies that a firm’s information set in Townsend’s original model equals its information set in a pooling
equilibrium.

• Therefore, equilibrium prices and quantities in Townsend’s original model equal those in a pooling equilibrium.

33.1.1 A Sequence of Models

We proceed by describing a sequence of models of two industries that are linked in a single way:
• shocks to the demand curves for their products have a common component.

The models are simplified versions of Townsend’s [Tow83].
Townsend’s is a model of a rational expectations equilibrium in which firms want to forecast forecasts of others.
In Townsend’s model, firms condition their forecasts on observed endogenous variables whose equilibrium laws of motion
are determined by their own forecasting functions.
We shall assemble model components progressively in ways that can help us to appreciate the structure of the pooling
equilibrium that ultimately interests us.
While keeping all other aspects of the model the same, we shall study consequences of alternative assumptions about what
decision makers observe.
Technically, this lecture deploys concepts and tools that appear in First Look at Kalman Filter and Rational Expectations
Equilibrium.

578 Chapter 33. Knowing the Forecasts of Others

https://python-intro.quantecon.org/kalman.html
https://python-intro.quantecon.org/rational_expectations.html
https://python-intro.quantecon.org/rational_expectations.html

Advanced Quantitative Economics with Python

33.2 The Setting

We cast all variables in terms of deviations from means.
Therefore, we omit constants from inverse demand curves and other functions.
Firms in industry 𝑖 = 1, 2 use a single factor of production, capital 𝑘𝑖

𝑡, to produce output of a single good, 𝑦𝑖
𝑡.

Firms bear quadratic costs of adjusting their capital stocks.
A representative firm in industry 𝑖 has production function 𝑦𝑖

𝑡 = 𝑓𝑘𝑖
𝑡, 𝑓 > 0.

The firm acts as a price taker with respect to output price 𝑃 𝑖
𝑡 , and maximizes

𝐸𝑖
0

∞
∑
𝑡=0

𝛽𝑡 {𝑃 𝑖
𝑡 𝑓𝑘𝑖

𝑡 − .5ℎ(𝑘𝑖
𝑡+1 − 𝑘𝑖

𝑡)2} , ℎ > 0. (33.1)

Demand in industry 𝑖 is described by the inverse demand curve

𝑃 𝑖
𝑡 = −𝑏𝑌 𝑖

𝑡 + 𝜃𝑡 + 𝜖𝑖
𝑡, 𝑏 > 0, (33.2)

where 𝑃 𝑖
𝑡 is the price of good 𝑖 at 𝑡, 𝑌 𝑖

𝑡 = 𝑓𝐾𝑖
𝑡 is output in market 𝑖, 𝜃𝑡 is a persistent component of a demand shock

that is common across the two industries, and 𝜖𝑖
𝑡 is an industry specific component of the demand shock that is i.i.d. and

whose time 𝑡 marginal distribution is 𝒩(0, 𝜎2
𝜖).

We assume that 𝜃𝑡 is governed by

𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝑣𝑡 (33.3)

where {𝑣𝑡} is an i.i.d. sequence of Gaussian shocks, each with mean zero and variance 𝜎2
𝑣.

To simplify notation, we’ll study a special case by setting ℎ = 𝑓 = 1.
Costs of adjusting their capital stocks impart to firms an incentive to forecast the price of the good that they sell.
Throughout, we use the rational expectations equilibrium concept presented in this lecture Rational Expectations Equi-
librium.
We let capital letters denote market wide objects and lower case letters denote objects chosen by a representative firm.
In each industry, a competitive equilibrium prevails.
To rationalize the big 𝐾, little 𝑘 connection, we can think of there being a continuum of firms in industry 𝑖, with each
firm being indexed by 𝜔 ∈ [0, 1] and 𝐾𝑖 = ∫1

0 𝑘𝑖(𝜔)𝑑𝜔.
In equilibrium, 𝑘𝑖

𝑡 = 𝐾𝑖
𝑡 , but we must distinguish between 𝑘𝑖

𝑡 and 𝐾𝑖
𝑡 when we pose the firm’s optimization problem.

33.3 Tactics

We shall compute equilibrium laws of motion for capital in industry 𝑖 under a sequence of assumptions about what a
representative firm observes.
Successive members of this sequence make a representative firm’s information more and more obscure.
We begin with the most information, then gradually withdraw information in a way that approaches and eventually reaches
the Townsend-like information structure that we are ultimately interested in.
Thus, we shall compute equilibria under the following alternative information structures:

• Perfect foresight: future values of 𝜃𝑡, 𝜖𝑖
𝑡 are observed in industry 𝑖.

33.2. The Setting 579

https://python-intro.quantecon.org/rational_expectations.html
https://python-intro.quantecon.org/rational_expectations.html

Advanced Quantitative Economics with Python

• Observed history of stochastic 𝜃𝑡: {𝜃𝑡, 𝜖𝑖
𝑡} are realizations from a stochastic process; current and past values of

each are observed at time 𝑡 but future values are not.
• One noise-ridden observation on 𝜃𝑡: values of {𝜃𝑡, 𝜖𝑖

𝑡} separately are never observed. However, at time 𝑡, a
history 𝑤𝑡 of scalar noise-ridden observations on 𝜃𝑡 is observed at time 𝑡.

• Two noise-ridden observations on 𝜃𝑡: values of {𝜃𝑡, 𝜖𝑖
𝑡} separately are never observed. However, at time 𝑡, a

history 𝑤𝑡 of two noise-ridden observations on 𝜃𝑡 is observed at time 𝑡.
Successive computations build one on previous ones.
We proceed by first finding an equilibrium under perfect foresight.
To compute an equilibrium with current and past but not future values of 𝜃𝑡 observed, we use a certainty equivalence prin-
ciple to justify modifying the perfect foresight equilibrium by replacing future values of 𝜃𝑠, 𝜖𝑖

𝑠, 𝑠 ≥ 𝑡 with mathematical
expectations conditioned on 𝜃𝑡.
This provides the equilibrium when 𝜃𝑡 is observed at 𝑡 but future 𝜃𝑡+𝑗 and 𝜖𝑖

𝑡+𝑗 are not observed.

To find an equilibrium when a history 𝑤𝑡 observations of a single noise-ridden 𝜃𝑡 is observed, we again apply a certainty
equivalence principle and replace future values of the random variables 𝜃𝑠, 𝜖𝑖

𝑠, 𝑠 ≥ 𝑡 with their mathematical expectations
conditioned on 𝑤𝑡.
To find an equilibrium when a history 𝑤𝑡 of two noisy signals on 𝜃𝑡 is observed, we replace future values of the random
variables 𝜃𝑠, 𝜖𝑖

𝑠, 𝑠 ≥ 𝑡 with their mathematical expectations conditioned on history 𝑤𝑡.
We call the equilibrium with two noise-ridden observations on 𝜃𝑡 a pooling equilibrium.

• It corresponds to an arrangement in which at the beginning of each period firms in industries 1 and 2 somehow get
together and share information about current values of their noisy signals on 𝜃.

We want ultimately to compare outcomes in a pooling equilibrium with an equilibrium under the following alternative
information structure for a firm in industry 𝑖 that originally interested Townsend [Tow83]:

• Firm 𝑖’s noise-ridden signal on 𝜃𝑡 and the price in industry −𝑖, a firm in industry 𝑖 observes a history 𝑤𝑡 of
one noise-ridden signal on 𝜃𝑡 and a history of industry −𝑖’s price is observed. (Here −𝑖 means ``not 𝑖’’.)

With this information structure, a representative firm 𝑖 sees the price as well as the aggregate endogenous state variable
𝑌 𝑖

𝑡 in its own industry.
That allows it to infer the total demand shock 𝜃𝑡 + 𝜖𝑖

𝑡.
However, at time 𝑡, the firm sees only 𝑃 −𝑖

𝑡 and does not see 𝑌 −𝑖
𝑡 , so that a firm in industry 𝑖 does not directly observe

𝜃𝑡 + 𝜖−𝑖
𝑡 .

Nevertheless, it will turn out that equilibrium prices and quantities in this equilibrium equal their counterparts in a pooling
equilibrium because firms in industry 𝑖 are able to infer the noisy signal about the demand shock received by firms in
industry −𝑖.
We shall verify this assertion by using a guess and verify tactic that involves running a least squares regression and in-
specting its 𝑅2.1

1 [PS05] verified this assertion using a different tactic, namely, by constructing analytic formulas for an equilibrium under the incomplete information
structure and confirming that they match the pooling equilibrium formulas derived here.

580 Chapter 33. Knowing the Forecasts of Others

Advanced Quantitative Economics with Python

33.4 Equilibrium Conditions

It is convenient to solve a firm’s problem without uncertainty by forming the Lagrangian:

𝐽 =
∞

∑
𝑡=0

𝛽𝑡 {𝑃 𝑖
𝑡 𝑘𝑖

𝑡 − .5(𝜇𝑖
𝑡)2 + 𝜙𝑖

𝑡 [𝑘𝑖
𝑡 + 𝜇𝑖

𝑡 − 𝑘𝑖
𝑡+1]}

where {𝜙𝑖
𝑡} is a sequence of Lagrange multipliers on the transition law 𝑘𝑖

𝑡+1 = 𝑘𝑖
𝑡 + 𝜇𝑖

𝑡.
First order conditions for the nonstochastic problem are

𝜙𝑖
𝑡 = 𝛽𝜙𝑖

𝑡+1 + 𝛽𝑃 𝑖
𝑡+1

𝜇𝑖
𝑡 = 𝜙𝑖

𝑡.
(33.4)

Substituting the demand function (33.2) for 𝑃 𝑖
𝑡 , imposing the condition 𝑘𝑖

𝑡 = 𝐾𝑖
𝑡 that makes representative firm be

representative, and using definition (33.6) of 𝑔𝑖
𝑡, the Euler equation (33.4) lagged by one period can be expressed as

−𝑏𝑘𝑖
𝑡 + 𝜃𝑡 + 𝜖𝑖

𝑡 + (𝑘𝑖
𝑡+1 − 𝑘𝑖

𝑡) − 𝑔𝑖
𝑡 = 0 or

𝑘𝑖
𝑡+1 = (𝑏 + 1)𝑘𝑖

𝑡 − 𝜃𝑡 − 𝜖𝑖
𝑡 + 𝑔𝑖

𝑡 (33.5)

where we define 𝑔𝑖
𝑡 by

𝑔𝑖
𝑡 = 𝛽−1(𝑘𝑖

𝑡 − 𝑘𝑖
𝑡−1) (33.6)

We can write Euler equation (33.4) as:

𝑔𝑖
𝑡 = 𝑃 𝑖

𝑡 + 𝛽𝑔𝑖
𝑡+1 (33.7)

In addition, we have the law of motion for 𝜃𝑡, (33.3), and the demand equation (33.2).
In summary, with perfect foresight, equilibrium conditions for industry 𝑖 comprise the following system of difference
equations:

𝑘𝑖
𝑡+1 = (1 + 𝑏)𝑘𝑖

𝑡 − 𝜖𝑖
𝑡 − 𝜃𝑡 + 𝑔𝑖

𝑡
𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝑣𝑡
𝑔𝑖

𝑡+1 = 𝛽−1(𝑔𝑖
𝑡 − 𝑃 𝑖

𝑡)
𝑃 𝑖

𝑡 = −𝑏𝑘𝑖
𝑡 + 𝜖𝑖

𝑡 + 𝜃𝑡

(33.8)

Without perfect foresight, the same system prevails except that the following equation replaces the third equation of (33.8):

𝑔𝑖
𝑡+1,𝑡 = 𝛽−1(𝑔𝑖

𝑡 − 𝑃 𝑖
𝑡)

where 𝑥𝑡+1,𝑡 denotes the mathematical expectation of 𝑥𝑡+1 conditional on information at time 𝑡.

33.4.1 Equilibrium under perfect foresight

Our first step is to compute the equilibrium law of motion for 𝑘𝑖
𝑡 under perfect foresight.

Let 𝐿 be the lag operator.2

Equations (33.7) and (33.5) imply the second order difference equation in 𝑘𝑖
𝑡:3

[(𝐿−1 − (1 + 𝑏))(1 − 𝛽𝐿−1) + 𝑏] 𝑘𝑖
𝑡 = 𝛽𝐿−1𝜖𝑖

𝑡 + 𝛽𝐿−1𝜃𝑡. (33.9)
2 See [Sar87], especially chapters IX and XIV, for principles that guide solving some roots backwards and others forwards.
3 As noted by [Sar87], this difference equation is the Euler equation for a planning problem that maximizes the discounted sum of consumer plus

producer surplus.

33.4. Equilibrium Conditions 581

Advanced Quantitative Economics with Python

Factor the polynomial in 𝐿 on the left side as:

−𝛽[𝐿−2 − (𝛽−1 + (1 + 𝑏))𝐿−1 + 𝛽−1] = �̃�−1(𝐿−1 − �̃�)(1 − �̃�𝛽𝐿−1)

where |�̃�| < 1 is the smaller root and 𝜆 is the larger root of (𝜆 − 1)(𝜆 − 1/𝛽) = 𝑏𝜆.
Therefore, (33.9) can be expressed as

�̃�−1(𝐿−1 − �̃�)(1 − �̃�𝛽𝐿−1)𝑘𝑖
𝑡 = 𝛽𝐿−1𝜖𝑖

𝑡 + 𝛽𝐿−1𝜃𝑡.
Solving the stable root backwards and the unstable root forwards gives

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + �̃�𝛽
1 − �̃�𝛽𝐿−1

(𝜖𝑖
𝑡+1 + 𝜃𝑡+1).

Recall that we have already set 𝑘𝑖 = 𝐾𝑖 at the appropriate point in the argument, namely, after having derived the
first-order necessary conditions for a representative firm in industry 𝑖.
Thus, under perfect foresight the equilibrium capital stock in industry 𝑖 satisfies

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 +
∞

∑
𝑗=1

(�̃�𝛽)𝑗(𝜖𝑖
𝑡+𝑗 + 𝜃𝑡+𝑗). (33.10)

Next, we shall investigate consequences of replacing future values of (𝜖𝑖
𝑡+𝑗 + 𝜃𝑡+𝑗) in equation (33.10) with alternative

forecasting schemes.
In particular, we shall compute equilibrium laws of motion for capital under alternative assumptions about information
available to firms in market 𝑖.

33.5 Equilibrium with 𝜃𝑡 stochastic but observed at 𝑡

If future 𝜃’s are unknown at 𝑡, it is appropriate to replace all random variables on the right side of (33.10) with their
conditional expectations based on the information available to decision makers in market 𝑖.
For now, we assume that this information set is 𝐼𝑝

𝑡 = [𝜃𝑡 𝜖𝑖𝑡], where 𝑧𝑡 represents the semi-infinite history of variable
𝑧𝑠 up to time 𝑡.
Later we shall give firms less information.
To obtain an appropriate counterpart to (33.10) under our current assumption about information, we apply a certainty
equivalence principle.
In particular, it is appropriate to take (33.10) and replace each term (𝜖𝑖

𝑡+𝑗+𝜃𝑡+𝑗) on the right side with𝐸[(𝜖𝑖
𝑡+𝑗+𝜃𝑡+𝑗)|𝜃𝑡].

After using (33.3) and the i.i.d. assumption about {𝜖𝑖
𝑡}, this gives

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + �̃�𝛽𝜌
1 − �̃�𝛽𝜌

𝜃𝑡

or
𝑘𝑖

𝑡+1 = �̃�𝑘𝑖
𝑡 + 𝜌

𝜆 − 𝜌𝜃𝑡 (33.11)

where 𝜆 ≡ (𝛽�̃�)−1.
For our purposes, it is convenient to represent the equilibrium {𝑘𝑖

𝑡}𝑡 process recursively as

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 1
𝜆 − 𝜌

̂𝜃𝑡+1

̂𝜃𝑡+1 = 𝜌𝜃𝑡
𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝑣𝑡.

(33.12)

582 Chapter 33. Knowing the Forecasts of Others

Advanced Quantitative Economics with Python

33.5.1 Filtering

One noisy signal

We get closer to the original Townsend model that interests us by now assuming that firms in market 𝑖 do not observe 𝜃𝑡.
Instead they observe a history 𝑤𝑡 of noisy signals at time 𝑡.
In particular, assume that

𝑤𝑡 = 𝜃𝑡 + 𝑒𝑡
𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝑣𝑡

(33.13)

where 𝑒𝑡 and 𝑣𝑡 are mutually independent i.i.d. Gaussian shock processes with means of zero and variances 𝜎2
𝑒 and 𝜎2

𝑣,
respectively.
Define

̂𝜃𝑡+1 = 𝐸(𝜃𝑡+1|𝑤𝑡)

where 𝑤𝑡 = [𝑤𝑡, 𝑤𝑡−1, … , 𝑤0] denotes the history of the 𝑤𝑠 process up to and including 𝑡.
Associated with the state-space representation (33.13) is the time-invariant innovations representation

̂𝜃𝑡+1 = 𝜌 ̂𝜃𝑡 + 𝜅𝑎𝑡

𝑤𝑡 = ̂𝜃𝑡 + 𝑎𝑡
(33.14)

where 𝑎𝑡 ≡ 𝑤𝑡 − 𝐸(𝑤𝑡|𝑤𝑡−1) is the innovations process in 𝑤𝑡 and the Kalman gain 𝜅 is

𝜅 = 𝜌𝑝
𝑝 + 𝜎2𝑒

(33.15)

and where 𝑝 satisfies the Riccati equation

𝑝 = 𝜎2
𝑣 + 𝑝𝜌2𝜎2

𝑒
𝜎2𝑒 + 𝑝. (33.16)

State-reconstruction error

Define the state reconstruction error ̃𝜃𝑡 by

̃𝜃𝑡 = 𝜃𝑡 − ̂𝜃𝑡.

Then 𝑝 = 𝐸 ̃𝜃2
𝑡 .

Equations (33.13) and (33.14) imply

̃𝜃𝑡+1 = (𝜌 − 𝜅) ̃𝜃𝑡 + 𝑣𝑡 − 𝑘𝑒𝑡. (33.17)

Notice that we can express ̂𝜃𝑡+1 as

̂𝜃𝑡+1 = [𝜌𝜃𝑡 + 𝑣𝑡] + [𝜅𝑒𝑡 − (𝜌 − 𝜅) ̃𝜃𝑡 − 𝑣𝑡], (33.18)

where the first term in braces equals 𝜃𝑡+1 and the second term in braces equals − ̃𝜃𝑡+1.
We can express (33.11) as

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 1
𝜆 − 𝜌𝐸𝜃𝑡+1|𝜃𝑡. (33.19)

33.5. Equilibrium with 𝜃𝑡 stochastic but observed at 𝑡 583

Advanced Quantitative Economics with Python

An application of a certainty equivalence principle asserts that when only 𝑤𝑡 is observed, a corresponding equilibrium
{𝑘𝑖

𝑡} process can be found by replacing the information set 𝜃𝑡 with 𝑤𝑡 in (33.19).
Making this substitution and using (33.18) leads to

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 𝜌
𝜆 − 𝜌𝜃𝑡 + 𝜅

𝜆 − 𝜌𝑒𝑡 − 𝜌 − 𝜅
𝜆 − 𝜌

̃𝜃𝑡. (33.20)

Simplifying equation (33.18), we also have

̂𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝜅𝑒𝑡 − (𝜌 − 𝜅) ̃𝜃𝑡. (33.21)

Equations (33.20), (33.21) describe an equilibrium when 𝑤𝑡 is observed.

33.5.2 A new state variable

Relative to (33.11), the equilibrium acquires a new state variable, namely, the 𝜃–reconstruction error, ̃𝜃𝑡.
For a subsequent argument, by using (33.15), it is convenient to write (33.20) as

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 𝜌
𝜆 − 𝜌𝜃𝑡 + 1

𝜆 − 𝜌
𝑝𝜌

𝑝 + 𝜎2𝑒
𝑒𝑡 − 1

𝜆 − 𝜌
𝜌𝜎2

𝑒
𝑝 + 𝜎2𝑒

̃𝜃𝑡 (33.22)

In summary, when decision makers in market 𝑖 observe a semi-infinite history 𝑤𝑡 of noisy signals 𝑤𝑡 on 𝜃𝑡 at 𝑡, we an
equilibrium law of motion for 𝑘𝑖

𝑡 can be represented as

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 1
𝜆 − 𝜌

̂𝜃𝑡+1

̂𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝜌𝑝
𝑝 + 𝜎2𝑒

𝑒𝑡 − 𝜌𝜎2
𝑒

𝑝 + 𝜎2𝑒
̃𝜃𝑡

̃𝜃𝑡+1 = 𝜌𝜎2
𝑒

𝑝 + 𝜎2𝑒
̃𝜃𝑡 − 𝑝𝜌

𝑝 + 𝜎2𝑒
𝑒𝑡 + 𝑣𝑡

𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝑣𝑡.

(33.23)

33.5.3 Two Noisy Signals

We now construct a pooling equilibrium by assuming that at time 𝑡 a firm in industry 𝑖 receives a vector 𝑤𝑡 of two noisy
signals on 𝜃𝑡:

𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝑣𝑡

𝑤𝑡 = [1
1] 𝜃𝑡 + [𝑒1𝑡

𝑒2𝑡
]

To justify that we are constructing is a pooling equilibrium we can assume that

[𝑒1𝑡
𝑒2𝑡

] = [𝜖1
𝑡

𝜖2
𝑡
]

so that a firm in industry 𝑖 observes the noisy signals on that 𝜃𝑡 presented to firms in both industries 𝑖 and −𝑖.
The pertinent innovations representation now becomes

̂𝜃𝑡+1 = 𝜌 ̂𝜃𝑡 + 𝜅𝑎𝑡

𝑤𝑡 = [1
1] ̂𝜃𝑡 + 𝑎𝑡

(33.24)

584 Chapter 33. Knowing the Forecasts of Others

Advanced Quantitative Economics with Python

where 𝑎𝑡 ≡ 𝑤𝑡 − 𝐸[𝑤𝑡|𝑤𝑡−1] is a (2 × 1) vector of innovations in 𝑤𝑡 and 𝜅 is now a (1 × 2) vector of Kalman gains.
Formulas for the Kalman filter imply that

𝜅 = 𝜌𝑝
2𝑝 + 𝜎2𝑒

[1 1] (33.25)

where 𝑝 = 𝐸 ̃𝜃𝑡 ̃𝜃𝑇
𝑡 now satisfies the Riccati equation

𝑝 = 𝜎2
𝑣 + 𝑝𝜌2𝜎2

𝑒
2𝑝 + 𝜎2𝑒

. (33.26)

Thus, when a representative firm in industry 𝑖 observes two noisy signals on 𝜃𝑡, we can express the equilibrium law of
motion for capital recursively as

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 1
𝜆 − 𝜌

̂𝜃𝑡+1

̂𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝜌𝑝
2𝑝 + 𝜎2𝑒

(𝑒1𝑡 + 𝑒2𝑡) − 𝜌𝜎2
𝑒

2𝑝 + 𝜎2𝑒
̃𝜃𝑡

̃𝜃𝑡+1 = 𝜌𝜎2
𝑒

2𝑝 + 𝜎2𝑒
̃𝜃𝑡 − 𝑝𝜌

2𝑝 + 𝜎2𝑒
(𝑒1𝑡 + 𝑒2𝑡) + 𝑣𝑡

𝜃𝑡+1 = 𝜌𝜃𝑡 + 𝑣𝑡.

(33.27)

Below, by using a guess-and-verify tactic, we shall show that outcomes in this pooling equilibrium equal those in an
equilibrium under the alternative information structure that interested Townsend [Tow83] but that originally seemed too
challenging to compute.4

33.6 Guess-and-Verify Tactic

As a preliminary step we shall take our recursive representation (33.23) of an equilibrium in industry 𝑖 with one noisy
signal on 𝜃𝑡 and perform the following steps:

• Compute 𝜆 and �̃� by posing a root-finding problem and solving it with numpy.roots
• Compute 𝑝 by forming the appropriate discrete Riccati equation and then solving it using quantecon.
solve_discrete_riccati

• Add a measurement equation for 𝑃 𝑖
𝑡 = 𝑏𝑘𝑖

𝑡 + 𝜃𝑡 + 𝑒𝑡, 𝜃𝑡 + 𝑒𝑡, and 𝑒𝑡 to system (33.23).
• Write the resulting system in state-space form and encode it using quantecon.LinearStateSpace
• Use methods of the quantecon.LinearStateSpace to compute impulse response functions of 𝑘𝑖

𝑡 with
respect to shocks 𝑣𝑡, 𝑒𝑡.

After analyzing the one-noisy-signal structure in this way, by making appropriate modifications we shall analyze the two-
noisy-signal structure.
We proceed to analyze first the one-noisy-signal structure and then the two-noisy-signal structure.

4 [PS05] verify the same claim by applying machinery of [PCL86].

33.6. Guess-and-Verify Tactic 585

Advanced Quantitative Economics with Python

33.7 Equilibrium with One Noisy Signal on 𝜃𝑡

33.7.1 Step 1: Solve for �̃� and 𝜆

1. Cast (𝜆 − 1) (𝜆 − 1
𝛽) = 𝑏𝜆 as 𝑝 (𝜆) = 0 where 𝑝 is a polynomial function of 𝜆.

2. Use numpy.roots to solve for the roots of 𝑝
3. Verify 𝜆 ≈ 1

𝛽�̃�

Note that 𝑝 (𝜆) = 𝜆2 − (1 + 𝑏 + 1
𝛽) 𝜆 + 1

𝛽 .

33.7.2 Step 2: Solve for 𝑝

1. Cast 𝑝 = 𝜎2
𝑣 + 𝑝𝜌2𝜎2

𝑒
2𝑝+𝜎2𝑒

as a discrete matrix Riccati equation.

2. Use quantecon.solve_discrete_riccati to solve for 𝑝
3. Verify 𝑝 ≈ 𝜎2

𝑣 + 𝑝𝜌2𝜎2
𝑒

2𝑝+𝜎2𝑒

Note that:
𝐴 = [𝜌]
𝐵 = [

√
2]

𝑅 = [𝜎2
𝑒]

𝑄 = [𝜎2
𝑣]

𝑁 = [0]

33.7.3 Step 3: Represent the system using quantecon.LinearStateSpace

We use the following representation for constructing the quantecon.LinearStateSpace instance.

⎡
⎢
⎢
⎢
⎢
⎣

𝑒𝑡+1
𝑘𝑖

𝑡+1
̃𝜃𝑡+1

𝑃𝑡+1
𝜃𝑡+1
𝑣𝑡+1

⎤
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟

𝑥𝑡+1

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0
𝜅

𝜆−𝜌 �̃� −1
𝜆−𝜌

𝜅𝜎2
𝑒

𝑝 0 𝜌
𝜆−𝜌 0

−𝜅 0 𝜅𝜎2
𝑒

𝑝 0 0 1
𝑏𝜅

𝜆−𝜌 𝑏�̃� −𝑏
𝜆−𝜌

𝜅𝜎2
𝑒

𝑝 0 𝑏𝜌
𝜆−𝜌 + 𝜌 1

0 0 0 0 𝜌 1
0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

⎡
⎢
⎢
⎢
⎢
⎣

𝑒𝑡
𝑘𝑖

𝑡
̃𝜃𝑡

𝑃𝑡
𝜃𝑡
𝑣𝑡

⎤
⎥
⎥
⎥
⎥
⎦⏟

𝑥𝑡

+

⎡
⎢
⎢
⎢
⎢
⎣

𝜎𝑒 0
0 0
0 0
𝜎𝑒 0
0 0
0 𝜎𝑣

⎤
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟

𝐶

[𝑧1,𝑡+1
𝑧2,𝑡+1

]

⎡⎢
⎣

𝑃𝑡
𝑒𝑡 + 𝜃𝑡

𝑒𝑡

⎤⎥
⎦⏟⏟⏟⏟⏟

𝑦𝑡

= ⎡⎢
⎣

0 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 0

⎤⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺

⎡
⎢
⎢
⎢
⎢
⎣

𝑒𝑡
𝑘𝑖

𝑡
̃𝜃𝑡

𝑃𝑡
𝜃𝑡
𝑣𝑡

⎤
⎥
⎥
⎥
⎥
⎦⏟

𝑥𝑡

+ ⎡⎢
⎣

0
0
0

⎤⎥
⎦⏟

𝐻

𝑤𝑡+1

⎡⎢
⎣

𝑧1,𝑡+1
𝑧2,𝑡+1
𝑤𝑡+1

⎤⎥
⎦

∼ 𝒩 (0, 𝐼)

𝜅 = 𝜌𝑝
𝑝 + 𝜎2𝑒

586 Chapter 33. Knowing the Forecasts of Others

Advanced Quantitative Economics with Python

This representation includes extraneous variables such as 𝑃𝑡 in the state vector.
We formulate things in this way because it allows us easily to compute covariances of these variables with other
components of the state vector (step 5 above) by using the stationary_distributions method of the Lin-
earStateSpace class.

import numpy as np
import quantecon as qe
import plotly.graph_objects as go
import plotly.offline as pyo
from statsmodels.regression.linear_model import OLS
from IPython.display import display, Latex, Image

pyo.init_notebook_mode(connected=True)

β = 0.9 # Discount factor
ρ = 0.8 # Persistence parameter for the hidden state
b = 1.5 # Demand curve parameter
σ_v = 0.5 # Standard deviation of shock to θ_t
σ_e = 0.6 # Standard deviation of shocks to w_t

Compute λ
poly = np.array([1, -(1 + β + b) / β, 1 / β])
roots_poly = np.roots(poly)
λ_tilde = roots_poly.min()
λ = roots_poly.max()

Verify that λ = (βλ_tilde) ^ (-1)
tol = 1e-12
np.max(np.abs(λ - 1 / (β * λ_tilde))) < tol

True

A_ricc = np.array([[ρ]])
B_ricc = np.array([[1.]])
R_ricc = np.array([[σ_e ** 2]])
Q_ricc = np.array([[σ_v ** 2]])
N_ricc = np.zeros((1, 1))
p = qe.solve_discrete_riccati(A_ricc, B_ricc, Q_ricc, R_ricc, N_ricc).item()

p_one = p # Save for comparison later

Verify that p = σ_v ^ 2 + p * ρ ^ 2 - (ρ * p) ^ 2 / (p + σ_e ** 2)
tol = 1e-12
np.abs(p - (σ_v ** 2 + p * ρ ** 2 - (ρ * p) ** 2 / (p + σ_e ** 2))) < tol

True

κ = ρ * p / (p + σ_e ** 2)
κ_prod = κ * σ_e ** 2 / p

(continues on next page)

33.7. Equilibrium with One Noisy Signal on 𝜃𝑡 587

Advanced Quantitative Economics with Python

(continued from previous page)

κ_one = κ # Save for comparison later

A_lss = np.array([[0., 0., 0., 0., 0., 0.],
[κ / (λ - ρ), λ_tilde, -κ_prod / (λ - ρ), 0., ρ / (λ - ρ), 0.],
[-κ, 0., κ_prod, 0., 0., 1.],
[b * κ / (λ - ρ) , b * λ_tilde, -b * κ_prod / (λ - ρ), 0., b * ρ /␣

↪(λ - ρ) + ρ, 1.],
[0., 0., 0., 0., ρ, 1.],
[0., 0., 0., 0., 0., 0.]])

C_lss = np.array([[σ_e, 0.],
[0., 0.],
[0., 0.],
[σ_e, 0.],
[0., 0.],
[0., σ_v]])

G_lss = np.array([[0., 0., 0., 1., 0., 0.],
[1., 0., 0., 0., 1., 0.],
[1., 0., 0., 0., 0., 0.]])

mu_0 = np.array([0., 0., 0., 0., 0., 0.])

lss = qe.LinearStateSpace(A_lss, C_lss, G_lss, mu_0=mu_0)

ts_length = 100_000
x, y = lss.simulate(ts_length, random_state=1)

Verify that two ways of computing P_t match
np.max(np.abs(np.array([[1., b, 0., 0., 1., 0.]]) @ x - x[3])) < 1e-12

True

33.7.4 Step 4: Compute impulse response functions

To compute impulse response functions of 𝑘𝑖
𝑡, we use the impulse_response method of the quantecon.

LinearStateSpace class and plot outcomes.

xcoef, ycoef = lss.impulse_response(j=21)
data = np.array([xcoef])[0, :, 1, :]

fig = go.Figure(data=go.Scatter(y=data[:-1, 0], name=r'e_{t+1}'))
fig.add_trace(go.Scatter(y=data[1:, 1], name=r'v_{t+1}'))
fig.update_layout(title=r'Impulse Response Function',

xaxis_title='Time',
yaxis_title=r'k^{i}_{t}')

fig1 = fig
Export to PNG file
Image(fig1.to_image(format="png"))

(continues on next page)

588 Chapter 33. Knowing the Forecasts of Others

Advanced Quantitative Economics with Python

(continued from previous page)

fig1.show() will provide interactive plot when running
notebook locally

33.7.5 Step 5: Compute stationary covariance matrices and population regres-
sions

We compute stationary covariance matrices by calling the stationary_distributions method of the
quantecon.LinearStateSpace class.
By appropriately decomposing the covariance matrix of the state vector, we obtain ingredients of pertinent population
regression coefficients.
Define

Σ𝑥 = [Σ11 Σ12
Σ21 Σ22

]

where Σ11 is the covariance matrix of dependent variables and Σ22 is the covariance matrix of independent variables.
Regression coefficients are 𝛽 = Σ21Σ−1

22 .
To verify an instance of a law of large numbers computation, we construct a long simulation of the state vector and for the
resulting sample compute the ordinary least-squares estimator of 𝛽 that we shall compare with corresponding population
regression coefficients.

33.7. Equilibrium with One Noisy Signal on 𝜃𝑡 589

Advanced Quantitative Economics with Python

_, _, Σ_x, Σ_y, Σ_yx = lss.stationary_distributions()

Σ_11 = Σ_x[0, 0]
Σ_12 = Σ_x[0, 1:4]
Σ_21 = Σ_x[1:4, 0]
Σ_22 = Σ_x[1:4, 1:4]

reg_coeffs = Σ_12 @ np.linalg.inv(Σ_22)

print('Regression coefficients (e_t on k_t, P_t, \\tilde{\\theta_t})')
print('------------------------------')
print(r'k_t:', reg_coeffs[0])
print(r'\tilde{\theta_t}:', reg_coeffs[1])
print(r'P_t:', reg_coeffs[2])

Regression coefficients (e_t on k_t, P_t, \tilde{\theta_t})

k_t: -3.275556845219769
\tilde{\theta_t}: -0.9649461170475457
P_t: 0.9649461170475457

Compute R squared
R_squared = reg_coeffs @ Σ_x[1:4, 1:4] @ reg_coeffs / Σ_x[0, 0]
R_squared

0.9649461170475461

Verify that the computed coefficients are close to least squares estimates
model = OLS(x[0], x[1:4].T)
reg_res = model.fit()
np.max(np.abs(reg_coeffs - reg_res.params)) < 1e-2

True

Verify that R_squared matches least squares estimate
np.abs(reg_res.rsquared - R_squared) < 1e-2

True

Verify that θ_t + e_t can be recovered
model = OLS(y[1], x[1:4].T)
reg_res = model.fit()
np.abs(reg_res.rsquared - 1.) < 1e-6

True

590 Chapter 33. Knowing the Forecasts of Others

Advanced Quantitative Economics with Python

33.8 Equilibrium with Two Noisy Signals on 𝜃𝑡

Steps 1, 4, and 5 are identical to those for the one-noisy-signal structure.
Step 2 requires a straightforward modification.
For step 3, we construct the following state-space representation so that we can get our hands on all of the random
processes that we require in order to compute a regression of the noisy signal about 𝜃 from the other industry that a firm
receives directly in a pooling equilibrium against information that a firm would receive in Townsend’s original model.
For this purpose, we include equilibrium goods prices from both industries in the state vector:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑒1,𝑡+1
𝑒2,𝑡+1
𝑘𝑖

𝑡+1
̃𝜃𝑡+1

𝑃 1
𝑡+1

𝑃 2
𝑡+1

𝜃𝑡+1
𝑣𝑡+1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟

𝑥𝑡+1

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
𝜅

𝜆−𝜌
𝜅

𝜆−𝜌 �̃� −1
𝜆−𝜌

𝜅𝜎2
𝑒

𝑝 0 0 𝜌
𝜆−𝜌 0

−𝜅 −𝜅 0 𝜅𝜎2
𝑒

𝑝 0 0 0 1
𝑏𝜅

𝜆−𝜌
𝑏𝜅

𝜆−𝜌 𝑏�̃� −𝑏
𝜆−𝜌

𝜅𝜎2
𝑒

𝑝 0 0 𝑏𝜌
𝜆−𝜌 + 𝜌 1

𝑏𝜅
𝜆−𝜌

𝑏𝜅
𝜆−𝜌 𝑏�̃� −𝑏

𝜆−𝜌
𝜅𝜎2

𝑒
𝑝 0 0 𝑏𝜌

𝜆−𝜌 + 𝜌 1
0 0 0 0 0 0 𝜌 1
0 0 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑒1,𝑡
𝑒2,𝑡
𝑘𝑖

𝑡
̃𝜃𝑡

𝑃 1
𝑡

𝑃 2
𝑡

𝜃𝑡
𝑣𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟

𝑥𝑡

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜎𝑒 0 0
0 𝜎𝑒 0
0 0 0
0 0 0
𝜎𝑒 0 0
0 𝜎𝑒 0
0 0 0
0 0 𝜎𝑣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝐶

⎡⎢
⎣

𝑧1,𝑡+1
𝑧2,𝑡+1
𝑧3,𝑡+1

⎤⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑃 1
𝑡

𝑃 2
𝑡

𝑒1,𝑡 + 𝜃𝑡
𝑒2,𝑡 + 𝜃𝑡

𝑒1,𝑡
𝑒2,𝑡

⎤
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟

𝑦𝑡

=

⎡
⎢
⎢
⎢
⎢
⎣

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐺

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑒1,𝑡
𝑒2,𝑡
𝑘𝑖

𝑡
̃𝜃𝑡

𝑃 1
𝑡

𝑃 2
𝑡

𝜃𝑡
𝑣𝑡

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⏟

𝑥𝑡

+

⎡
⎢
⎢
⎢
⎢
⎣

0
0
0
0
0
0

⎤
⎥
⎥
⎥
⎥
⎦⏟

𝐻

𝑤𝑡+1

⎡
⎢⎢
⎣

𝑧1,𝑡+1
𝑧2,𝑡+1
𝑧3,𝑡+1
𝑤𝑡+1

⎤
⎥⎥
⎦

∼ 𝒩 (0, 𝐼)

𝜅 = 𝜌𝑝
2𝑝 + 𝜎2𝑒

A_ricc = np.array([[ρ]])
B_ricc = np.array([[np.sqrt(2)]])
R_ricc = np.array([[σ_e ** 2]])
Q_ricc = np.array([[σ_v ** 2]])
N_ricc = np.zeros((1, 1))
p = qe.solve_discrete_riccati(A_ricc, B_ricc, Q_ricc, R_ricc, N_ricc).item()

p_two = p # Save for comparison later

Verify that p = σ_v^2 + (pρ^2σ_e^2) / (2p + σ_e^2)
tol = 1e-12
np.abs(p - (σ_v ** 2 + p * ρ ** 2 * σ_e ** 2 / (2 * p + σ_e ** 2))) < tol

True

33.8. Equilibrium with Two Noisy Signals on 𝜃𝑡 591

Advanced Quantitative Economics with Python

κ = ρ * p / (2 * p + σ_e ** 2)
κ_prod = κ * σ_e ** 2 / p

κ_two = κ # Save for comparison later

A_lss = np.array([[0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0.],
[κ / (λ - ρ), κ / (λ - ρ), λ_tilde, -κ_prod / (λ - ρ), 0., 0., ρ /␣

↪(λ - ρ), 0.],
[-κ, -κ, 0., κ_prod, 0., 0., 0., 1.],
[b * κ / (λ - ρ), b * κ / (λ - ρ), b * λ_tilde, -b * κ_prod / (λ -␣

↪ρ), 0., 0., b * ρ / (λ - ρ) + ρ, 1.],
[b * κ / (λ - ρ), b * κ / (λ - ρ), b * λ_tilde, -b * κ_prod / (λ -␣

↪ρ), 0., 0., b * ρ / (λ - ρ) + ρ, 1.],
[0., 0., 0., 0., 0., 0., ρ, 1.],
[0., 0., 0., 0., 0., 0., 0., 0.]])

C_lss = np.array([[σ_e, 0., 0.],
[0., σ_e, 0.],
[0., 0., 0.],
[0., 0., 0.],
[σ_e, 0., 0.],
[0., σ_e, 0.],
[0., 0., 0.],
[0., 0., σ_v]])

G_lss = np.array([[0., 0., 0., 0., 1., 0., 0., 0.],
[0., 0, 0, 0., 0., 1., 0., 0.],
[1., 0., 0., 0., 0., 0., 1., 0.],
[0., 1., 0., 0., 0., 0., 1., 0.],
[1., 0., 0., 0., 0., 0., 0., 0.],
[0., 1., 0., 0., 0., 0., 0., 0.]])

mu_0 = np.array([0., 0., 0., 0., 0., 0., 0., 0.])

lss = qe.LinearStateSpace(A_lss, C_lss, G_lss, mu_0=mu_0)

ts_length = 100_000
x, y = lss.simulate(ts_length, random_state=1)

xcoef, ycoef = lss.impulse_response(j=20)

data = np.array([xcoef])[0, :, 2, :]

fig = go.Figure(data=go.Scatter(y=data[:-1, 0], name=r'$e_{1,t+1}$'))
fig.add_trace(go.Scatter(y=data[:-1, 1], name=r'$e_{2,t+1}$'))
fig.add_trace(go.Scatter(y=data[1:, 2], name=r'v_{t+1}'))
fig.update_layout(title=r'Impulse Response Function',

xaxis_title='Time',
yaxis_title=r'k^{i}_{t}')

fig2=fig
Export to PNG file
Image(fig2.to_image(format="png"))
fig2.show() will provide interactive plot when running

(continues on next page)

592 Chapter 33. Knowing the Forecasts of Others

Advanced Quantitative Economics with Python

(continued from previous page)

notebook locally

_, _, Σ_x, Σ_y, Σ_yx = lss.stationary_distributions()

Σ_11 = Σ_x[1, 1]
Σ_12 = Σ_x[1, 2:5]
Σ_21 = Σ_x[2:5, 1]
Σ_22 = Σ_x[2:5, 2:5]

reg_coeffs = Σ_12 @ np.linalg.inv(Σ_22)

print('Regression coefficients (e_{2,t} on k_t, P^{1}_t, \\tilde{\\theta_t})')
print('------------------------------')
print(r'k_t:', reg_coeffs[0])
print(r'\tilde{\theta_t}:', reg_coeffs[1])
print(r'P_t:', reg_coeffs[2])

Regression coefficients (e_{2,t} on k_t, P^{1}_t, \tilde{\theta_t})

k_t: 0.0
\tilde{\theta_t}: 0.0
P_t: 0.0

Compute R squared

(continues on next page)

33.8. Equilibrium with Two Noisy Signals on 𝜃𝑡 593

Advanced Quantitative Economics with Python

(continued from previous page)

R_squared = reg_coeffs @ Σ_x[2:5, 2:5] @ reg_coeffs / Σ_x[1, 1]
R_squared

0.0

Verify that the computed coefficients are close to least squares estimates
model = OLS(x[1], x[2:5].T)
reg_res = model.fit()
np.max(np.abs(reg_coeffs - reg_res.params)) < 1e-2

True

Verify that R_squared matches least squares estimate
np.abs(reg_res.rsquared - R_squared) < 1e-2

True

_, _, Σ_x, Σ_y, Σ_yx = lss.stationary_distributions()

Σ_11 = Σ_x[1, 1]
Σ_12 = Σ_x[1, 2:6]
Σ_21 = Σ_x[2:6, 1]
Σ_22 = Σ_x[2:6, 2:6]

reg_coeffs = Σ_12 @ np.linalg.inv(Σ_22)

print('Regression coefficients (e_{2,t} on k_t, P^{1}_t, P^{2}_t, \\tilde{\\theta_t})
↪')

print('------------------------------')
print(r'k_t:', reg_coeffs[0])
print(r'\tilde{\theta_t}:', reg_coeffs[1])
print(r'P^{1}_t:', reg_coeffs[2])
print(r'P^{2}_t:', reg_coeffs[3])

Regression coefficients (e_{2,t} on k_t, P^{1}_t, P^{2}_t, \tilde{\theta_t})

k_t: -3.1373589171035627
\tilde{\theta_t}: -0.9242343967443672
P^{1}_t: -0.037882801627816154
P^{2}_t: 0.9621171983721835

Compute R squared
R_squared = reg_coeffs @ Σ_x[2:6, 2:6] @ reg_coeffs / Σ_x[1, 1]
R_squared

594 Chapter 33. Knowing the Forecasts of Others

Advanced Quantitative Economics with Python

0.9621171983721837

33.9 Key Step

Now we come to the key step for verifying that equilibrium outcomes for prices and quantities are identical in the pooling
equilibrium original model that led Townsend to deduce an infinite-dimensional state space.
We accomplish this by computing a population linear least squares regression of the noisy signal that firms in the other
industry receive in a pooling equilibrium on time 𝑡 information that a firm would receive in Townsend’s original model.
Let’s compute the regression and stare at the 𝑅2:

Verify that θ_t + e^{2}_t can be recovered

θ_t + e^{2}_t on k^{i}_t, P^{1}_t, P^{2}_t, \\tilde{\\theta_t}

model = OLS(y[1], x[2:6].T)
reg_res = model.fit()
np.abs(reg_res.rsquared - 1.) < 1e-6

True

reg_res.rsquared

1.0

The 𝑅2 in this regression equals 1.
That verifies that a firm’s information set in Townsend’s original model equals its information set in a pooling equilibrium.
Therefore, equilibrium prices and quantities in Townsend’s original model equal those in a pooling equilibrium.

33.10 An observed common shock benchmark

For purposes of comparison, it is useful to construct a model in which demand disturbance in both industries still both
share have a common persistent component 𝜃𝑡, but in which the persistent component 𝜃 is observed each period.
In this case, firms share the same information immediately and have no need to deploy signal-extraction techniques.
Thus, consider a version of our model in which histories of both 𝜖𝑖

𝑡 and 𝜃𝑡 are observed by a representative firm.
In this case, the firm’s optimal decision rule is described by

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 1
𝜆 − 𝜌

̂𝜃𝑡+1

where ̂𝜃𝑡+1 = 𝐸𝑡𝜃𝑡+1 is given by

̂𝜃𝑡+1 = 𝜌𝜃𝑡

33.9. Key Step 595

Advanced Quantitative Economics with Python

Thus, the firm’s decision rule can be expressed

𝑘𝑖
𝑡+1 = �̃�𝑘𝑖

𝑡 + 𝜌
𝜆 − 𝜌𝜃𝑡

Consequently, when a history 𝜃𝑠, 𝑠 ≤ 𝑡 is observed without noise, the following state space system prevails:

[𝜃𝑡+1
𝑘𝑖

𝑡+1
] = [𝜌 0

𝜌
𝜆−𝜌 �̃�] [𝜃𝑡

𝑘𝑖
𝑡
] + [𝜎𝑣

0] 𝑧1,𝑡+1

[𝜃𝑡
𝑘𝑖

𝑡
] = [1 0

0 1] [𝜃𝑡
𝑘𝑖

𝑡
] + [0

0] 𝑧1,𝑡+1

where 𝑧𝑡,𝑡+1 is a scalar iid standardized Gaussian process.
As usual, the system can be written as

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐶𝑧𝑡+1
𝑦𝑡 = 𝐺𝑥𝑡 + 𝐻𝑤𝑡+1

In order once again to use the quantecon class quantecon.LinearStateSpace, let’s form pertinent state-space
matrices

Ao_lss = np.array([[ρ, 0.],
[ρ / (λ - ρ), λ_tilde]])

Co_lss = np.array([[σ_v], [0.]])

Go_lss = np.identity(2)

muo_0 = np.array([0., 0.])

lsso = qe.LinearStateSpace(Ao_lss, Co_lss, Go_lss, mu_0=muo_0)

Now let’s form and plot an impulse response function of 𝑘𝑖
𝑡 to shocks 𝑣𝑡 to 𝜃𝑡+1

xcoef, ycoef = lsso.impulse_response(j=21)
data = np.array([ycoef])[0, :, 1, :]

fig = go.Figure(data=go.Scatter(y=data[:-1, 0], name=r'z_{t+1}'))
fig.update_layout(title=r'Impulse Response Function',

xaxis_title= r'lag j',
yaxis_title=r'k^{i}_{t}')

fig3 = fig
Export to PNG file
Image(fig3.to_image(format="png"))
fig1.show() will provide interactive plot when running
notebook locally

596 Chapter 33. Knowing the Forecasts of Others

Advanced Quantitative Economics with Python

33.11 Comparison of All Signal Structures

It is enlightening side by side to plot impulse response functions for capital for the two noisy-signal information structures
and the noiseless signal on 𝜃 that we have just presented.
Please remember that the two-signal structure corresponds to the pooling equilibrium and also Townsend’s original
model.

fig_comb = go.Figure(data=[
*fig1.data,
*fig2.update_traces(xaxis='x2', yaxis='y2').data,
*fig3.update_traces(xaxis='x3', yaxis='y3').data

]).set_subplots(1, 3,
subplot_titles=("One noisy-signal",

"Two noisy-signal",
"No Noise"),

horizontal_spacing=0.02,
shared_yaxes=True)

Export to PNG file
Image(fig_comb.to_image(format="png"))
fig_comb.show() # will provide interactive plot when running
notebook locally

33.11. Comparison of All Signal Structures 597

Advanced Quantitative Economics with Python

The three panels in the graph above show that
• responses of 𝑘𝑖

𝑡 to shocks 𝑣𝑡 to the hidden Markov demand state 𝜃𝑡 process are largest in the no-noisy-signal
structure in which the firm observes 𝜃𝑡 at time 𝑡

• responses of 𝑘𝑖
𝑡 to shocks 𝑣𝑡 to the hidden Markov demand state 𝜃𝑡 process are smaller in the two-noisy-signal

structure
• responses of 𝑘𝑖

𝑡 to shocks 𝑣𝑡 to the hidden Markov demand state 𝜃𝑡 process are smallest in the one-noisy-signal
structure

With respect to the iid demand shocks 𝑒𝑡 the graphs show that
• responses of 𝑘𝑖

𝑡 to shocks 𝑒𝑡 to the hidden Markov demand state 𝜃𝑡 process are smallest (i.e., nonexistent) in the
no-noisy-signal structure in which the firm observes 𝜃𝑡 at time 𝑡

• responses of 𝑘𝑖
𝑡 to shocks 𝑒𝑡 to the hidden Markov demand state 𝜃𝑡 process are larger in the two-noisy-signal

structure
• responses of 𝑘𝑖

𝑡 to idiosyncratic own-market noise-shocks 𝑒𝑡 are largest in the one-noisy-signal structure
Among other things, these findings indicate that time series correlations and coherences between outputs in the two
industries are higher in the two-noisy-signals or pooling model than they are in the one-noisy signal model.
The enhanced influence of the shocks 𝑣𝑡 to the hidden Markov demand state 𝜃𝑡 process that emerges from the two-noisy-
signal model relative to the one-noisy-signal model is a symptom of a lower equilibrium hidden-state reconstruction error
variance in the two-signal model:

display(Latex('$\\textbf{Reconstruction error variances}$'))
display(Latex(f'One-noise structure: {round(p_one, 6)}'))
display(Latex(f'Two-noise structure: {round(p_two, 6)}'))

598 Chapter 33. Knowing the Forecasts of Others

Advanced Quantitative Economics with Python

Reconstruction error variances

𝑂𝑛𝑒 − 𝑛𝑜𝑖𝑠𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∶ 0.36618

𝑇 𝑤𝑜 − 𝑛𝑜𝑖𝑠𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∶ 0.324062

Kalman gains for the two structures are

display(Latex('$\\textbf{Kalman Gains}$'))
display(Latex(f'One noisy-signal structure: {round(κ_one, 6)}'))
display(Latex(f'Two noisy-signals structure: {round(κ_two, 6)}'))

Kalman Gains

𝑂𝑛𝑒𝑛𝑜𝑖𝑠𝑦 − 𝑠𝑖𝑔𝑛𝑎𝑙𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∶ 0.403404

𝑇 𝑤𝑜𝑛𝑜𝑖𝑠𝑦 − 𝑠𝑖𝑔𝑛𝑎𝑙𝑠𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∶ 0.25716

Another lesson that comes from the preceding three-panel graph is that the presence of iid noise 𝜖𝑖
𝑡 in industry 𝑖 generates

a response in 𝑘−𝑖
𝑡 in the two-noisy-signal structure, but not in the one-noisy-signal structure.

33.12 Notes on History of the Problem

To truncate what he saw as an intractable, infinite dimensional state space, Townsend constructed an approximating model
in which the common hidden Markov demand shock is revealed to all firms after a fixed number of periods.
Thus,

• Townsend wanted to assume that at time 𝑡 firms in industry 𝑖 observe 𝑘𝑖
𝑡, 𝑌 𝑖

𝑡 , 𝑃 𝑖
𝑡 , (𝑃 −𝑖)𝑡, where (𝑃 −𝑖)𝑡 is the

history of prices in the other market up to time 𝑡.
• Because that turned out to be too challenging, Townsend made a sensible alternative assumption that eased his
calculations: that after a large number 𝑆 of periods, firms in industry 𝑖 observe the hidden Markov component of
the demand shock 𝜃𝑡−𝑆 .

Townsend argued that the more manageable model could do a good job of approximating the intractable model in which
the Markov component of the demand shock remains unobserved for ever.
By applying technical machinery of [PCL86], [PS05] showed that there is a recursive representation of the equilibrium
of the perpetually and symmetrically uninformed model that Townsend wanted to solve [Tow83].
A reader of [PS05] will notice that their representation of the equilibrium of Townsend’s model exactly matches that of
the pooling equilibrium presented here.
We have structured our notation in this lecture to faciliate comparison of the pooling equilibrium constructed here with
the equilibrium of Townsend’s model reported in [PS05].
The computational method of [PS05] is recursive: it enlists the Kalman filter and invariant subspace methods for solving
systems of Euler equations5 .
As [Sin87], [Kas00], and [Sar91] also found, the equilibrium is fully revealing: observed prices tell participants in industry
𝑖 all of the information held by participants in market −𝑖 (−𝑖 means not 𝑖).

5 See [AHMS96] for an account of invariant subspace methods.

33.12. Notes on History of the Problem 599

Advanced Quantitative Economics with Python

This means that higher-order beliefs play no role: observing equilibrium prices in effect lets decision makers pool their
information sets6 .
The disappearance of higher order beliefs means that decision makers in this model do not really face a problem of
forecasting the forecasts of others.
Because those forecasts are the same as their own, they know them.

33.12.1 Further historical remarks

Sargent [Sar91] proposed a way to compute an equilibrium without making Townsend’s approximation.
Extending the reasoning of [Mut60], Sargent noticed that it is possible to summarize the relevant history with a low
dimensional object, namely, a small number of current and lagged forecasting errors.
Positing an equilibrium in a space of perceived laws of motion for endogenous variables that takes the form of a vector
autoregressive, moving average, Sargent described an equilibrium as a fixed point of a mapping from the perceived law
of motion to the actual law of motion of that form.
Sargent worked in the time domain and proceeded to guess and verify the appropriate orders of the autoregressive and
moving average pieces of the equilibrium representation.
By working in the frequency domain [Kas00] showed how to discover the appropriate orders of the autoregressive and
moving average parts, and also how to compute an equilibrium.
The [PS05] recursive computational method, which stays in the time domain, also discovered appropriate orders of the
autoregressive and moving average pieces.
In addition, by displaying equilibrium representations in the form of [PCL86], [PS05] showed how the moving average
piece is linked to the innovation process of the hidden persistent component of the demand shock.
That scalar innovation process is the additional state variable contributed by the problem of extracting a signal from
equilibrium prices that decision makers face in Townsend’s model.

6 See [AMS02] for a discussion of information assumptions needed to create a situation in which higher order beliefs appear in equilibrium decision
rules. A way to read our findings in light of [AMS02] is that, relative to the number of signals agents observe, Townsend’s section 8 model has too few
random shocks to get higher order beliefs to play a role.

600 Chapter 33. Knowing the Forecasts of Others

Part VII

Asset Pricing and Finance

601

CHAPTER

THIRTYFOUR

ASSET PRICING II: THE LUCAS ASSET PRICING MODEL

Contents

• Asset Pricing II: The Lucas Asset Pricing Model

– Overview

– The Lucas Model

– Exercises

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install interpolation

34.1 Overview

As stated in an earlier lecture, an asset is a claim on a stream of prospective payments.
What is the correct price to pay for such a claim?
The elegant asset pricing model of Lucas [Luc78] attempts to answer this question in an equilibrium setting with risk-
averse agents.
While we mentioned some consequences of Lucas’ model earlier, it is now time to work through the model more carefully
and try to understand where the fundamental asset pricing equation comes from.
A side benefit of studying Lucas’ model is that it provides a beautiful illustration of model building in general and equi-
librium pricing in competitive models in particular.
Another difference to our first asset pricing lecture is that the state space and shock will be continuous rather than discrete.
Let’s start with some imports:

import numpy as np
from interpolation import interp
from numba import njit, prange
from scipy.stats import lognorm
import matplotlib.pyplot as plt
%matplotlib inline

603

https://python-intro.quantecon.org/markov_asset.html
https://python.quantecon.org/markov_asset.html#risk-neutral-pricing
https://python-intro.quantecon.org/markov_asset.html

Advanced Quantitative Economics with Python

/usr/share/miniconda3/envs/quantecon/lib/python3.11/site-packages/numba/core/
↪decorators.py:262: NumbaDeprecationWarning: numba.generated_jit is deprecated.␣
↪Please see the documentation at: https://numba.readthedocs.io/en/stable/
↪reference/deprecation.html#deprecation-of-generated-jit for more information and␣
↪advice on a suitable replacement.
warnings.warn(msg, NumbaDeprecationWarning)

34.2 The Lucas Model

Lucas studied a pure exchange economy with a representative consumer (or household), where
• Pure exchange means that all endowments are exogenous.
• Representative consumer means that either

– there is a single consumer (sometimes also referred to as a household), or
– all consumers have identical endowments and preferences

Either way, the assumption of a representative agent means that prices adjust to eradicate desires to trade.
This makes it very easy to compute competitive equilibrium prices.

34.2.1 Basic Setup

Let’s review the setup.

Assets

There is a single “productive unit” that costlessly generates a sequence of consumption goods {𝑦𝑡}∞
𝑡=0.

Another way to view {𝑦𝑡}∞
𝑡=0 is as a consumption endowment for this economy.

We will assume that this endowment is Markovian, following the exogenous process

𝑦𝑡+1 = 𝐺(𝑦𝑡, 𝜉𝑡+1)

Here {𝜉𝑡} is an IID shock sequence with known distribution 𝜙 and 𝑦𝑡 ≥ 0.
An asset is a claim on all or part of this endowment stream.
The consumption goods {𝑦𝑡}∞

𝑡=0 are nonstorable, so holding assets is the only way to transfer wealth into the future.
For the purposes of intuition, it’s common to think of the productive unit as a “tree” that produces fruit.
Based on this idea, a “Lucas tree” is a claim on the consumption endowment.

604 Chapter 34. Asset Pricing II: The Lucas Asset Pricing Model

Advanced Quantitative Economics with Python

Consumers

A representative consumer ranks consumption streams {𝑐𝑡} according to the time separable utility functional

𝔼
∞

∑
𝑡=0

𝛽𝑡𝑢(𝑐𝑡) (34.1)

Here
• 𝛽 ∈ (0, 1) is a fixed discount factor.
• 𝑢 is a strictly increasing, strictly concave, continuously differentiable period utility function.
• 𝔼 is a mathematical expectation.

34.2.2 Pricing a Lucas Tree

What is an appropriate price for a claim on the consumption endowment?
We’ll price an ex-dividend claim, meaning that

• the seller retains this period’s dividend
• the buyer pays 𝑝𝑡 today to purchase a claim on

– 𝑦𝑡+1 and
– the right to sell the claim tomorrow at price 𝑝𝑡+1

Since this is a competitive model, the first step is to pin down consumer behavior, taking prices as given.
Next, we’ll impose equilibrium constraints and try to back out prices.
In the consumer problem, the consumer’s control variable is the share 𝜋𝑡 of the claim held in each period.
Thus, the consumer problem is to maximize (34.1) subject to

𝑐𝑡 + 𝜋𝑡+1𝑝𝑡 ≤ 𝜋𝑡𝑦𝑡 + 𝜋𝑡𝑝𝑡

along with 𝑐𝑡 ≥ 0 and 0 ≤ 𝜋𝑡 ≤ 1 at each 𝑡.
The decision to hold share 𝜋𝑡 is actually made at time 𝑡 − 1.
But this value is inherited as a state variable at time 𝑡, which explains the choice of subscript.

The Dynamic Program

We can write the consumer problem as a dynamic programming problem.
Our first observation is that prices depend on current information, and current information is really just the endowment
process up until the current period.
In fact, the endowment process is Markovian, so that the only relevant information is the current state 𝑦 ∈ ℝ+ (dropping
the time subscript).
This leads us to guess an equilibrium where price is a function 𝑝 of 𝑦.
Remarks on the solution method

• Since this is a competitive (read: price taking) model, the consumer will take this function 𝑝 as given.
• In this way, we determine consumer behavior given 𝑝 and then use equilibrium conditions to recover 𝑝.

34.2. The Lucas Model 605

Advanced Quantitative Economics with Python

• This is the standard way to solve competitive equilibrium models.
Using the assumption that price is a given function 𝑝 of 𝑦, we write the value function and constraint as

𝑣(𝜋, 𝑦) = max
𝑐,𝜋′

{𝑢(𝑐) + 𝛽 ∫ 𝑣(𝜋′, 𝐺(𝑦, 𝑧))𝜙(𝑑𝑧)}

subject to

𝑐 + 𝜋′𝑝(𝑦) ≤ 𝜋𝑦 + 𝜋𝑝(𝑦) (34.2)

We can invoke the fact that utility is increasing to claim equality in (34.2) and hence eliminate the constraint, obtaining

𝑣(𝜋, 𝑦) = max
𝜋′

{𝑢[𝜋(𝑦 + 𝑝(𝑦)) − 𝜋′𝑝(𝑦)] + 𝛽 ∫ 𝑣(𝜋′, 𝐺(𝑦, 𝑧))𝜙(𝑑𝑧)} (34.3)

The solution to this dynamic programming problem is an optimal policy expressing either 𝜋′ or 𝑐 as a function of the state
(𝜋, 𝑦).

• Each one determines the other, since 𝑐(𝜋, 𝑦) = 𝜋(𝑦 + 𝑝(𝑦)) − 𝜋′(𝜋, 𝑦)𝑝(𝑦)

Next Steps

What we need to do now is determine equilibrium prices.
It seems that to obtain these, we will have to

1. Solve this two-dimensional dynamic programming problem for the optimal policy.
2. Impose equilibrium constraints.
3. Solve out for the price function 𝑝(𝑦) directly.

However, as Lucas showed, there is a related but more straightforward way to do this.

Equilibrium Constraints

Since the consumption good is not storable, in equilibrium we must have 𝑐𝑡 = 𝑦𝑡 for all 𝑡.
In addition, since there is one representative consumer (alternatively, since all consumers are identical), there should be
no trade in equilibrium.
In particular, the representative consumer owns the whole tree in every period, so 𝜋𝑡 = 1 for all 𝑡.
Prices must adjust to satisfy these two constraints.

The Equilibrium Price Function

Now observe that the first-order condition for (34.3) can be written as

𝑢′(𝑐)𝑝(𝑦) = 𝛽 ∫ 𝑣′
1(𝜋′, 𝐺(𝑦, 𝑧))𝜙(𝑑𝑧)

where 𝑣′
1 is the derivative of 𝑣 with respect to its first argument.

To obtain 𝑣′
1 we can simply differentiate the right-hand side of (34.3) with respect to 𝜋, yielding

𝑣′
1(𝜋, 𝑦) = 𝑢′(𝑐)(𝑦 + 𝑝(𝑦))

606 Chapter 34. Asset Pricing II: The Lucas Asset Pricing Model

Advanced Quantitative Economics with Python

Next, we impose the equilibrium constraints while combining the last two equations to get

𝑝(𝑦) = 𝛽 ∫ 𝑢′[𝐺(𝑦, 𝑧)]
𝑢′(𝑦) [𝐺(𝑦, 𝑧) + 𝑝(𝐺(𝑦, 𝑧))]𝜙(𝑑𝑧) (34.4)

In sequential rather than functional notation, we can also write this as

𝑝𝑡 = 𝔼𝑡 [𝛽 𝑢′(𝑐𝑡+1)
𝑢′(𝑐𝑡)

(𝑦𝑡+1 + 𝑝𝑡+1)] (34.5)

This is the famous consumption-based asset pricing equation.
Before discussing it further we want to solve out for prices.

34.2.3 Solving the Model

Equation (34.4) is a functional equation in the unknown function 𝑝.
The solution is an equilibrium price function 𝑝∗.
Let’s look at how to obtain it.

Setting up the Problem

Instead of solving for it directly we’ll follow Lucas’ indirect approach, first setting

𝑓(𝑦) ∶= 𝑢′(𝑦)𝑝(𝑦) (34.6)

so that (34.4) becomes

𝑓(𝑦) = ℎ(𝑦) + 𝛽 ∫ 𝑓[𝐺(𝑦, 𝑧)]𝜙(𝑑𝑧) (34.7)

Here ℎ(𝑦) ∶= 𝛽 ∫ 𝑢′[𝐺(𝑦, 𝑧)]𝐺(𝑦, 𝑧)𝜙(𝑑𝑧) is a function that depends only on the primitives.
Equation (34.7) is a functional equation in 𝑓 .
The plan is to solve out for 𝑓 and convert back to 𝑝 via (34.6).
To solve (34.7) we’ll use a standard method: convert it to a fixed point problem.
First, we introduce the operator 𝑇 mapping 𝑓 into 𝑇 𝑓 as defined by

(𝑇 𝑓)(𝑦) = ℎ(𝑦) + 𝛽 ∫ 𝑓[𝐺(𝑦, 𝑧)]𝜙(𝑑𝑧) (34.8)

In what follows, we refer to 𝑇 as the Lucas operator.
The reason we do this is that a solution to (34.7) now corresponds to a function 𝑓∗ satisfying (𝑇 𝑓∗)(𝑦) = 𝑓∗(𝑦) for all 𝑦.
In other words, a solution is a fixed point of 𝑇 .
This means that we can use fixed point theory to obtain and compute the solution.

34.2. The Lucas Model 607

Advanced Quantitative Economics with Python

A Little Fixed Point Theory

Let 𝑐𝑏ℝ+ be the set of continuous bounded functions 𝑓 ∶ ℝ+ → ℝ+.
We now show that

1. 𝑇 has exactly one fixed point 𝑓∗ in 𝑐𝑏ℝ+.
2. For any 𝑓 ∈ 𝑐𝑏ℝ+, the sequence 𝑇 𝑘𝑓 converges uniformly to 𝑓∗.

Note: If you find the mathematics heavy going you can take 1–2 as given and skip to the next section

Recall the Banach contraction mapping theorem.
It tells us that the previous statements will be true if we can find an 𝛼 < 1 such that

‖𝑇 𝑓 − 𝑇 𝑔‖ ≤ 𝛼‖𝑓 − 𝑔‖, ∀ 𝑓, 𝑔 ∈ 𝑐𝑏ℝ+ (34.9)

Here ‖ℎ‖ ∶= sup𝑥∈ℝ+
|ℎ(𝑥)|.

To see that (34.9) is valid, pick any 𝑓, 𝑔 ∈ 𝑐𝑏ℝ+ and any 𝑦 ∈ ℝ+.
Observe that, since integrals get larger when absolute values are moved to the inside,

|𝑇 𝑓(𝑦) − 𝑇 𝑔(𝑦)| = ∣𝛽 ∫ 𝑓[𝐺(𝑦, 𝑧)]𝜙(𝑑𝑧) − 𝛽 ∫ 𝑔[𝐺(𝑦, 𝑧)]𝜙(𝑑𝑧)∣

≤ 𝛽 ∫ |𝑓[𝐺(𝑦, 𝑧)] − 𝑔[𝐺(𝑦, 𝑧)]| 𝜙(𝑑𝑧)

≤ 𝛽 ∫ ‖𝑓 − 𝑔‖𝜙(𝑑𝑧)

= 𝛽‖𝑓 − 𝑔‖

Since the right-hand side is an upper bound, taking the sup over all 𝑦 on the left-hand side gives (34.9) with 𝛼 ∶= 𝛽.

34.2.4 Computation – An Example

The preceding discussion tells that we can compute 𝑓∗ by picking any arbitrary 𝑓 ∈ 𝑐𝑏ℝ+ and then iterating with 𝑇 .
The equilibrium price function 𝑝∗ can then be recovered by 𝑝∗(𝑦) = 𝑓∗(𝑦)/𝑢′(𝑦).
Let’s try this when ln 𝑦𝑡+1 = 𝛼 ln 𝑦𝑡 + 𝜎𝜖𝑡+1 where {𝜖𝑡} is IID and standard normal.
Utility will take the isoelastic form 𝑢(𝑐) = 𝑐1−𝛾/(1 − 𝛾), where 𝛾 > 0 is the coefficient of relative risk aversion.
We will set up a LucasTree class to hold parameters of the model

class LucasTree:
"""
Class to store parameters of the Lucas tree model.

"""

def __init__(self,
γ=2, # CRRA utility parameter
β=0.95, # Discount factor
α=0.90, # Correlation coefficient
σ=0.1, # Volatility coefficient

(continues on next page)

608 Chapter 34. Asset Pricing II: The Lucas Asset Pricing Model

https://en.wikipedia.org/wiki/Banach_fixed-point_theorem

Advanced Quantitative Economics with Python

(continued from previous page)

grid_size=100):

self.γ, self.β, self.α, self.σ = γ, β, α, σ

Set the grid interval to contain most of the mass of the
stationary distribution of the consumption endowment
ssd = self.σ / np.sqrt(1 - self.α**2)
grid_min, grid_max = np.exp(-4 * ssd), np.exp(4 * ssd)
self.grid = np.linspace(grid_min, grid_max, grid_size)
self.grid_size = grid_size

Set up distribution for shocks
self.ϕ = lognorm(σ)
self.draws = self.ϕ.rvs(500)

self.h = np.empty(self.grid_size)
for i, y in enumerate(self.grid):

self.h[i] = β * np.mean((y**α * self.draws)**(1 - γ))

The following function takes an instance of the LucasTree and generates a jitted version of the Lucas operator

def operator_factory(tree, parallel_flag=True):

"""
Returns approximate Lucas operator, which computes and returns the
updated function Tf on the grid points.

tree is an instance of the LucasTree class

"""

grid, h = tree.grid, tree.h
α, β = tree.α, tree.β
z_vec = tree.draws

@njit(parallel=parallel_flag)
def T(f):

"""
The Lucas operator
"""

Turn f into a function
Af = lambda x: interp(grid, f, x)

Tf = np.empty_like(f)
Apply the T operator to f using Monte Carlo integration
for i in prange(len(grid)):

y = grid[i]
Tf[i] = h[i] + β * np.mean(Af(y**α * z_vec))

return Tf

return T

To solve the model, we write a function that iterates using the Lucas operator to find the fixed point.

34.2. The Lucas Model 609

Advanced Quantitative Economics with Python

def solve_model(tree, tol=1e-6, max_iter=500):
"""
Compute the equilibrium price function associated with Lucas
tree

* tree is an instance of LucasTree

"""
Simplify notation
grid, grid_size = tree.grid, tree.grid_size
γ = tree.γ

T = operator_factory(tree)

i = 0
f = np.ones_like(grid) # Initial guess of f
error = tol + 1
while error > tol and i < max_iter:

Tf = T(f)
error = np.max(np.abs(Tf - f))
f = Tf
i += 1

price = f * grid**γ # Back out price vector

return price

Solving the model and plotting the resulting price function

tree = LucasTree()
price_vals = solve_model(tree)

fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(tree.grid, price_vals, label='$p*(y)$')
ax.set_xlabel('y')
ax.set_ylabel('price')
ax.legend()
plt.show()

610 Chapter 34. Asset Pricing II: The Lucas Asset Pricing Model

Advanced Quantitative Economics with Python

We see that the price is increasing, even if we remove all serial correlation from the endowment process.
The reason is that a larger current endowment reduces current marginal utility.
The price must therefore rise to induce the household to consume the entire endowment (and hence satisfy the resource
constraint).
What happens with a more patient consumer?
Here the orange line corresponds to the previous parameters and the green line is price when 𝛽 = 0.98.
We see that when consumers are more patient the asset becomes more valuable, and the price of the Lucas tree shifts up.
Exercise 1 asks you to replicate this figure.

34.3 Exercises

Exercise 34.3.1
Replicate the figure to show how discount factors affect prices.

Solution to Exercise 34.3.1

fig, ax = plt.subplots(figsize=(10, 6))

for β in (.95, 0.98):
tree = LucasTree(β=β)
grid = tree.grid
price_vals = solve_model(tree)

(continues on next page)

34.3. Exercises 611

Advanced Quantitative Economics with Python

612 Chapter 34. Asset Pricing II: The Lucas Asset Pricing Model

Advanced Quantitative Economics with Python

(continued from previous page)

label = rf'$\beta = {β}$'
ax.plot(grid, price_vals, lw=2, alpha=0.7, label=label)

ax.legend(loc='upper left')
ax.set(xlabel='y', ylabel='price', xlim=(min(grid), max(grid)))
plt.show()

34.3. Exercises 613

Advanced Quantitative Economics with Python

614 Chapter 34. Asset Pricing II: The Lucas Asset Pricing Model

CHAPTER

THIRTYFIVE

ELEMENTARY ASSET PRICING THEORY

Contents

• Elementary Asset Pricing Theory

– Overview

– Key Equation

– Implications of Key Equation

– Expected Return - Beta Representation

– Mean-Variance Frontier

– Sharpe Ratios and the Price of Risk

– Mathematical Structure of Frontier

– Multi-factor Models

– Empirical Implementations

– Exercises

35.1 Overview

This lecture is about some implications of asset-pricing theories that are based on the equation 𝐸𝑚𝑅 = 1, where 𝑅 is
the gross return on an asset, 𝑚 is a stochastic discount factor, and 𝐸 is a mathematical expectation with respect to a joint
probability distribution of 𝑅 and 𝑚.
Instances of this equation occur in many models.

Note: Chapter 1 of [LS18] describes the role that this equation plays in a diverse set of models in macroeconomics,
monetary economics, and public finance.

We aim to convey insights about empirical implications of this equation brought out in the work of Lars Peter Hansen
[HR87] and Lars Peter Hansen and Ravi Jagannathan [HJ91].
By following their footsteps, from that single equation we’ll derive

• a mean-variance frontier
• a single-factor model of excess returns

615

Advanced Quantitative Economics with Python

To do this, we use two ideas:
• the equation 𝐸𝑚𝑅 = 1 that is implied by an application of a law of one price

• a Cauchy-Schwartz inequality
In particular, we’ll apply a Cauchy-Schwartz inequality to a population linear least squares regression equation that is
implied by 𝐸𝑚𝑅 = 1.
We’ll also describe how practitioners have implemented the model using

• cross sections of returns on many assets
• time series of returns on various assets

For background and basic concepts about linear least squares projections, see our lecture orthogonal projections and their
applications.
As a sequel to the material here, please see our lecture two modifications of mean-variance portfolio theory.

35.2 Key Equation

We begin with a key asset pricing equation:

𝐸𝑚𝑅𝑖 = 1 (35.1)

for 𝑖 = 1, … , 𝐼 and where

𝑚 = stochastic discount factor
𝑅𝑖 = random gross return on asset 𝑖
𝐸 ∼ mathematical expectation

The random gross return 𝑅𝑖 for every asset 𝑖 and the scalar stochastic discount factor 𝑚 live in a common probability
space.
[HR87] and [HJ91] explain how existence of a scalar stochastic discount factor that verifies equation (35.1) is implied
by a law of one price that requires that all portfolios of assets that bring the same payouts have the same price.
They also explain how the absence of an arbitrage opportunity implies that the stochastic discount factor 𝑚 ≥ 0.
In order to say something about the uniqueness of a stochastic discount factor, we would have to impose more theoretical
structure than we do in this lecture.
For example, in complete marketsmodels like those illustrated in this lecture equilibrium capital structures with incom-
plete markets, the stochastic discount factor is unique.
In incomplete markets models like those illustrated in this lecture the Aiyagari model, the stochastic discount factor is
not unique.

35.3 Implications of Key Equation

We combine key equation (35.1) with a remark of Lars Peter Hansen that “asset pricing theory is all about covariances”.

Note: Lars Hansen’s remark is a concise summary of ideas in [HR87] and [HJ91]. Important foundations of these ideas
were set down by [Ros76], [Ros78], [HK79], [Kre81], and [CR83].

616 Chapter 35. Elementary Asset Pricing Theory

https://python-advanced.quantecon.org/orth_proj.html
https://python-advanced.quantecon.org/orth_proj.html
https://python-advanced.quantecon.org/black_litterman.html
https://python-advanced.quantecon.org/BCG_incomplete_mkts.html
https://python-advanced.quantecon.org/BCG_incomplete_mkts.html
https://python.quantecon.org/aiyagari.html

Advanced Quantitative Economics with Python

This remark of Lars Hansen refers to the fact that interesting restrictions can be deduced by recognizing that 𝐸𝑚𝑅𝑖 is a
component of the covariance between 𝑚 and 𝑅𝑖 and then using that fact to rearrange equation (35.1).
Let’s do this step by step.
First note that the definition of a covariance cov (𝑚, 𝑅𝑖) = 𝐸(𝑚 − 𝐸𝑚)(𝑅𝑖 − 𝐸𝑅𝑖) implies that

𝐸𝑚𝑅𝑖 = 𝐸𝑚𝐸𝑅𝑖 + cov (𝑚, 𝑅𝑖)

Substituting this result into equation (35.1) gives

1 = 𝐸𝑚𝐸𝑅𝑖 + cov (𝑚, 𝑅𝑖) (35.2)

Next note that for a risk-free asset with non-random gross return 𝑅𝑓 , equation (35.1) becomes

1 = 𝐸𝑅𝑓𝑚 = 𝑅𝑓𝐸𝑚.

This is true because we can pull the constant 𝑅𝑓 outside the mathematical expectation.
It follows that the gross return on a risk-free asset is

𝑅𝑓 = 1/𝐸(𝑚)

Using this formula for 𝑅𝑓 in equation (35.2) and rearranging, it follows that

𝑅𝑓 = 𝐸𝑅𝑖 + cov (𝑚, 𝑅𝑖) 𝑅𝑓

which can be rearranged to become

𝐸𝑅𝑖 = 𝑅𝑓 − cov (𝑚, 𝑅𝑖) 𝑅𝑓 .

It follows that we can express an excess return 𝐸𝑅𝑖 − 𝑅𝑓 on asset 𝑖 relative to the risk-free rate as

𝐸𝑅𝑖 − 𝑅𝑓 = − cov (𝑚, 𝑅𝑖) 𝑅𝑓 (35.3)

Equation (35.3) can be rearranged to display important parts of asset pricing theory.

35.4 Expected Return - Beta Representation

We can obtain the celebrated expected-return-Beta -representation for gross return 𝑅𝑖 by simply rearranging excess
return equation (35.3) to become

𝐸𝑅𝑖 = 𝑅𝑓 +
⎛⎜⎜⎜⎜
⎝

cov (𝑅𝑖, 𝑚)
var(𝑚)⏟⏟⏟⏟⏟

𝛽𝑖,𝑚=regression coefficient

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

− var(𝑚)
𝐸(𝑚)⏟⏟⏟⏟⏟

𝜆𝑚=price of risk

⎞⎟⎟⎟⎟
⎠

or

𝐸𝑅𝑖 = 𝑅𝑓 + 𝛽𝑖,𝑚𝜆𝑚 (35.4)

Here
• 𝛽𝑖,𝑚 is a (population) least squares regression coefficient of gross return 𝑅𝑖 on stochastic discount factor 𝑚
• 𝜆𝑚 is minus the variance of 𝑚 divided by the mean of 𝑚, an object that is sometimes called a price of risk.

35.4. Expected Return - Beta Representation 617

Advanced Quantitative Economics with Python

Because 𝜆𝑚 < 0, equation (35.4) asserts that
• assets whose returns are positively correlated with the stochastic discount factor (SDF) 𝑚 have expected returns
lower than the risk-free rate 𝑅𝑓

• assets whose returns are negatively correlated with the SDF 𝑚 have expected returns higher than the risk-free rate
𝑅𝑓

These patterns will be discussed more below.
In particular, we’ll see that returns that are perfectly negatively correlated with the SDF 𝑚 have a special status:

• they are on a mean-variance frontier
Before we dive into that more, we’ll pause to look at an example of an SDF.
To interpret representation (35.4), the following widely used example helps.
Example
Let 𝑐𝑡 be the logarithm of the consumption of a representative consumer or just a single consumer for whom we have
consumption data.
A popular model of 𝑚 is

𝑚𝑡+1 = 𝛽 𝑈 ′(𝐶𝑡+1)
𝑈 ′(𝐶𝑡)

where 𝐶𝑡 is consumption at time 𝑡, 𝛽 = exp(−𝜌) is a discount factor with 𝜌 being the discount rate, and 𝑈(⋅) is a
concave, twice-diffential utility function.
For a constant relative risk aversion (CRRA) utility function 𝑈(𝐶) = 𝐶1−𝛾

1−𝛾 utility function 𝑈 ′(𝐶) = 𝐶−𝛾 .

In this case, letting 𝑐𝑡 = log(𝐶𝑡), we can write 𝑚𝑡+1 as

𝑚𝑡+1 = exp(−𝜌) exp(−𝛾(𝑐𝑡+1 − 𝑐𝑡))

where 𝜌 > 0, 𝛾 > 0.
A popular model for the growth of log of consumption is

𝑐𝑡+1 − 𝑐𝑡 = 𝜇 + 𝜎𝑐𝜖𝑡+1

where 𝜖𝑡+1 ∼ 𝒩(0, 1).
Here {𝑐𝑡} is a random walk with drift 𝜇, a good approximation to US per capital consumption growth.
Again here

• 𝛾 > 0 is a coefficient of relative risk aversion
• 𝜌 > 0 is a fixed intertemporal discount rate

So we have

𝑚𝑡+1 = exp(−𝜌) exp(−𝛾𝜇 − 𝛾𝜎𝑐𝜖𝑡+1)

In this case

𝐸𝑚𝑡+1 = exp(−𝜌) exp(−𝛾𝜇 + 𝜎2
𝑐𝛾2

2)

and

var(𝑚𝑡+1) = 𝐸(𝑚)[exp(𝜎2
𝑐𝛾2) − 1)]

When 𝛾 > 0, it is true that

618 Chapter 35. Elementary Asset Pricing Theory

Advanced Quantitative Economics with Python

• when consumption growth is high, 𝑚 is low
• when consumption growth is low, 𝑚 is high

According to representation (35.4), an asset with a gross return 𝑅𝑖 that is expected to be high when consumption growth
is low has 𝛽𝑖,𝑚 positive and a low expected return.

• because it has a high gross return when consumption growth is low, it is a good hedge against consumption risk.
That justifies its low average return.

An asset with an 𝑅𝑖 that is low when consumption growth is low has 𝛽𝑖,𝑚 negative and a high expected return.
• because it has a low gross return when consumption growth is low, it is a poor hedge against consumption risk.
That justifies its high average return.

35.5 Mean-Variance Frontier

Now we’ll derive the celebratedmean-variance frontier.
We do this using a method deployed by Lars Peter Hansen and Scott Richard [HR87].

Note: Methods of Hansen and Richard are described and used extensively by [Coc05].

Their idea was rearrange the key equation (35.1), namely, 𝐸𝑚𝑅𝑖 = 1, and then to apply a Cauchy-Schwarz inequality.
A convenient way to remember the Cauchy-Schwartz inequality in our context is that it says that an 𝑅2 in any regression
has to be less than or equal to 1.
(Please note that here 𝑅2 denotes the coefficient of determination in a regression, not a return on an asset!)
Let’s apply that idea to deduce

1 = 𝐸 (𝑚𝑅𝑖) = 𝐸(𝑚)𝐸 (𝑅𝑖) + 𝜌𝑚,𝑅𝑖
𝜎(𝑚)
𝐸(𝑚)𝜎 (𝑅𝑖) (35.5)

where the correlation coefficient 𝜌𝑚,𝑅𝑖 is defined as

𝜌𝑚,𝑅𝑖 ≡ cov (𝑚, 𝑅𝑖)
𝜎(𝑚)𝜎 (𝑅𝑖)

and where 𝜎(⋅) denotes the standard deviation of the variable in parentheses
Equation (35.5) implies

𝐸𝑅𝑖 = 𝑅𝑓 − 𝜌𝑚,𝑅𝑖
𝜎(𝑚)
𝐸(𝑚)𝜎 (𝑅𝑖)

Because 𝜌𝑚,𝑅𝑖 ∈ [−1, 1], it follows that |𝜌𝑚,𝑅𝑖 | ≤ 1 and that

∣𝐸𝑅𝑖 − 𝑅𝑓 ∣ ⩽ 𝜎(𝑚)
𝐸(𝑚)𝜎 (𝑅𝑖) (35.6)

Inequality (35.6) delineates a mean-variance frontier
(Actually, it looks more like a mean-standard-deviation frontier)
Evidently, points on the frontier correspond to gross returns that are perfectly correlated (either positively or negatively)
with the stochastic discount factor 𝑚.

35.5. Mean-Variance Frontier 619

Advanced Quantitative Economics with Python

We summarize this observation as

𝜌𝑚,𝑅𝑖 = { +1 ⟹ 𝑅𝑖 is on lower frontier
−1 ⟹ 𝑅𝑖 is on an upper frontier

Now let’s use matplotlib to draw a mean variance frontier.
In drawing a frontier, we’ll set 𝜎(𝑚) = .25 and 𝐸𝑚 = .99, values roughly consistent with what many studies calibrate
from quarterly US data.

import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

Define the function to plot
def y(x, alpha, beta):

return alpha + beta*x
def z(x, alpha, beta):

return alpha - beta*x

sigmam = .25
Em = .99

Set the values of alpha and beta
alpha = 1/Em
beta = sigmam/Em

Create a range of values for x
x = np.linspace(0, .15, 100)

Calculate the values of y and z
y_values = y(x, alpha, beta)
z_values = z(x, alpha, beta)

Create a figure and axes object
fig, ax = plt.subplots()

Plot y
ax.plot(x, y_values, label=r'$R^f + \frac{\sigma(m)}{E(m)} \sigma(R^i)$')
ax.plot(x, z_values, label=r'$R^f - \frac{\sigma(m)}{E(m)} \sigma(R^i)$')

plt.title('mean standard deviation frontier')
plt.xlabel(r"$\sigma(R^i)$")
plt.ylabel(r"$E (R^i) $")
plt.text(.053, 1.015, "(.05,1.015)")
ax.plot(.05, 1.015, 'o', label="$(\sigma(R^j), E R^j)$")
Add a legend and show the plot
ax.legend()
plt.show()

620 Chapter 35. Elementary Asset Pricing Theory

Advanced Quantitative Economics with Python

The figure shows two straight lines, the blue upper one being the locus of (𝜎(𝑅𝑖), 𝐸(𝑅𝑖) pairs that are on the mean-
variance frontier or mean-standard-deviation frontier.
The green dot refers to a return 𝑅𝑗 that is not on the frontier and that has moments (𝜎(𝑅𝑗), 𝐸𝑅𝑗) = (.05, 1.015).
It is described by the statistical model

𝑅𝑗 = 𝑅𝑖 + 𝜖𝑗

where 𝑅𝑖 is a return that is on the frontier and 𝜖𝑗 is a random variable that has mean zero and that is orthogonal to 𝑅𝑖.
Then 𝐸𝑅𝑗 = 𝐸𝑅𝑖 and, as a consequence of 𝑅𝑗 not being on the frontier,

𝜎2(𝑅𝑗) = 𝜎2(𝑅𝑖) + 𝜎2(𝜖𝑗)

The length of a horizontal line from the point 𝜎(𝑅𝑗), 𝐸(𝑅𝑗) = .05, 1.015 to the frontier equals

√𝜎2(𝑅𝑖) + 𝜎2(𝜖𝑗) − 𝜎(𝑅𝑖)

This is a measure of the part of the risk in 𝑅𝑗 that is not priced because it is uncorrelated with the stochastic discount
factor and so can be diversified away (i.e., averaged out to zero by holding a diversified portfolio).

35.5. Mean-Variance Frontier 621

Advanced Quantitative Economics with Python

35.6 Sharpe Ratios and the Price of Risk

An asset’s Sharpe ratio is defined as

𝐸(𝑅𝑖) − 𝑅𝑓

𝜎(𝑅𝑖)

The above figure reminds us that all assets 𝑅𝑖 whose returns are on the mean-standard deviation frontier satisfy

𝐸(𝑅𝑖) − 𝑅𝑓

𝜎(𝑅𝑖) = 𝜎(𝑚)
𝐸𝑚

The ratio 𝜎(𝑚)
𝐸𝑚 is often called themarket price of risk.

Evidently it equals the maximum Sharpe ratio for any asset or portfolio of assets.

35.7 Mathematical Structure of Frontier

The mathematical structure of the mean-variance frontier described by inequality (35.6) implies that
• all returns on the frontier are perfectly correlated.
Thus,

– Let 𝑅𝑚, 𝑅𝑚𝑣 be two returns on the frontier.
– Then for some scalar 𝑎, a return 𝑅𝑚𝑣 on the mean-variance frontier satisfies the affine equation 𝑅𝑚𝑣 =

𝑅𝑓 + 𝑎 (𝑅𝑚 − 𝑅𝑓) . This is an exact equation with no residual.
• each return 𝑅𝑚𝑣 that is on the mean-variance frontier is perfectly (negatively) correlated with 𝑚

– (𝜌𝑚,𝑅𝑚𝑣 = −1) ⇒ {𝑚 = 𝑎 + 𝑏𝑅𝑚𝑣

𝑅𝑚𝑣 = 𝑒 + 𝑑𝑚 for some scalars 𝑎, 𝑏, 𝑒, 𝑑,

Therefore, any return on the mean-variance frontier is a legitimate stochastic discount factor
• for any mean-variance-efficient return 𝑅𝑚𝑣 that is on the frontier but that is not 𝑅𝑓 , there exists a single-beta
representation for any return 𝑅𝑖 that takes the form:

𝐸𝑅𝑖 = 𝑅𝑓 + 𝛽𝑖,𝑅𝑚𝑣 [𝐸 (𝑅𝑚𝑣) − 𝑅𝑓] (35.7)

• the regression coefficient 𝛽𝑖,𝑅𝑚𝑣 is often called asset 𝑖’s beta
• The special case of a single-beta representation (35.7) with 𝑅𝑖 = 𝑅𝑚𝑣 is

𝐸𝑅𝑚𝑣 = 𝑅𝑓 + 1 ⋅ [𝐸 (𝑅𝑚𝑣) − 𝑅𝑓]

35.8 Multi-factor Models

The single-beta representation (35.7) is a special case of the multi-factor model

𝐸𝑅𝑖 = 𝛾 + 𝛽𝑖,𝑎𝜆𝑎 + 𝛽𝑖,𝑏𝜆𝑏 + ⋯

where 𝜆𝑗 is the price of being exposed to risk factor 𝑓𝑗
𝑡 and 𝛽𝑖,𝑗 is asset 𝑖’s exposure to that risk factor.

622 Chapter 35. Elementary Asset Pricing Theory

Advanced Quantitative Economics with Python

To uncover the 𝛽𝑖,𝑗’s, one takes data on time series of the risk factors 𝑓𝑗
𝑡 that are being priced and specifies the following

least squares regression

𝑅𝑖
𝑡 = 𝑎𝑖 + 𝛽𝑖,𝑎𝑓𝑎

𝑡 + 𝛽𝑖,𝑏𝑓𝑏
𝑡 + … + 𝜖𝑖

𝑡, 𝑡 = 1, 2, … , 𝑇
𝜖𝑖

𝑡 ⟂ 𝑓𝑗
𝑡 , 𝑖 = 1, 2, … , 𝐼; 𝑗 = 𝑎, 𝑏, …

(35.8)

Special cases are:
• a popular single-factor model specifies the single factor 𝑓𝑡 to be the return on the market portfolio
• another popular single-factor model called the consumption-based model specifies the factor to be 𝑚𝑡+1 =

𝛽 𝑢′(𝑐𝑡+1)
𝑢′(𝑐𝑡) , where 𝑐𝑡 is a representative consumer’s time 𝑡 consumption.

As a reminder, model objects are interpreted as follows:
• 𝛽𝑖,𝑎 is the exposure of return 𝑅𝑖 to risk factor 𝑓𝑎

• 𝜆𝑎 is the price of exposure to risk factor 𝑓𝑎

35.9 Empirical Implementations

We briefly describe empirical implementations of multi-factor generalizations of the single-factor model described above.
Two representations of a multi-factor model play importnt roles in empirical applications.
One is the time series regression (35.8)
The other representation entails a cross-section regression of average returns 𝐸𝑅𝑖 for assets 𝑖 = 1, 2, … , 𝐼 on prices
of risk 𝜆𝑗 for 𝑗 = 𝑎, 𝑏, 𝑐, …
Here is the cross-section regression specification for a multi-factor model:

𝐸𝑅𝑖 = 𝛾 + 𝛽𝑖,𝑎𝜆𝑎 + 𝛽𝑖,𝑏𝜆𝑏 + ⋯

Testing strategies:
Time-series and cross-section regressions play roles in both estimating and testing beta representation models.
The basic idea is to implement the following two steps.
Step 1:

• Estimate 𝑎𝑖, 𝛽𝑖,𝑎, 𝛽𝑖,𝑏, ⋯ by running a time series regression: 𝑅𝑖
𝑡 on a constant and 𝑓𝑎

𝑡 , 𝑓𝑏
𝑡 , …

Step 2:
• take the 𝛽𝑖,𝑗’s estimated in step one as regressors together with data on average returns 𝐸𝑅𝑖 over some period and
then estimate the cross-section regression
𝐸 (𝑅𝑖)⏟

average return over time series
= 𝛾 + 𝛽𝑖,𝑎⏟

regressor

𝜆𝑎⏟
regressioncoefficient

+ 𝛽𝑖,𝑏⏟
regressor

𝜆𝑏⏟
regressioncoefficient

+ ⋯ + 𝛼𝑖⏟
pricing errors

, 𝑖 = 1, … , 𝐼; 𝛼𝑖 ⟂ 𝛽𝑖,𝑗, 𝑗 = 𝑎, 𝑏, …⏟⏟⏟⏟⏟⏟⏟⏟⏟
least squares orthogonality condition

• Here ⟂ means orthogonal to
• estimate 𝛾, 𝜆𝑎, 𝜆𝑏, … by an appropriate regression technique, recognizing that the regressors have been generated
by a step 1 regression.

Note that presumably the risk-free return 𝐸𝑅𝑓 = 𝛾.
For excess returns 𝑅𝑒𝑖 = 𝑅𝑖 − 𝑅𝑓 we have

𝐸𝑅𝑒𝑖 = 𝛽𝑖,𝑎𝜆𝑎 + 𝛽𝑖,𝑏𝜆𝑏 + ⋯ + 𝛼𝑖, 𝑖 = 1, … , 𝐼

35.9. Empirical Implementations 623

Advanced Quantitative Economics with Python

In the following exercises, we illustrate aspects of these empirical strategies on artificial data.
Our basic tools are random number generator that we shall use to create artificial samples that conform to the theory and
least squares regressions that let us watch aspects of the theory at work.
These exercises will further convince us that asset pricing theory is mostly about covariances and least squares regressions.

35.10 Exercises

Let’s start with some imports.

import numpy as np
import statsmodels.api as sm
import matplotlib.pyplot as plt
%matplotlib inline

Lots of our calculations will involve computing population and sample OLS regressions.
So we define a function for simple univariate OLS regression that calls the OLS routine from statsmodels.

def simple_ols(X, Y, constant=False):

if constant:
X = sm.add_constant(X)

model = sm.OLS(Y, X)
res = model.fit()

β_hat = res.params[-1]
σ_hat = np.sqrt(res.resid @ res.resid / res.df_resid)

return β_hat, σ_hat

Exercise 35.10.1
Look at the equation,

𝑅𝑖
𝑡 − 𝑅𝑓 = 𝛽𝑖,𝑅𝑚(𝑅𝑚

𝑡 − 𝑅𝑓) + 𝜎𝑖𝜀𝑖,𝑡.

Verify that this equation is a regression equation.

Solution to Exercise 35.10.1
To verify that it is a regression equation we must show that the residual is orthogonal to the regressor.
Our assumptions about mutual orthogonality imply that

𝐸 [𝜖𝑖,𝑡] = 0, 𝐸 [𝜖𝑖,𝑡𝑢𝑡] = 0

It follows that

𝐸 [𝜎𝑖𝜖𝑖,𝑡 (𝑅𝑚
𝑡 − 𝑅𝑓)] = 𝐸 [𝜎𝑖𝜖𝑖,𝑡 (𝜉 + 𝜆𝑢𝑡)]

= 𝜎𝑖𝜉𝐸 [𝜖𝑖,𝑡] + 𝜎𝑖𝜆𝐸 [𝜖𝑖,𝑡𝑢𝑡]
= 0

624 Chapter 35. Elementary Asset Pricing Theory

Advanced Quantitative Economics with Python

Exercise 35.10.2
Give a formula for the regression coefficient 𝛽𝑖,𝑅𝑚 .

Solution to Exercise 35.10.2
The regression coefficient 𝛽𝑖,𝑅𝑚 is

𝛽𝑖,𝑅𝑚 = 𝐶𝑜𝑣 (𝑅𝑖
𝑡 − 𝑅𝑓 , 𝑅𝑚

𝑡 − 𝑅𝑓)
𝑉 𝑎𝑟 (𝑅𝑚

𝑡 − 𝑅𝑓)

Exercise 35.10.3
As in many sciences, it is useful to distinguish a direct problem from an inverse problem.

• A direct problem involves simulating a particular model with known parameter values.
• An inverse problem involves using data to estimate or choose a particular parameter vector from a manifold of
models indexed by a set of parameter vectors.

Please assume the parameter values provided below and then simulate 2000 observations from the theory specified above
for 5 assets, 𝑖 = 1, … , 5.

𝐸 [𝑅𝑓] = 0.02
𝜎𝑓 = 0.00

𝜉 = 0.06
𝜆 = 0.04

𝛽1,𝑅𝑚 = 0.2
𝜎1 = 0.04

𝛽2,𝑅𝑚 = .4
𝜎2 = 0.04

𝛽3,𝑅𝑚 = .6
𝜎3 = 0.04

𝛽4,𝑅𝑚 = .8
𝜎4 = 0.04

𝛽5,𝑅𝑚 = 1.0
𝜎5 = 0.04

More Exercises
Now come some even more fun parts!
Our theory implies that there exist values of two scalars, 𝑎 and 𝑏, such that a legitimate stochastic discount factor is:

𝑚𝑡 = 𝑎 + 𝑏𝑅𝑚
𝑡

The parameters 𝑎, 𝑏 must satisfy the following equations:
𝐸[(𝑎 + 𝑏𝑅𝑚

𝑡)𝑅𝑚
𝑡)] = 1

𝐸[(𝑎 + 𝑏𝑅𝑚
𝑡)𝑅𝑓

𝑡)] = 1

35.10. Exercises 625

Advanced Quantitative Economics with Python

Solution to Exercise 35.10.3
Direct Problem:

Code for the direct problem

assign the parameter values
ERf = 0.02
σf = 0.00 # Zejin: Hi tom, here is where you manipulate σf
ξ = 0.06
λ = 0.08
βi = np.array([0.2, .4, .6, .8, 1.0])
σi = np.array([0.04, 0.04, 0.04, 0.04, 0.04])

in this cell we set the number of assets and number of observations
we first set T to a large number to verify our computation results
T = 2000
N = 5

simulate i.i.d. random shocks
e = np.random.normal(size=T)
u = np.random.normal(size=T)
ϵ = np.random.normal(size=(N, T))

simulate the return on a risk-free asset
Rf = ERf + σf * e

simulate the return on the market portfolio
excess_Rm = ξ + λ * u
Rm = Rf + excess_Rm

simulate the return on asset i
Ri = np.empty((N, T))
for i in range(N):

Ri[i, :] = Rf + βi[i] * excess_Rm + σi[i] * ϵ[i, :]

Now that we have a panel of data, we’d like to solve the inverse problem by assuming the theory specified above and
estimating the coefficients given above.

Code for the inverse problem

Inverse Problem:
We will solve the inverse problem by simple OLS regressions.

1. estimate 𝐸 [𝑅𝑓] and 𝜎𝑓

ERf_hat, σf_hat = simple_ols(np.ones(T), Rf)

ERf_hat, σf_hat

626 Chapter 35. Elementary Asset Pricing Theory

Advanced Quantitative Economics with Python

(0.020000000000000046, 4.5114090308141905e-17)

Let’s compare these with the true population parameter values.

ERf, σf

(0.02, 0.0)

2. 𝜉 and 𝜆

ξ_hat, λ_hat = simple_ols(np.ones(T), Rm - Rf)

ξ_hat, λ_hat

(0.06051831926143628, 0.0831043596927417)

ξ, λ

(0.06, 0.08)

3. 𝛽𝑖,𝑅𝑚 and 𝜎𝑖

βi_hat = np.empty(N)
σi_hat = np.empty(N)

for i in range(N):
βi_hat[i], σi_hat[i] = simple_ols(Rm - Rf, Ri[i, :] - Rf)

βi_hat, σi_hat

(array([0.2030222 , 0.40860934, 0.60112208, 0.79299306, 0.98719609]),
array([0.0394464 , 0.04107632, 0.04049028, 0.03958968, 0.0394058]))

βi, σi

(array([0.2, 0.4, 0.6, 0.8, 1.]), array([0.04, 0.04, 0.04, 0.04, 0.04]))

Q: How close did your estimates come to the parameters we specified?

Exercise 35.10.4
Using the equations above, find a system of two linear equations that you can solve for 𝑎 and 𝑏 as functions of the
parameters (𝜆, 𝜉, 𝐸[𝑅𝑓]).
Write a function that can solve these equations.
Please check the condition number of a key matrix that must be inverted to determine a, b

35.10. Exercises 627

Advanced Quantitative Economics with Python

Solution to Exercise 35.10.4
The system of two linear equations is shown below:

𝑎((𝐸(𝑅𝑓) + 𝜉) + 𝑏((𝐸(𝑅𝑓) + 𝜉)2 + 𝜆2 + 𝜎2
𝑓) = 1

𝑎𝐸(𝑅𝑓) + 𝑏(𝐸(𝑅𝑓)2 + 𝜉𝐸(𝑅𝑓) + 𝜎2
𝑓) = 1

Code here
def solve_ab(ERf, σf, λ, ξ):

M = np.empty((2, 2))
M[0, 0] = ERf + ξ
M[0, 1] = (ERf + ξ) ** 2 + λ ** 2 + σf ** 2
M[1, 0] = ERf
M[1, 1] = ERf ** 2 + ξ * ERf + σf ** 2

a, b = np.linalg.solve(M, np.ones(2))
condM = np.linalg.cond(M)

return a, b, condM

Let’s try to solve 𝑎 and 𝑏 using the actual model parameters.

a, b, condM = solve_ab(ERf, σf, λ, ξ)

a, b, condM

(87.49999999999999, -468.7499999999999, 54.406619883717504)

Exercise 35.10.5
Using the estimates of the parameters that you generated above, compute the implied stochastic discount factor.

Solution to Exercise 35.10.5
Now let’s pass ̂𝐸(𝑅𝑓), �̂�𝑓 , �̂�, ̂𝜉 to the function solve_ab.

a_hat, b_hat, M_hat = solve_ab(ERf_hat, σf_hat, λ_hat, ξ_hat)

a_hat, b_hat, M_hat

(85.2779993565599, -438.1363108439368, 51.12966252880233)

628 Chapter 35. Elementary Asset Pricing Theory

CHAPTER

THIRTYSIX

TWO MODIFICATIONS OF MEAN-VARIANCE PORTFOLIO THEORY

Contents

• Two Modifications of Mean-Variance Portfolio Theory

– Overview

– Mean-Variance Portfolio Choice

– Estimating Mean and Variance

– Black-Litterman Starting Point

– Details

– Adding Views

– Bayesian Interpretation

– Curve Decolletage

– Black-Litterman Recommendation as Regularization

– A Robust Control Operator

– A Robust Mean-Variance Portfolio Model

– Appendix

– Special Case – IID Sample

– Dependence and Sampling Frequency

– Frequency and the Mean Estimator

36.1 Overview

This lecture describes extensions to the classical mean-variance portfolio theory summarized in our lecture Elementary
Asset Pricing Theory.
The classic theory described there assumes that a decision maker completely trusts the statistical model that he posits to
govern the joint distribution of returns on a list of available assets.
Both extensions described here put distrust of that statistical model into the mind of the decision maker.
One is a model of Black and Litterman [BL92] that imputes to the decision maker distrust of historically estimated mean
returns but still complete trust of estimated covariances of returns.

629

https://python-advanced.quantecon.org/asset_pricing_lph.html
https://python-advanced.quantecon.org/asset_pricing_lph.html

Advanced Quantitative Economics with Python

The second model also imputes to the decision maker doubts about his statistical model, but now by saying that, because
of that distrust, the decision maker uses a version of robust control theory described in this lecture Robustness.
The famous Black-Litterman (1992) [BL92] portfolio choice model was motivated by the finding that with high fre-
quency or moderately high frequency data, means are more difficult to estimate than variances.
A model of robust portfolio choice that we’ll describe below also begins from the same starting point.
To begin, we’ll take for granted that means are more difficult to estimate that covariances and will focus on how Black and
Litterman, on the one hand, an robust control theorists, on the other, would recommend modifying the mean-variance
portfolio choice model to take that into account.
At the end of this lecture, we shall use some rates of convergence results and some simulations to verify how means are
more difficult to estimate than variances.
Among the ideas in play in this lecture will be

• Mean-variance portfolio theory
• Bayesian approaches to estimating linear regressions
• A risk-sensitivity operator and its connection to robust control theory

In summary, we’ll describe two ways to modify the classic mean-variance portfolio choice model in ways designed to
make its recommendations more plausible.
Both of the adjustments that we describe are designed to confront a widely recognized embarrassment to mean-variance
portfolio theory, namely, that it usually implies taking very extreme long-short portfolio positions.
The two approaches build on a common and widespread hunch – that because it is much easier statistically to estimate
covariances of excess returns than it is to estimate their means, it makes sense to adjust investors’ subjective beliefs about
mean returns in order to render more plausible decisions.
Let’s start with some imports:

import numpy as np
import scipy.stats as stat
import matplotlib.pyplot as plt
%matplotlib inline
from ipywidgets import interact, FloatSlider

36.2 Mean-Variance Portfolio Choice

A risk-free security earns one-period net return 𝑟𝑓 .
An 𝑛 × 1 vector of risky securities earns an 𝑛 × 1 vector ⃗𝑟 − 𝑟𝑓1 of excess returns, where 1 is an 𝑛 × 1 vector of ones.
The excess return vector is multivariate normal with mean 𝜇 and covariance matrix Σ, which we express either as

⃗𝑟 − 𝑟𝑓1 ∼ 𝒩(𝜇, Σ)

or

⃗𝑟 − 𝑟𝑓1 = 𝜇 + 𝐶𝜖

where 𝜖 ∼ 𝒩(0, 𝐼) is an 𝑛 × 1 random vector.
Let 𝑤 be an 𝑛 × 1 vector of portfolio weights.

630 Chapter 36. Two Modifications of Mean-Variance Portfolio Theory

https://python-advanced.quantecon.org/robustness.html

Advanced Quantitative Economics with Python

A portfolio consisting 𝑤 earns returns

𝑤′(⃗𝑟 − 𝑟𝑓1) ∼ 𝒩(𝑤′𝜇, 𝑤′Σ𝑤)

The mean-variance portfolio choice problem is to choose 𝑤 to maximize

𝑈(𝜇, Σ; 𝑤) = 𝑤′𝜇 − 𝛿
2𝑤′Σ𝑤 (36.1)

where 𝛿 > 0 is a risk-aversion parameter. The first-order condition for maximizing (36.1) with respect to the vector 𝑤 is

𝜇 = 𝛿Σ𝑤

which implies the following design of a risky portfolio:

𝑤 = (𝛿Σ)−1𝜇 (36.2)

36.3 Estimating Mean and Variance

The key inputs into the portfolio choice model (36.2) are
• estimates of the parameters 𝜇, Σ of the random excess return vector(⃗𝑟 − 𝑟𝑓1)
• the risk-aversion parameter 𝛿

A standard way of estimating 𝜇 is maximum-likelihood or least squares; that amounts to estimating 𝜇 by a sample mean
of excess returns and estimating Σ by a sample covariance matrix.

36.4 Black-Litterman Starting Point

When estimates of 𝜇 and Σ from historical sample means and covariances have been combined with plausible values of
the risk-aversion parameter 𝛿 to compute an optimal portfolio from formula (36.2), a typical outcome has been 𝑤’s with
extreme long and short positions.
A common reaction to these outcomes is that they are so implausible that a portfolio manager cannot recommend them
to a customer.

np.random.seed(12)

N = 10 # Number of assets
T = 200 # Sample size

random market portfolio (sum is normalized to 1)
w_m = np.random.rand(N)
w_m = w_m / (w_m.sum())

True risk premia and variance of excess return (constructed
so that the Sharpe ratio is 1)
μ = (np.random.randn(N) + 5) /100 # Mean excess return (risk premium)
S = np.random.randn(N, N) # Random matrix for the covariance matrix
V = S @ S.T # Turn the random matrix into symmetric psd
Make sure that the Sharpe ratio is one
Σ = V * (w_m @ μ)**2 / (w_m @ V @ w_m)

(continues on next page)

36.3. Estimating Mean and Variance 631

Advanced Quantitative Economics with Python

(continued from previous page)

Risk aversion of market portfolio holder
δ = 1 / np.sqrt(w_m @ Σ @ w_m)

Generate a sample of excess returns
excess_return = stat.multivariate_normal(μ, Σ)
sample = excess_return.rvs(T)

Estimate μ and Σ
μ_est = sample.mean(0).reshape(N, 1)
Σ_est = np.cov(sample.T)

w = np.linalg.solve(δ * Σ_est, μ_est)

fig, ax = plt.subplots(figsize=(8, 5))
ax.set_title('Mean-variance portfolio weights recommendation and the market portfolio

↪')
ax.plot(np.arange(N)+1, w, 'o', c='k', label='w (mean-variance)')
ax.plot(np.arange(N)+1, w_m, 'o', c='r', label='w_m (market portfolio)')
ax.vlines(np.arange(N)+1, 0, w, lw=1)
ax.vlines(np.arange(N)+1, 0, w_m, lw=1)
ax.axhline(0, c='k')
ax.axhline(-1, c='k', ls='--')
ax.axhline(1, c='k', ls='--')
ax.set_xlabel('Assets')
ax.xaxis.set_ticks(np.arange(1, N+1, 1))
plt.legend(numpoints=1, fontsize=11)
plt.show()

632 Chapter 36. Two Modifications of Mean-Variance Portfolio Theory

Advanced Quantitative Economics with Python

Black and Litterman’s responded to this situation in the following way:
• They continue to accept (36.2) as a good model for choosing an optimal portfolio 𝑤.
• They want to continue to allow the customer to express his or her risk tolerance by setting 𝛿.
• LeavingΣ at its maximum-likelihood value, they push 𝜇 away from its maximum-likelihood value in a way designed
to make portfolio choices that are more plausible in terms of conforming to what most people actually do.

In particular, given Σ and a plausible value of 𝛿, Black and Litterman reverse engineered a vector 𝜇𝐵𝐿 of mean excess
returns that makes the 𝑤 implied by formula (36.2) equal the actual market portfolio 𝑤𝑚, so that

𝑤𝑚 = (𝛿Σ)−1𝜇𝐵𝐿

36.5 Details

Let’s define

𝑤′
𝑚𝜇 ≡ (𝑟𝑚 − 𝑟𝑓)

as the (scalar) excess return on the market portfolio 𝑤𝑚.
Define

𝜎2 = 𝑤′
𝑚Σ𝑤𝑚

as the variance of the excess return on the market portfolio 𝑤𝑚.
Define

SR𝑚 = 𝑟𝑚 − 𝑟𝑓
𝜎

as the Sharpe-ratio on the market portfolio 𝑤𝑚.
Let 𝛿𝑚 be the value of the risk aversion parameter that induces an investor to hold the market portfolio in light of the
optimal portfolio choice rule (36.2).
Evidently, portfolio rule (36.2) then implies that 𝑟𝑚 − 𝑟𝑓 = 𝛿𝑚𝜎2 or

𝛿𝑚 = 𝑟𝑚 − 𝑟𝑓
𝜎2

or

𝛿𝑚 = SR𝑚
𝜎

Following the Black-Litterman philosophy, our first step will be to back a value of 𝛿𝑚 from
• an estimate of the Sharpe-ratio, and
• our maximum likelihood estimate of 𝜎 drawn from our estimates or 𝑤𝑚 and Σ

The second key Black-Litterman step is then to use this value of 𝛿 together with the maximum likelihood estimate of Σ
to deduce a 𝜇BL that verifies portfolio rule (36.2) at the market portfolio 𝑤 = 𝑤𝑚

𝜇𝑚 = 𝛿𝑚Σ𝑤𝑚

The starting point of the Black-Litterman portfolio choice model is thus a pair (𝛿𝑚, 𝜇𝑚) that tells the customer to hold
the market portfolio.

36.5. Details 633

Advanced Quantitative Economics with Python

Observed mean excess market return
r_m = w_m @ μ_est

Estimated variance of the market portfolio
σ_m = w_m @ Σ_est @ w_m

Sharpe-ratio
sr_m = r_m / np.sqrt(σ_m)

Risk aversion of market portfolio holder
d_m = r_m / σ_m

Derive "view" which would induce the market portfolio
μ_m = (d_m * Σ_est @ w_m).reshape(N, 1)

fig, ax = plt.subplots(figsize=(8, 5))
ax.set_title(r'Difference between $\hat{\mu}$ (estimate) and μ_{BL} (market␣

↪implied)')
ax.plot(np.arange(N)+1, μ_est, 'o', c='k', label='$\hat{\mu}$')
ax.plot(np.arange(N)+1, μ_m, 'o', c='r', label='μ_{BL}')
ax.vlines(np.arange(N) + 1, μ_m, μ_est, lw=1)
ax.axhline(0, c='k', ls='--')
ax.set_xlabel('Assets')
ax.xaxis.set_ticks(np.arange(1, N+1, 1))
plt.legend(numpoints=1)
plt.show()

634 Chapter 36. Two Modifications of Mean-Variance Portfolio Theory

Advanced Quantitative Economics with Python

36.6 Adding Views

Black and Litterman start with a baseline customer who asserts that he or she shares the market’s views, which means
that he or she believes that excess returns are governed by

⃗𝑟 − 𝑟𝑓1 ∼ 𝒩(𝜇𝐵𝐿, Σ) (36.3)

Black and Litterman would advise that customer to hold the market portfolio of risky securities.
Black and Litterman then imagine a consumer who would like to express a view that differs from the market’s.
The consumer wants appropriately to mix his view with the market’s before using (36.2) to choose a portfolio.
Suppose that the customer’s view is expressed by a hunch that rather than (36.3), excess returns are governed by

⃗𝑟 − 𝑟𝑓1 ∼ 𝒩(̂𝜇, 𝜏Σ)

where 𝜏 > 0 is a scalar parameter that determines how the decision maker wants to mix his view ̂𝜇 with the market’s
view 𝜇BL.
Black and Litterman would then use a formula like the following one to mix the views ̂𝜇 and 𝜇BL

̃𝜇 = (Σ−1 + (𝜏Σ)−1)−1(Σ−1𝜇𝐵𝐿 + (𝜏Σ)−1 ̂𝜇) (36.4)

Black and Litterman would then advise the customer to hold the portfolio associated with these views implied by rule
(36.2):

�̃� = (𝛿Σ)−1 ̃𝜇

This portfolio �̃� will deviate from the portfolio 𝑤𝐵𝐿 in amounts that depend on the mixing parameter 𝜏 .
If ̂𝜇 is the maximum likelihood estimator and 𝜏 is chosen heavily to weight this view, then the customer’s portfolio will
involve big short-long positions.

def black_litterman(λ, μ1, μ2, Σ1, Σ2):
"""
This function calculates the Black-Litterman mixture
mean excess return and covariance matrix
"""
Σ1_inv = np.linalg.inv(Σ1)
Σ2_inv = np.linalg.inv(Σ2)

μ_tilde = np.linalg.solve(Σ1_inv + λ * Σ2_inv,
Σ1_inv @ μ1 + λ * Σ2_inv @ μ2)

return μ_tilde

τ = 1
μ_tilde = black_litterman(1, μ_m, μ_est, Σ_est, τ * Σ_est)

The Black-Litterman recommendation for the portfolio weights
w_tilde = np.linalg.solve(δ * Σ_est, μ_tilde)

τ_slider = FloatSlider(min=0.05, max=10, step=0.5, value=τ)

@interact(τ=τ_slider)
def BL_plot(τ):

μ_tilde = black_litterman(1, μ_m, μ_est, Σ_est, τ * Σ_est)
w_tilde = np.linalg.solve(δ * Σ_est, μ_tilde)

(continues on next page)

36.6. Adding Views 635

Advanced Quantitative Economics with Python

(continued from previous page)

fig, ax = plt.subplots(1, 2, figsize=(16, 6))
ax[0].plot(np.arange(N)+1, μ_est, 'o', c='k',

label=r'$\hat{\mu}$ (subj view)')
ax[0].plot(np.arange(N)+1, μ_m, 'o', c='r',

label=r'μ_{BL} (market)')
ax[0].plot(np.arange(N)+1, μ_tilde, 'o', c='y',

label=r'$\tilde{\mu}$ (mixture)')
ax[0].vlines(np.arange(N)+1, μ_m, μ_est, lw=1)
ax[0].axhline(0, c='k', ls='--')
ax[0].set(xlim=(0, N+1), xlabel='Assets',

title=r'Relationship between $\hat{\mu}$, μ_{BL}, and $ \tilde{\mu}
↪$')

ax[0].xaxis.set_ticks(np.arange(1, N+1, 1))
ax[0].legend(numpoints=1)

ax[1].set_title('Black-Litterman portfolio weight recommendation')
ax[1].plot(np.arange(N)+1, w, 'o', c='k', label=r'w (mean-variance)')
ax[1].plot(np.arange(N)+1, w_m, 'o', c='r', label=r'w_{m} (market, BL)')
ax[1].plot(np.arange(N)+1, w_tilde, 'o', c='y',

label=r'\tilde{w} (mixture)')
ax[1].vlines(np.arange(N)+1, 0, w, lw=1)
ax[1].vlines(np.arange(N)+1, 0, w_m, lw=1)
ax[1].axhline(0, c='k')
ax[1].axhline(-1, c='k', ls='--')
ax[1].axhline(1, c='k', ls='--')
ax[1].set(xlim=(0, N+1), xlabel='Assets',

title='Black-Litterman portfolio weight recommendation')
ax[1].xaxis.set_ticks(np.arange(1, N+1, 1))
ax[1].legend(numpoints=1)
plt.show()

interactive(children=(FloatSlider(value=1.0, description='τ', max=10.0, min=0.05,␣
↪step=0.5), Output()), _dom_c…

36.7 Bayesian Interpretation

Consider the following Bayesian interpretation of the Black-Litterman recommendation.
The prior belief over the mean excess returns is consistent with the market portfolio and is given by

𝜇 ∼ 𝒩(𝜇𝐵𝐿, Σ)
Given a particular realization of the mean excess returns 𝜇 one observes the average excess returns ̂𝜇 on the market
according to the distribution

̂𝜇 ∣ 𝜇, Σ ∼ 𝒩(𝜇, 𝜏Σ)
where 𝜏 is typically small capturing the idea that the variation in the mean is smaller than the variation of the individual
random variable.
Given the realized excess returns one should then update the prior over the mean excess returns according to Bayes rule.
The corresponding posterior over mean excess returns is normally distributed with mean

(Σ−1 + (𝜏Σ)−1)−1(Σ−1𝜇𝐵𝐿 + (𝜏Σ)−1 ̂𝜇)

636 Chapter 36. Two Modifications of Mean-Variance Portfolio Theory

Advanced Quantitative Economics with Python

The covariance matrix is

(Σ−1 + (𝜏Σ)−1)−1

Hence, the Black-Litterman recommendation is consistent with the Bayes update of the prior over the mean excess returns
in light of the realized average excess returns on the market.

36.8 Curve Decolletage

Consider two independent “competing” views on the excess market returns

⃗𝑟𝑒 ∼ 𝒩(𝜇𝐵𝐿, Σ)

and

⃗𝑟𝑒 ∼ 𝒩(̂𝜇, 𝜏Σ)

A special feature of the multivariate normal random variable𝑍 is that its density function depends only on the (Euclidiean)
length of its realization 𝑧.
Formally, let the 𝑘-dimensional random vector be

𝑍 ∼ 𝒩(𝜇, Σ)

then

̄𝑍 ≡ Σ(𝑍 − 𝜇) ∼ 𝒩(0, 𝐼)

and so the points where the density takes the same value can be described by the ellipse

̄𝑧 ⋅ ̄𝑧 = (𝑧 − 𝜇)′Σ−1(𝑧 − 𝜇) = ̄𝑑 (36.5)

where ̄𝑑 ∈ ℝ+ denotes the (transformation) of a particular density value.
The curves defined by equation (36.5) can be labeled as iso-likelihood ellipses

Remark: More generally there is a class of density functions that possesses this feature, i.e.

∃𝑔 ∶ ℝ+ ↦ ℝ+ and 𝑐 ≥ 0, s.t. the density 𝑓 of 𝑍 has the form 𝑓(𝑧) = 𝑐𝑔(𝑧 ⋅ 𝑧)

This property is called spherical symmetry (see p 81. in Leamer (1978) [Lea78]).
In our specific example, we can use the pair (̄𝑑1, ̄𝑑2) as being two “likelihood” values for which the corresponding iso-
likelihood ellipses in the excess return space are given by

(⃗𝑟𝑒 − 𝜇𝐵𝐿)′Σ−1(⃗𝑟𝑒 − 𝜇𝐵𝐿) = ̄𝑑1

(⃗𝑟𝑒 − ̂𝜇)′ (𝜏Σ)−1 (⃗𝑟𝑒 − ̂𝜇) = ̄𝑑2

Notice that for particular ̄𝑑1 and ̄𝑑2 values the two ellipses have a tangency point.
These tangency points, indexed by the pairs (̄𝑑1, ̄𝑑2), characterize points ⃗𝑟𝑒 from which there exists no deviation where
one can increase the likelihood of one view without decreasing the likelihood of the other view.
The pairs (̄𝑑1, ̄𝑑2) for which there is such a point outlines a curve in the excess return space. This curve is reminiscent of
the Pareto curve in an Edgeworth-box setting.
Dickey (1975) [Dic75] calls it a curve decolletage.

36.8. Curve Decolletage 637

Advanced Quantitative Economics with Python

Leamer (1978) [Lea78] calls it an information contract curve and describes it by the following program: maximize the
likelihood of one view, say the Black-Litterman recommendation while keeping the likelihood of the other view at least
at a prespecified constant ̄𝑑2

̄𝑑1(̄𝑑2) ≡ max
⃗𝑟𝑒

(⃗𝑟𝑒 − 𝜇𝐵𝐿)′Σ−1(⃗𝑟𝑒 − 𝜇𝐵𝐿)

subject to (⃗𝑟𝑒 − ̂𝜇)′(𝜏Σ)−1(⃗𝑟𝑒 − ̂𝜇) ≥ ̄𝑑2

Denoting the multiplier on the constraint by 𝜆, the first-order condition is

2(⃗𝑟𝑒 − 𝜇𝐵𝐿)′Σ−1 + 𝜆2(⃗𝑟𝑒 − ̂𝜇)′(𝜏Σ)−1 = 0

which defines the information contract curve between 𝜇𝐵𝐿 and ̂𝜇

⃗𝑟𝑒 = (Σ−1 + 𝜆(𝜏Σ)−1)−1(Σ−1𝜇𝐵𝐿 + 𝜆(𝜏Σ)−1 ̂𝜇) (36.6)

Note that if 𝜆 = 1, (36.6) is equivalent with (36.4) and it identifies one point on the information contract curve.
Furthermore, because 𝜆 is a function of the minimum likelihood ̄𝑑2 on the RHS of the constraint, by varying ̄𝑑2 (or 𝜆),
we can trace out the whole curve as the figure below illustrates.

np.random.seed(1987102)

N = 2 # Number of assets
T = 200 # Sample size
τ = 0.8

Random market portfolio (sum is normalized to 1)
w_m = np.random.rand(N)
w_m = w_m / (w_m.sum())

μ = (np.random.randn(N) + 5) / 100
S = np.random.randn(N, N)
V = S @ S.T
Σ = V * (w_m @ μ)**2 / (w_m @ V @ w_m)

excess_return = stat.multivariate_normal(μ, Σ)
sample = excess_return.rvs(T)

μ_est = sample.mean(0).reshape(N, 1)
Σ_est = np.cov(sample.T)

σ_m = w_m @ Σ_est @ w_m
d_m = (w_m @ μ_est) / σ_m
μ_m = (d_m * Σ_est @ w_m).reshape(N, 1)

N_r1, N_r2 = 100, 100
r1 = np.linspace(-0.04, .1, N_r1)
r2 = np.linspace(-0.02, .15, N_r2)

λ_grid = np.linspace(.001, 20, 100)
curve = np.asarray([black_litterman(λ, μ_m, μ_est, Σ_est,

τ * Σ_est).flatten() for λ in λ_grid])

λ_slider = FloatSlider(min=.1, max=7, step=.5, value=1)

@interact(λ=λ_slider)
def decolletage(λ):

(continues on next page)

638 Chapter 36. Two Modifications of Mean-Variance Portfolio Theory

Advanced Quantitative Economics with Python

(continued from previous page)

dist_r_BL = stat.multivariate_normal(μ_m.squeeze(), Σ_est)
dist_r_hat = stat.multivariate_normal(μ_est.squeeze(), τ * Σ_est)

X, Y = np.meshgrid(r1, r2)
Z_BL = np.zeros((N_r1, N_r2))
Z_hat = np.zeros((N_r1, N_r2))

for i in range(N_r1):
for j in range(N_r2):

Z_BL[i, j] = dist_r_BL.pdf(np.hstack([X[i, j], Y[i, j]]))
Z_hat[i, j] = dist_r_hat.pdf(np.hstack([X[i, j], Y[i, j]]))

μ_tilde = black_litterman(λ, μ_m, μ_est, Σ_est, τ * Σ_est).flatten()

fig, ax = plt.subplots(figsize=(10, 6))
ax.contourf(X, Y, Z_hat, cmap='viridis', alpha =.4)
ax.contourf(X, Y, Z_BL, cmap='viridis', alpha =.4)
ax.contour(X, Y, Z_BL, [dist_r_BL.pdf(μ_tilde)], cmap='viridis', alpha=.9)
ax.contour(X, Y, Z_hat, [dist_r_hat.pdf(μ_tilde)], cmap='viridis', alpha=.9)
ax.scatter(μ_est[0], μ_est[1])
ax.scatter(μ_m[0], μ_m[1])
ax.scatter(μ_tilde[0], μ_tilde[1], c='k', s=20*3)

ax.plot(curve[:, 0], curve[:, 1], c='k')
ax.axhline(0, c='k', alpha=.8)
ax.axvline(0, c='k', alpha=.8)
ax.set_xlabel(r'Excess return on the first asset, $r_{e, 1}$')
ax.set_ylabel(r'Excess return on the second asset, $r_{e, 2}$')
ax.text(μ_est[0] + 0.003, μ_est[1], r'$\hat{\mu}$')
ax.text(μ_m[0] + 0.003, μ_m[1] + 0.005, r'μ_{BL}')
plt.show()

interactive(children=(FloatSlider(value=1.0, description='λ', max=7.0, min=0.1,␣
↪step=0.5), Output()), _dom_cla…

Note that the line that connects the two points ̂𝜇 and 𝜇𝐵𝐿 is linear, which comes from the fact that the covariance matrices
of the two competing distributions (views) are proportional to each other.
To illustrate the fact that this is not necessarily the case, consider another example using the same parameter values, except
that the “second view” constituting the constraint has covariance matrix 𝜏𝐼 instead of 𝜏Σ.
This leads to the following figure, on which the curve connecting ̂𝜇 and 𝜇𝐵𝐿 are bending

λ_grid = np.linspace(.001, 20000, 1000)
curve = np.asarray([black_litterman(λ, μ_m, μ_est, Σ_est,

τ * np.eye(N)).flatten() for λ in λ_grid])

λ_slider = FloatSlider(min=5, max=1500, step=100, value=200)

@interact(λ=λ_slider)
def decolletage(λ):

dist_r_BL = stat.multivariate_normal(μ_m.squeeze(), Σ_est)
dist_r_hat = stat.multivariate_normal(μ_est.squeeze(), τ * np.eye(N))

X, Y = np.meshgrid(r1, r2)
Z_BL = np.zeros((N_r1, N_r2))

(continues on next page)

36.8. Curve Decolletage 639

Advanced Quantitative Economics with Python

(continued from previous page)

Z_hat = np.zeros((N_r1, N_r2))

for i in range(N_r1):
for j in range(N_r2):

Z_BL[i, j] = dist_r_BL.pdf(np.hstack([X[i, j], Y[i, j]]))
Z_hat[i, j] = dist_r_hat.pdf(np.hstack([X[i, j], Y[i, j]]))

μ_tilde = black_litterman(λ, μ_m, μ_est, Σ_est, τ * np.eye(N)).flatten()

fig, ax = plt.subplots(figsize=(10, 6))
ax.contourf(X, Y, Z_hat, cmap='viridis', alpha=.4)
ax.contourf(X, Y, Z_BL, cmap='viridis', alpha=.4)
ax.contour(X, Y, Z_BL, [dist_r_BL.pdf(μ_tilde)], cmap='viridis', alpha=.9)
ax.contour(X, Y, Z_hat, [dist_r_hat.pdf(μ_tilde)], cmap='viridis', alpha=.9)
ax.scatter(μ_est[0], μ_est[1])
ax.scatter(μ_m[0], μ_m[1])

ax.scatter(μ_tilde[0], μ_tilde[1], c='k', s=20*3)

ax.plot(curve[:, 0], curve[:, 1], c='k')
ax.axhline(0, c='k', alpha=.8)
ax.axvline(0, c='k', alpha=.8)
ax.set_xlabel(r'Excess return on the first asset, $r_{e, 1}$')
ax.set_ylabel(r'Excess return on the second asset, $r_{e, 2}$')
ax.text(μ_est[0] + 0.003, μ_est[1], r'$\hat{\mu}$')
ax.text(μ_m[0] + 0.003, μ_m[1] + 0.005, r'μ_{BL}')
plt.show()

interactive(children=(FloatSlider(value=200.0, description='λ', max=1500.0, min=5.
↪0, step=100.0), Output()), _…

36.9 Black-Litterman Recommendation as Regularization

First, consider the OLS regression

min
𝛽

‖𝑋𝛽 − 𝑦‖2

which yields the solution

̂𝛽𝑂𝐿𝑆 = (𝑋′𝑋)−1𝑋′𝑦

A common performance measure of estimators is the mean squared error (MSE).
An estimator is “good” if its MSE is relatively small. Suppose that 𝛽0 is the “true” value of the coefficient, then the MSE
of the OLS estimator is

mse(̂𝛽𝑂𝐿𝑆, 𝛽0) ∶= 𝔼‖ ̂𝛽𝑂𝐿𝑆 − 𝛽0‖2 = 𝔼‖ ̂𝛽𝑂𝐿𝑆 − 𝔼𝛽𝑂𝐿𝑆‖2⏟⏟⏟⏟⏟⏟⏟⏟⏟
variance

+ ‖𝔼 ̂𝛽𝑂𝐿𝑆 − 𝛽0‖2⏟⏟⏟⏟⏟⏟⏟
bias

From this decomposition, one can see that in order for the MSE to be small, both the bias and the variance terms must
be small.
For example, consider the case when 𝑋 is a 𝑇 -vector of ones (where 𝑇 is the sample size), so ̂𝛽𝑂𝐿𝑆 is simply the sample
average, while 𝛽0 ∈ ℝ is defined by the true mean of 𝑦.

640 Chapter 36. Two Modifications of Mean-Variance Portfolio Theory

Advanced Quantitative Economics with Python

In this example the MSE is

mse(̂𝛽𝑂𝐿𝑆, 𝛽0) = 1
𝑇 2 𝔼 (

𝑇
∑
𝑡=1

(𝑦𝑡 − 𝛽0))
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟
variance

+ 0⏟
bias

However, because there is a trade-off between the estimator’s bias and variance, there are cases when by permitting a
small bias we can substantially reduce the variance so overall the MSE gets smaller.
A typical scenario when this proves to be useful is when the number of coefficients to be estimated is large relative to the
sample size.
In these cases, one approach to handle the bias-variance trade-off is the so called Tikhonov regularization.
A general form with regularization matrix Γ can be written as

min
𝛽

{‖𝑋𝛽 − 𝑦‖2 + ‖Γ(𝛽 − ̃𝛽)‖2}

which yields the solution

̂𝛽𝑅𝑒𝑔 = (𝑋′𝑋 + Γ′Γ)−1(𝑋′𝑦 + Γ′Γ ̃𝛽)

Substituting the value of ̂𝛽𝑂𝐿𝑆 yields

̂𝛽𝑅𝑒𝑔 = (𝑋′𝑋 + Γ′Γ)−1(𝑋′𝑋 ̂𝛽𝑂𝐿𝑆 + Γ′Γ ̃𝛽)

Often, the regularization matrix takes the form Γ = 𝜆𝐼 with 𝜆 > 0 and ̃𝛽 = 0.
Then the Tikhonov regularization is equivalent to what is called ridge regression in statistics.
To illustrate how this estimator addresses the bias-variance trade-off, we compute the MSE of the ridge estimator

mse(̂𝛽ridge, 𝛽0) = 1
(𝑇 + 𝜆)2 𝔼 (

𝑇
∑
𝑡=1

(𝑦𝑡 − 𝛽0))
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
variance

+ (𝜆
𝑇 + 𝜆)

2
𝛽2

0⏟⏟⏟⏟⏟⏟⏟
bias

The ridge regression shrinks the coefficients of the estimated vector towards zero relative to the OLS estimates thus
reducing the variance term at the cost of introducing a “small” bias.
However, there is nothing special about the zero vector.

When ̃𝛽 ≠ 0 shrinkage occurs in the direction of ̃𝛽.
Now, we can give a regularization interpretation of the Black-Litterman portfolio recommendation.
To this end, first simplify the equation (36.4) that characterizes the Black-Litterman recommendation

̃𝜇 = (Σ−1 + (𝜏Σ)−1)−1(Σ−1𝜇𝐵𝐿 + (𝜏Σ)−1 ̂𝜇)
= (1 + 𝜏−1)−1ΣΣ−1(𝜇𝐵𝐿 + 𝜏−1 ̂𝜇)
= (1 + 𝜏−1)−1(𝜇𝐵𝐿 + 𝜏−1 ̂𝜇)

In our case, ̂𝜇 is the estimated mean excess returns of securities. This could be written as a vector autoregression where
• 𝑦 is the stacked vector of observed excess returns of size (𝑁𝑇 × 1) – 𝑁 securities and 𝑇 observations.

• 𝑋 =
√

𝑇 −1(𝐼𝑁 ⊗ 𝜄𝑇) where 𝐼𝑁 is the identity matrix and 𝜄𝑇 is a column vector of ones.

36.9. Black-Litterman Recommendation as Regularization 641

Advanced Quantitative Economics with Python

Correspondingly, the OLS regression of 𝑦 on 𝑋 would yield the mean excess returns as coefficients.
With Γ =

√
𝜏𝑇 −1(𝐼𝑁 ⊗ 𝜄𝑇) we can write the regularized version of the mean excess return estimation

̂𝛽𝑅𝑒𝑔 = (𝑋′𝑋 + Γ′Γ)−1(𝑋′𝑋 ̂𝛽𝑂𝐿𝑆 + Γ′Γ ̃𝛽)
= (1 + 𝜏)−1𝑋′𝑋(𝑋′𝑋)−1(̂𝛽𝑂𝐿𝑆 + 𝜏 ̃𝛽)
= (1 + 𝜏)−1(̂𝛽𝑂𝐿𝑆 + 𝜏 ̃𝛽)
= (1 + 𝜏−1)−1(𝜏−1 ̂𝛽𝑂𝐿𝑆 + ̃𝛽)

Given that ̂𝛽𝑂𝐿𝑆 = ̂𝜇 and ̃𝛽 = 𝜇𝐵𝐿 in the Black-Litterman model, we have the following interpretation of the model’s
recommendation.
The estimated (personal) view of the mean excess returns, ̂𝜇 that would lead to extreme short-long positions are “shrunk”
towards the conservative market view, 𝜇𝐵𝐿, that leads to the more conservative market portfolio.
So the Black-Litterman procedure results in a recommendation that is a compromise between the conservative market
portfolio and the more extreme portfolio that is implied by estimated “personal” views.

36.10 A Robust Control Operator

The Black-Litterman approach is partly inspired by the econometric insight that it is easier to estimate covariances of
excess returns than the means.
That is what gave Black and Litterman license to adjust investors’ perception of mean excess returns while not tampering
with the covariance matrix of excess returns.
The robust control theory is another approach that also hinges on adjusting mean excess returns but not covariances.
Associated with a robust control problem is what Hansen and Sargent [HS01], [HS08a] call a T operator.
Let’s define the T operator as it applies to the problem at hand.
Let 𝑥 be an 𝑛 × 1 Gaussian random vector with mean vector 𝜇 and covariance matrix Σ = 𝐶𝐶′. This means that 𝑥 can
be represented as

𝑥 = 𝜇 + 𝐶𝜖

where 𝜖 ∼ 𝒩(0, 𝐼).
Let 𝜙(𝜖) denote the associated standardized Gaussian density.
Let 𝑚(𝜖, 𝜇) be a likelihood ratio, meaning that it satisfies

• 𝑚(𝜖, 𝜇) > 0
• ∫ 𝑚(𝜖, 𝜇)𝜙(𝜖)𝑑𝜖 = 1

That is, 𝑚(𝜖, 𝜇) is a non-negative random variable with mean 1.
Multiplying 𝜙(𝜖) by the likelihood ratio 𝑚(𝜖, 𝜇) produces a distorted distribution for 𝜖, namely

̃𝜙(𝜖) = 𝑚(𝜖, 𝜇)𝜙(𝜖)

The next concept that we need is the entropy of the distorted distribution ̃𝜙 with respect to 𝜙.
Entropy is defined as

ent = ∫ log𝑚(𝜖, 𝜇)𝑚(𝜖, 𝜇)𝜙(𝜖)𝑑𝜖

642 Chapter 36. Two Modifications of Mean-Variance Portfolio Theory

Advanced Quantitative Economics with Python

or

ent = ∫ log𝑚(𝜖, 𝜇) ̃𝜙(𝜖)𝑑𝜖

That is, relative entropy is the expected value of the likelihood ratio 𝑚 where the expectation is taken with respect to the
twisted density ̃𝜙.
Relative entropy is non-negative. It is a measure of the discrepancy between two probability distributions.
As such, it plays an important role in governing the behavior of statistical tests designed to discriminate one probability
distribution from another.
We are ready to define the T operator.
Let 𝑉 (𝑥) be a value function.
Define

T (𝑉 (𝑥)) = min
𝑚(𝜖,𝜇)

∫ 𝑚(𝜖, 𝜇)[𝑉 (𝜇 + 𝐶𝜖) + 𝜃 log𝑚(𝜖, 𝜇)]𝜙(𝜖)𝑑𝜖

= − log 𝜃 ∫ exp(−𝑉 (𝜇 + 𝐶𝜖)
𝜃) 𝜙(𝜖)𝑑𝜖

This asserts that T is an indirect utility function for a minimization problem in which an adversary chooses a distorted
probability distribution ̃𝜙 to lower expected utility, subject to a penalty term that gets bigger the larger is relative entropy.
Here the penalty parameter

𝜃 ∈ [𝜃, +∞]

is a robustness parameter when it is +∞, there is no scope for the minimizing agent to distort the distribution, so no
robustness to alternative distributions is acquired.
As 𝜃 is lowered, more robustness is achieved.

Note: The T operator is sometimes called a risk-sensitivity operator.

We shall apply T to the special case of a linear value function𝑤′(⃗𝑟−𝑟𝑓1)where ⃗𝑟−𝑟𝑓1 ∼ 𝒩(𝜇, Σ) or ⃗𝑟−𝑟𝑓1 = 𝜇+𝐶𝜖
and 𝜖 ∼ 𝒩(0, 𝐼).
The associated worst-case distribution of 𝜖 is Gaussian with mean 𝑣 = −𝜃−1𝐶′𝑤 and covariance matrix 𝐼
(When the value function is affine, the worst-case distribution distorts the mean vector of 𝜖 but not the covariance matrix
of 𝜖).
For utility function argument 𝑤′(⃗𝑟 − 𝑟𝑓1)

T(⃗𝑟 − 𝑟𝑓1) = 𝑤′𝜇 + 𝜁 − 1
2𝜃𝑤′Σ𝑤

and entropy is

𝑣′𝑣
2 = 1

2𝜃2 𝑤′𝐶𝐶′𝑤

36.10. A Robust Control Operator 643

Advanced Quantitative Economics with Python

36.11 A Robust Mean-Variance Portfolio Model

According to criterion (36.1), the mean-variance portfolio choice problem chooses 𝑤 to maximize

𝐸[𝑤(⃗𝑟 − 𝑟𝑓1)]] − var[𝑤(⃗𝑟 − 𝑟𝑓1)]

which equals

𝑤′𝜇 − 𝛿
2𝑤′Σ𝑤

A robust decision maker can be modeled as replacing the mean return 𝐸[𝑤(⃗𝑟 − 𝑟𝑓1)] with the risk-sensitive criterion

T[𝑤(⃗𝑟 − 𝑟𝑓1)] = 𝑤′𝜇 − 1
2𝜃𝑤′Σ𝑤

that comes from replacing the mean 𝜇 of ⃗𝑟 − 𝑟_𝑓1 with the worst-case mean

𝜇 − 𝜃−1Σ𝑤

Notice how the worst-case mean vector depends on the portfolio 𝑤.
The operator T is the indirect utility function that emerges from solving a problem in which an agent who chooses proba-
bilities does so in order to minimize the expected utility of a maximizing agent (in our case, the maximizing agent chooses
portfolio weights 𝑤).
The robust version of the mean-variance portfolio choice problem is then to choose a portfolio 𝑤 that maximizes

T[𝑤(⃗𝑟 − 𝑟𝑓1)] − 𝛿
2𝑤′Σ𝑤

or

𝑤′(𝜇 − 𝜃−1Σ𝑤) − 𝛿
2𝑤′Σ𝑤 (36.7)

The minimizer of (36.7) is

𝑤rob = 1
𝛿 + 𝛾 Σ−1𝜇

where 𝛾 ≡ 𝜃−1 is sometimes called the risk-sensitivity parameter.
An increase in the risk-sensitivity parameter 𝛾 shrinks the portfolio weights toward zero in the same way that an increase
in risk aversion does.

36.12 Appendix

We want to illustrate the “folk theorem” that with high or moderate frequency data, it is more difficult to estimate means
than variances.
In order to operationalize this statement, we take two analog estimators:

• sample average: �̄�𝑁 = 1
𝑁 ∑𝑁

𝑖=1 𝑋𝑖

• sample variance: 𝑆𝑁 = 1
𝑁−1 ∑𝑁

𝑡=1(𝑋𝑖 − �̄�𝑁)2

644 Chapter 36. Two Modifications of Mean-Variance Portfolio Theory

Advanced Quantitative Economics with Python

to estimate the unconditional mean and unconditional variance of the random variable 𝑋, respectively.
To measure the “difficulty of estimation”, we use mean squared error (MSE), that is the average squared difference
between the estimator and the true value.
Assuming that the process {𝑋𝑖}is ergodic, both analog estimators are known to converge to their true values as the sample
size 𝑁 goes to infinity.
More precisely for all 𝜀 > 0

lim
𝑁→∞

𝑃 {∣�̄�𝑁 − 𝔼𝑋∣ > 𝜀} = 0

and

lim
𝑁→∞

𝑃 {|𝑆𝑁 − 𝕍𝑋| > 𝜀} = 0

A necessary condition for these convergence results is that the associated MSEs vanish as 𝑁 goes to infinity, or in other
words,

MSE(�̄�𝑁 , 𝔼𝑋) = 𝑜(1) and MSE(𝑆𝑁 , 𝕍𝑋) = 𝑜(1)

Even if the MSEs converge to zero, the associated rates might be different. Looking at the limit of the relative MSE (as
the sample size grows to infinity)

MSE(𝑆𝑁 , 𝕍𝑋)
MSE(�̄�𝑁 , 𝔼𝑋) = 𝑜(1)

𝑜(1) →
𝑁→∞

𝐵

can inform us about the relative (asymptotic) rates.
We will show that in general, with dependent data, the limit 𝐵 depends on the sampling frequency.
In particular, we find that the rate of convergence of the variance estimator is less sensitive to increased sampling frequency
than the rate of convergence of the mean estimator.
Hence, we can expect the relative asymptotic rate, 𝐵, to get smaller with higher frequency data, illustrating that “it is
more difficult to estimate means than variances”.
That is, we need significantly more data to obtain a given precision of the mean estimate than for our variance estimate.

36.13 Special Case – IID Sample

We start our analysis with the benchmark case of IID data.
Consider a sample of size 𝑁 generated by the following IID process,

𝑋𝑖 ∼ 𝒩(𝜇, 𝜎2)

Taking �̄�𝑁 to estimate the mean, the MSE is

MSE(�̄�𝑁 , 𝜇) = 𝜎2

𝑁
Taking 𝑆𝑁 to estimate the variance, the MSE is

MSE(𝑆𝑁 , 𝜎2) = 2𝜎4

𝑁 − 1
Both estimators are unbiased and hence the MSEs reflect the corresponding variances of the estimators.

36.13. Special Case – IID Sample 645

Advanced Quantitative Economics with Python

Furthermore, both MSEs are 𝑜(1) with a (multiplicative) factor of difference in their rates of convergence:

MSE(𝑆𝑁 , 𝜎2)
MSE(�̄�𝑁 , 𝜇) = 𝑁2𝜎2

𝑁 − 1 →
𝑁→∞

2𝜎2

We are interested in how this (asymptotic) relative rate of convergence changes as increasing sampling frequency puts
dependence into the data.

36.14 Dependence and Sampling Frequency

To investigate how sampling frequency affects relative rates of convergence, we assume that the data are generated by a
mean-reverting continuous time process of the form

𝑑𝑋𝑡 = −𝜅(𝑋𝑡 − 𝜇)𝑑𝑡 + 𝜎𝑑𝑊𝑡

where 𝜇is the unconditional mean, 𝜅 > 0 is a persistence parameter, and {𝑊𝑡} is a standardized Brownian motion.
Observations arising from this system in particular discrete periods 𝒯(ℎ) ≡ {𝑛ℎ ∶ 𝑛 ∈ ℤ}withℎ > 0 can be described
by the following process

𝑋𝑡+1 = (1 − exp(−𝜅ℎ))𝜇 + exp(−𝜅ℎ)𝑋𝑡 + 𝜖𝑡,ℎ

where

𝜖𝑡,ℎ ∼ 𝒩(0, Σℎ) with Σℎ = 𝜎2(1 − exp(−2𝜅ℎ))
2𝜅

We call ℎ the frequency parameter, whereas 𝑛 represents the number of lags between observations.
Hence, the effective distance between two observations 𝑋𝑡 and 𝑋𝑡+𝑛 in the discrete time notation is equal to ℎ ⋅ 𝑛 in
terms of the underlying continuous time process.
Straightforward calculations show that the autocorrelation function for the stochastic process {𝑋𝑡}𝑡∈𝒯(ℎ) is

Γℎ(𝑛) ≡ corr(𝑋𝑡+ℎ𝑛, 𝑋𝑡) = exp(−𝜅ℎ𝑛)

and the auto-covariance function is

𝛾ℎ(𝑛) ≡ cov(𝑋𝑡+ℎ𝑛, 𝑋𝑡) = exp(−𝜅ℎ𝑛)𝜎2

2𝜅 .

It follows that if 𝑛 = 0, the unconditional variance is given by 𝛾ℎ(0) = 𝜎2
2𝜅 irrespective of the sampling frequency.

The following figure illustrates how the dependence between the observations is related to the sampling frequency
• For any given ℎ, the autocorrelation converges to zero as we increase the distance – 𝑛– between the observations.
This represents the “weak dependence” of the 𝑋 process.

• Moreover, for a fixed lag length, 𝑛, the dependence vanishes as the sampling frequency goes to infinity. In fact,
letting ℎ go to ∞ gives back the case of IID data.

μ = .0
κ = .1
σ = .5
var_uncond = σ**2 / (2 * κ)

n_grid = np.linspace(0, 40, 100)

(continues on next page)

646 Chapter 36. Two Modifications of Mean-Variance Portfolio Theory

Advanced Quantitative Economics with Python

(continued from previous page)

autocorr_h1 = np.exp(-κ * n_grid * 1)
autocorr_h2 = np.exp(-κ * n_grid * 2)
autocorr_h5 = np.exp(-κ * n_grid * 5)
autocorr_h1000 = np.exp(-κ * n_grid * 1e8)

fig, ax = plt.subplots(figsize=(8, 4))
ax.plot(n_grid, autocorr_h1, label=r'$h=1$', c='darkblue', lw=2)
ax.plot(n_grid, autocorr_h2, label=r'$h=2$', c='darkred', lw=2)
ax.plot(n_grid, autocorr_h5, label=r'$h=5$', c='orange', lw=2)
ax.plot(n_grid, autocorr_h1000, label=r'"$h=\infty$"', c='darkgreen', lw=2)
ax.legend()
ax.grid()
ax.set(title=r'Autocorrelation functions, $\Gamma_h(n)$',

xlabel=r'Lags between observations, n')
plt.show()

36.15 Frequency and the Mean Estimator

Consider again the AR(1) process generated by discrete sampling with frequency ℎ. Assume that we have a sample of
size 𝑁 and we would like to estimate the unconditional mean – in our case the true mean is 𝜇.
Again, the sample average is an unbiased estimator of the unconditional mean

𝔼[�̄�𝑁] = 1
𝑁

𝑁
∑
𝑖=1

𝔼[𝑋𝑖] = 𝔼[𝑋0] = 𝜇

36.15. Frequency and the Mean Estimator 647

Advanced Quantitative Economics with Python

The variance of the sample mean is given by

𝕍 (�̄�𝑁) = 𝕍 (1
𝑁

𝑁
∑
𝑖=1

𝑋𝑖)

= 1
𝑁2 (

𝑁
∑
𝑖=1

𝕍(𝑋𝑖) + 2
𝑁−1
∑
𝑖=1

𝑁
∑

𝑠=𝑖+1
cov(𝑋𝑖, 𝑋𝑠))

= 1
𝑁2 (𝑁𝛾(0) + 2

𝑁−1
∑
𝑖=1

𝑖 ⋅ 𝛾 (ℎ ⋅ (𝑁 − 𝑖)))

= 1
𝑁2 (𝑁 𝜎2

2𝜅 + 2
𝑁−1
∑
𝑖=1

𝑖 ⋅ exp(−𝜅ℎ(𝑁 − 𝑖))𝜎2

2𝜅)

It is explicit in the above equation that time dependence in the data inflates the variance of the mean estimator through
the covariance terms.
Moreover, as we can see, a higher sampling frequency—smaller ℎ—makes all the covariance terms larger, everything
else being fixed.
This implies a relatively slower rate of convergence of the sample average for high-frequency data.
Intuitively, stronger dependence across observations for high-frequency data reduces the “information content” of each
observation relative to the IID case.
We can upper bound the variance term in the following way

𝕍(�̄�𝑁) = 1
𝑁2 (𝑁𝜎2 + 2

𝑁−1
∑
𝑖=1

𝑖 ⋅ exp(−𝜅ℎ(𝑁 − 𝑖))𝜎2)

≤ 𝜎2

2𝜅𝑁 (1 + 2
𝑁−1
∑
𝑖=1

⋅ exp(−𝜅ℎ(𝑖)))

= 𝜎2

2𝜅𝑁⏟
IID case

(1 + 21 − exp(−𝜅ℎ)𝑁−1

1 − exp(−𝜅ℎ))

Asymptotically, the term exp(−𝜅ℎ)𝑁−1 vanishes and the dependence in the data inflates the benchmark IID variance by
a factor of

(1 + 2 1
1 − exp(−𝜅ℎ))

This long run factor is larger the higher is the frequency (the smaller is ℎ).
Therefore, we expect the asymptotic relative MSEs, 𝐵, to change with time-dependent data. We just saw that the mean
estimator’s rate is roughly changing by a factor of

(1 + 2 1
1 − exp(−𝜅ℎ))

Unfortunately, the variance estimator’s MSE is harder to derive.
Nonetheless, we can approximate it by using (large sample) simulations, thus getting an idea about how the asymptotic
relative MSEs changes in the sampling frequency ℎ relative to the IID case that we compute in closed form.

def sample_generator(h, N, M):
ϕ = (1 - np.exp(-κ * h)) * μ
ρ = np.exp(-κ * h)

(continues on next page)

648 Chapter 36. Two Modifications of Mean-Variance Portfolio Theory

Advanced Quantitative Economics with Python

(continued from previous page)

s = σ**2 * (1 - np.exp(-2 * κ * h)) / (2 * κ)

mean_uncond = μ
std_uncond = np.sqrt(σ**2 / (2 * κ))

ε_path = stat.norm(0, np.sqrt(s)).rvs((M, N))

y_path = np.zeros((M, N + 1))
y_path[:, 0] = stat.norm(mean_uncond, std_uncond).rvs(M)

for i in range(N):
y_path[:, i + 1] = ϕ + ρ * y_path[:, i] + ε_path[:, i]

return y_path

Generate large sample for different frequencies
N_app, M_app = 1000, 30000 # Sample size, number of simulations
h_grid = np.linspace(.1, 80, 30)

var_est_store = []
mean_est_store = []
labels = []

for h in h_grid:
labels.append(h)
sample = sample_generator(h, N_app, M_app)
mean_est_store.append(np.mean(sample, 1))
var_est_store.append(np.var(sample, 1))

var_est_store = np.array(var_est_store)
mean_est_store = np.array(mean_est_store)

Save mse of estimators
mse_mean = np.var(mean_est_store, 1) + (np.mean(mean_est_store, 1) - μ)**2
mse_var = np.var(var_est_store, 1) \

+ (np.mean(var_est_store, 1) - var_uncond)**2

benchmark_rate = 2 * var_uncond # IID case

Relative MSE for large samples
rate_h = mse_var / mse_mean

fig, ax = plt.subplots(figsize=(8, 5))
ax.plot(h_grid, rate_h, c='darkblue', lw=2,

label=r'large sample relative MSE, $B(h)$')
ax.axhline(benchmark_rate, c='k', ls='--', label=r'IID benchmark')
ax.set_title('Relative MSE for large samples as a function of sampling \

frequency \n MSE(S_N) relative to MSE($\\bar X_N$)')
ax.set_xlabel('Sampling frequency, h')
ax.legend()
plt.show()

36.15. Frequency and the Mean Estimator 649

Advanced Quantitative Economics with Python

The above figure illustrates the relationship between the asymptotic relative MSEs and the sampling frequency
• We can see that with low-frequency data – large values of ℎ – the ratio of asymptotic rates approaches the IID case.
• As ℎ gets smaller – the higher the frequency – the relative performance of the variance estimator is better in the
sense that the ratio of asymptotic rates gets smaller. That is, as the time dependence gets more pronounced, the
rate of convergence of the mean estimator’s MSE deteriorates more than that of the variance estimator.

650 Chapter 36. Two Modifications of Mean-Variance Portfolio Theory

CHAPTER

THIRTYSEVEN

IRRELEVANCE OF CAPITAL STRUCTURES WITH COMPLETE
MARKETS

Contents

• Irrelevance of Capital Structures with Complete Markets

– Introduction

– Competitive equilibrium

– Code

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon
!pip install interpolation
!conda install -y -c plotly plotly plotly-orca

37.1 Introduction

This is a prolegomenon to another lecture Equilibrium Capital Structures with Incomplete Markets about a model with
incomplete markets authored by Bisin, Clementi, and Gottardi [BCG18].
We adopt specifications of preferences and technologies very close to Bisin, Clemente, and Gottardi’s but unlike them
assume that there are complete markets in one-period Arrow securities.
This simplification of BCG’s setup helps us by

• creating a benchmark economy to compare with outcomes in BCG’s incomplete markets economy
• creating a good guess for initial values of some equilibrium objects to be computed in BCG’s incomplete markets
economy via an iterative algorithm

• illustrating classic complete markets outcomes that include
– indeterminacy of consumers’ portfolio choices
– indeterminacy of firms’ financial structures that underlies a Modigliani-Miller theorem [MM58]

• introducing Big K, little k issues in a simple context that will recur in the BCG incomplete markets
environment

A Big K, little k analysis also played roles in this quantecon lecture as well as here and here.

651

https://python.quantecon.org/cass_koopmans_1.html
https://python.quantecon.org/rational_expectations.html

Advanced Quantitative Economics with Python

37.1.1 Setup

The economy lasts for two periods, 𝑡 = 0, 1.
There are two types of consumers named 𝑖 = 1, 2.
A scalar random variable 𝜖 with probability density 𝑔(𝜖) affects both

• the return in period 1 from investing 𝑘 ≥ 0 in physical capital in period 0.
• exogenous period 1 endowments of the consumption good for agents of types 𝑖 = 1 and 𝑖 = 2.

Type 𝑖 = 1 and 𝑖 = 2 agents’ period 1 endowments are correlated with the return on physical capital in different ways.
We discuss two arrangements:

• a command economy in which a benevolent planner chooses 𝑘 and allocates goods to the two types of consumers
in each period and each random second period state

• a competitive equilibrium with markets in claims on physical capital and a complete set (possibly a continuum) of
one-period Arrow securities that pay period 1 consumption goods contingent on the realization of random variable
𝜖.

37.1.2 Endowments

There is a single consumption good in period 0 and at each random state 𝜖 in period 1.
Economy-wide endowments in periods 0 and 1 are

𝑤0
𝑤1(𝜖) in state 𝜖

Soon we’ll explain how aggregate endowments are divided between type 𝑖 = 1 and type 𝑖 = 2 consumers.
We don’t need to do that in order to describe a social planning problem.

37.1.3 Technology:

Where 𝛼 ∈ (0, 1) and 𝐴 > 0

𝑐1
0 + 𝑐2

0 + 𝑘 = 𝑤1
0 + 𝑤2

0
𝑐1

1(𝜖) + 𝑐2
1(𝜖) = 𝑤1

1(𝜖) + 𝑤2
1(𝜖) + 𝑒𝜖𝐴𝑘𝛼, 𝑘 ≥ 0

37.1.4 Preferences:

A consumer of type 𝑖 orders period 0 consumption 𝑐𝑖
0 and state 𝜖, period 1 consumption 𝑐𝑖

1(𝜖) by

𝑢𝑖 = 𝑢(𝑐𝑖
0) + 𝛽 ∫ 𝑢(𝑐𝑖

1(𝜖))𝑔(𝜖)𝑑𝜖, 𝑖 = 1, 2

𝛽 ∈ (0, 1) and the one-period utility function is

𝑢(𝑐) = {
𝑐1−𝛾
1−𝛾 if 𝛾 ≠ 1
log 𝑐 if 𝛾 = 1

652 Chapter 37. Irrelevance of Capital Structures with Complete Markets

Advanced Quantitative Economics with Python

37.1.5 Parameterizations

Following BCG, we shall employ the following parameterizations:

𝜖 ∼ 𝒩(𝜇, 𝜎2)

𝑢(𝑐) = 𝑐1−𝛾

1 − 𝛾
𝑤𝑖

1(𝜖) = 𝑒−𝜒𝑖𝜇−.5𝜒2
𝑖 𝜎2+𝜒𝑖𝜖, 𝜒𝑖 ∈ [0, 1]

Sometimes instead of asuming 𝜖 ∼ 𝑔(𝜖) = 𝒩(0, 𝜎2), we’ll assume that 𝑔(⋅) is a probability mass function that serves as
a discrete approximation to a standardized normal density.

37.1.6 Pareto criterion and planning problem

The planner’s objective function is

obj = 𝜙1𝑢1 + 𝜙2𝑢2, 𝜙𝑖 ≥ 0, 𝜙1 + 𝜙2 = 1

where 𝜙𝑖 ≥ 0 is a Pareto weight that the planner attaches to a consumer of type 𝑖.
We form the following Lagrangian for the planner’s problem:

𝐿 =
2

∑
𝑖=1

𝜙𝑖 [𝑢(𝑐𝑖
0) + 𝛽 ∫ 𝑢(𝑐𝑖

1(𝜖))𝑔(𝜖)𝑑𝜖]

+ 𝜆0 [𝑤1
0 + 𝑤2

0 − 𝑘 − 𝑐1
0 − 𝑐2

0]

+ 𝛽 ∫ 𝜆1(𝜖) [𝑤1
1(𝜖) + 𝑤2

1(𝜖) + 𝑒𝜖𝐴𝑘𝛼 − 𝑐1
1(𝜖) − 𝑐2

1(𝜖)] 𝑔(𝜖)𝑑𝜖

First-order necessary optimality conditions for the planning problem are:

𝑐1
0 ∶ 𝜙1𝑢′(𝑐1

0) − 𝜆0 = 0
𝑐2

0 ∶ 𝜙2𝑢′(𝑐2
0) − 𝜆0 = 0

𝑐1
1(𝜖) ∶ 𝜙1𝛽𝑢′(𝑐1

1(𝜖))𝑔(𝜖) − 𝛽𝜆1(𝜖)𝑔(𝜖) = 0
𝑐2

1(𝜖) ∶ 𝜙2𝛽𝑢′(𝑐2
1(𝜖))𝑔(𝜖) − 𝛽𝜆1(𝜖)𝑔(𝜖) = 0

𝑘 ∶ − 𝜆0 + 𝛽𝛼𝐴𝑘𝛼−1 ∫ 𝜆1(𝜖)𝑒𝜖𝑔(𝜖)𝑑𝜖 = 0

The first four equations imply that

𝑢′(𝑐1
1(𝜖))

𝑢′(𝑐1
0)) = 𝑢′(𝑐2

1(𝜖))
𝑢′(𝑐2

0)) = 𝜆1(𝜖)
𝜆0

𝑢′(𝑐1
0)

𝑢′(𝑐2
0) = 𝑢′(𝑐1

1(𝜖))
𝑢′(𝑐2

1(𝜖)) = 𝜙2
𝜙1

These together with the fifth first-order condition for the planner imply the following equation that determines an optimal
choice of capital

1 = 𝛽𝛼𝐴𝑘𝛼−1 ∫ 𝑢′(𝑐𝑖
1(𝜖))

𝑢′(𝑐𝑖
0) 𝑒𝜖𝑔(𝜖)𝑑𝜖

for 𝑖 = 1, 2.

37.1. Introduction 653

Advanced Quantitative Economics with Python

37.1.7 Helpful observations and bookkeeping

Evidently,

𝑢′(𝑐) = 𝑐−𝛾

and

𝑢′(𝑐1)
𝑢′(𝑐2) = (𝑐1

𝑐2)
−𝛾

= 𝜙2
𝜙1

where it is to be understood that this equation holds for 𝑐1 = 𝑐1
0 and 𝑐2 = 𝑐2

0 and also for 𝑐1 = 𝑐1(𝜖) and 𝑐2 = 𝑐2(𝜖) for
all 𝜖.
With the same understanding, it follows that

(𝑐1

𝑐2) = (𝜙2
𝜙1

)
−𝛾−1

Let 𝑐 = 𝑐1 + 𝑐2.
It follows from the preceding equation that

𝑐1 = 𝜂𝑐
𝑐2 = (1 − 𝜂)𝑐

where 𝜂 ∈ [0, 1] is a function of 𝜙1 and 𝛾.
Consequently, we can write the planner’s first-order condition for 𝑘 as

1 = 𝛽𝛼𝐴𝑘𝛼−1 ∫ (𝑤1(𝜖) + 𝐴𝑘𝛼𝑒𝜖

𝑤0 − 𝑘)
−𝛾

𝑒𝜖𝑔(𝜖)𝑑𝜖

which is one equation to be solved for 𝑘 ≥ 0.
Anticipating a Big K, little k idea widely used in macroeconomics, to be discussed in detail below, let 𝐾 be the
value of 𝑘 that solves the preceding equation so that

1 = 𝛽𝛼𝐴𝐾𝛼−1 ∫ (𝑤1(𝜖) + 𝐴𝐾𝛼𝑒𝜖

𝑤0 − 𝐾)
−𝛾

𝑔(𝜖)𝑒𝜖𝑑𝜖 (37.1)

The associated optimal consumption allocation is

𝐶0 = 𝑤0 − 𝐾
𝐶1(𝜖) = 𝑤1(𝜖) + 𝐴𝐾𝛼𝑒𝜖

𝑐1
0 = 𝜂𝐶0

𝑐2
0 = (1 − 𝜂)𝐶0

𝑐1
1(𝜖) = 𝜂𝐶1(𝜖)

𝑐2
1(𝜖) = (1 − 𝜂)𝐶1(𝜖)

where 𝜂 ∈ [0, 1] is the consumption share parameter mentioned above that is a function of the Pareto weight 𝜙1 and the
utility curvature parameter 𝛾.

654 Chapter 37. Irrelevance of Capital Structures with Complete Markets

Advanced Quantitative Economics with Python

Remarks

The relative Pareto weight parameter 𝜂 does not appear in equation (37.1) that determines 𝐾.
Neither does it influence 𝐶0 or 𝐶1(𝜖), which depend solely on 𝐾.
The role of 𝜂 is to determine how to allocate total consumption between the two types of consumers.
Thus, the planner’s choice of 𝐾 does not interact with how it wants to allocate consumption.

37.2 Competitive equilibrium

We now describe a competitive equilibrium for an economy that has specifications of consumer preferences, technology,
and aggregate endowments that are identical to those in the preceding planning problem.
While prices do not appear in the planning problem – only quantities do – prices play an important role in a competitive
equilibrium.
To understand how the planning economy is related to a competitive equilibrium, we now turn to the Big K, little
k distinction.

37.2.1 Measures of agents and firms

We follow BCG in assuming that there are unit measures of
• consumers of type 𝑖 = 1
• consumers of type 𝑖 = 2
• firms with access to the production technology that converts 𝑘 units of time 0 good into 𝐴𝑘𝛼𝑒𝜖 units of the time 1
good in random state 𝜖

Thus, let 𝜔 ∈ [0, 1] index a particular consumer of type 𝑖.
Then define Big 𝐶𝑖 as

𝐶𝑖 = ∫
1

0
𝑐𝑖(𝜔)𝑑 𝜔

In the same spirit, let 𝜁 ∈ [0, 1] index a particular firm. Then define Big 𝐾 as

𝐾 = ∫
1

0
𝑘(𝜁)𝑑 𝜁

The assumption that there are continua of our three types of agents plays an important role making each individual agent
into a powerless price taker:

• an individual consumer chooses its own (infinesimal) part 𝑐𝑖(𝜔) of 𝐶𝑖 taking prices as given
• an individual firm chooses its own (infinitesmimal) part 𝑘(𝜁) of 𝐾 taking prices as
• equilibrium prices depend on the Big K, Big C objects 𝐾 and 𝐶

Nevertheless, in equilibrium, 𝐾 = 𝑘, 𝐶𝑖 = 𝑐𝑖

The assumption about measures of agents is thus a powerful device for making a host of competitive agents take as given
equilibrium prices that are determined by the independent decisions of hosts of agents who behave just like they do.

37.2. Competitive equilibrium 655

Advanced Quantitative Economics with Python

Ownership

Consumers of type 𝑖 own the following exogenous quantities of the consumption good in periods 0 and 1:

𝑤𝑖
0, 𝑖 = 1, 2

𝑤𝑖
1(𝜖) 𝑖 = 1, 2

where

∑
𝑖

𝑤𝑖
0 = 𝑤0

∑
𝑖

𝑤𝑖
1(𝜖) = 𝑤1(𝜖)

Consumers also own shares in a firm that operates the technology for converting nonnegative amounts of the time 0
consumption good one-for-one into a capital good 𝑘 that produces 𝐴𝑘𝛼𝑒𝜖 units of the time 1 consumption good in time
1 state 𝜖.
Consumers of types 𝑖 = 1, 2 are endowed with 𝜃𝑖

0 shares of a firm and

𝜃1
0 + 𝜃2

0 = 1

Asset markets

At time 0, consumers trade the following assets with other consumers and with firms:
• equities (also known as stocks) issued by firms
• one-period Arrow securities that pay one unit of consumption at time 1 when the shock 𝜖 assumes a particular value

Later, we’ll allow the firm to issue bonds too, but not now.

37.2.2 Objects appearing in a competitive equilibrium

Let
• 𝑎𝑖(𝜖) be consumer 𝑖 ’s purchases of claims on time 1 consumption in state 𝜖
• 𝑞(𝜖) be a pricing kernel for one-period Arrow securities
• 𝜃𝑖

0 ≥ 0 be consumer 𝑖’s intial share of the firm, ∑𝑖 𝜃𝑖
0 = 1

• 𝜃𝑖 be the fraction of a firm’s shares purchased by consumer 𝑖 at time 𝑡 = 0
• 𝑉 be the value of the representative firm
• ̃𝑉 be the value of equity issued by the representative firm
• 𝐾, 𝐶0 be two scalars and 𝐶1(𝜖) a function that we use to construct a guess about an equilibrium pricing kernel for
Arrow securities

We proceed to describe constrained optimum problems faced by consumers and a representative firm in a competitive
equilibrium.

656 Chapter 37. Irrelevance of Capital Structures with Complete Markets

Advanced Quantitative Economics with Python

37.2.3 A representative firm’s problem

A representative firm takes Arrow security prices 𝑞(𝜖) as given.
The firm purchases capital 𝑘 ≥ 0 from consumers at time 0 and finances itself by issuing equity at time 0.
The firm produces time 1 goods 𝐴𝑘𝛼𝑒𝜖 in state 𝜖 and pays all of these earnings to owners of its equity.
The value of a firm’s equity at time 0 can be computed bymultiplying its state-contingent earnings by their Arrow securities
prices and then adding over all contingencies:

̃𝑉 = ∫ 𝐴𝑘𝛼𝑒𝜖𝑞(𝜖)𝑑𝜖

Owners of a firm want it to choose 𝑘 to maximize

𝑉 = −𝑘 + ∫ 𝐴𝑘𝛼𝑒𝜖𝑞(𝜖)𝑑𝜖

The firm’s first-order necessary condition for an optimal 𝑘 is

−1 + 𝛼𝐴𝑘𝛼−1 ∫ 𝑒𝜖𝑞(𝜖)𝑑𝜖 = 0

The time 0 value of a representative firm is

𝑉 = −𝑘 + ̃𝑉

The right side equals the value of equity minus the cost of the time 0 goods that it purchases and uses as capital.

37.2.4 A consumer’s problem

We now pose a consumer’s problem in a competitive equilibrium.
As a price taker, each consumer faces a given Arrow securities pricing kernel 𝑞(𝜖), a given value of a firm 𝑉 that has
chosen capital stock 𝑘, a price of equity ̃𝑉 , and prospective next period random dividends 𝐴𝑘𝛼𝑒𝜖.
If we evaluate consumer 𝑖’s time 1 budget constraint at zero consumption 𝑐𝑖

1(𝜖) = 0 and solve for −𝑎𝑖(𝜖) we obtain

− ̄𝑎𝑖(𝜖; 𝜃𝑖) = 𝑤𝑖
1(𝜖) + 𝜃𝑖𝐴𝑘𝛼𝑒𝜖 (37.2)

The quantity − ̄𝑎𝑖(𝜖; 𝜃𝑖) is the maximum amount that it is feasible for consumer 𝑖 to repay to his Arrow security creditors
at time 1 in state 𝜖.
Notice that − ̄𝑎𝑖(𝜖; 𝜃𝑖) defined in (37.2) depends on

• his endowment 𝑤𝑖
1(𝜖) at time 1 in state 𝜖

• his share 𝜃𝑖 of a representive firm’s dividends
These constitute two sources of collateral that back the consumer’s issues of Arrow securities that pay off in state 𝜖
Consumer 𝑖 chooses a scalar 𝑐𝑖

0 and a function 𝑐𝑖
1(𝜖) to maximize

𝑢(𝑐𝑖
0) + 𝛽 ∫ 𝑢(𝑐𝑖

1(𝜖))𝑔(𝜖)𝑑𝜖

subject to time 0 and time 1 budget constraints

𝑐𝑖
0 ≤ 𝑤𝑖

0 + 𝜃𝑖
0𝑉 − ∫ 𝑞(𝜖)𝑎𝑖(𝜖)𝑑𝜖 − 𝜃𝑖 ̃𝑉

𝑐𝑖
1(𝜖) ≤ 𝑤𝑖

1(𝜖) + 𝜃𝑖𝐴𝑘𝛼𝑒𝜖 + 𝑎𝑖(𝜖)

37.2. Competitive equilibrium 657

Advanced Quantitative Economics with Python

Attach Lagrange multiplier 𝜆𝑖
0 to the budget constraint at time 0 and scaled Lagrange multiplier 𝛽𝜆𝑖

1(𝜖)𝑔(𝜖) to the budget
constraint at time 1 and state 𝜖, then form the Lagrangian

𝐿𝑖 = 𝑢(𝑐𝑖
0) + 𝛽 ∫ 𝑢(𝑐𝑖

1(𝜖))𝑔(𝜖)𝑑𝜖

+ 𝜆𝑖
0[𝑤𝑖

0 + 𝜃𝑖
0 − ∫ 𝑞(𝜖)𝑎𝑖(𝜖)𝑑𝜖 − 𝜃𝑖 ̃𝑉 − 𝑐𝑖

0]

+ 𝛽 ∫ 𝜆𝑖
1(𝜖)[𝑤𝑖

1(𝜖) + 𝜃𝑖𝐴𝑘𝛼𝑒𝜖 + 𝑎𝑖(𝜖)𝑐𝑖
1(𝜖)]𝑔(𝜖)𝑑𝜖

Off corners, first-order necessary conditions for an optimum with respect to 𝑐𝑖
0, 𝑐𝑖

1(𝜖), and 𝑎𝑖(𝜖) are

𝑐𝑖
0 ∶ 𝑢′(𝑐𝑖

0) − 𝜆𝑖
0 = 0

𝑐𝑖
1(𝜖) ∶ 𝛽𝑢′(𝑐𝑖

1(𝜖))𝑔(𝜖) − 𝛽𝜆𝑖
1(𝜖)𝑔(𝜖) = 0

𝑎𝑖(𝜖) ∶ − 𝜆𝑖
0𝑞(𝜖) + 𝛽𝜆𝑖

1(𝜖) = 0

These equations imply that consumer 𝑖 adjusts its consumption plan to satisfy

𝑞(𝜖) = 𝛽 (𝑢′(𝑐𝑖
1(𝜖))

𝑢′(𝑐𝑖
0)) 𝑔(𝜖) (37.3)

To deduce a restriction on equilibrium prices, we solve the period 1 budget constraint to express 𝑎𝑖(𝜖) as

𝑎𝑖(𝜖) = 𝑐𝑖
1(𝜖) − 𝑤𝑖

1(𝜖) − 𝜃𝑖𝐴𝑘𝛼𝑒𝜖

then substitute the expression on the right side into the time 0 budget constraint and rearrange to get the single intertem-
poral budget constraint

𝑤𝑖
0 + 𝜃𝑖

0𝑉 + ∫ 𝑤𝑖
1(𝜖)𝑞(𝜖)𝑑𝜖 + 𝜃𝑖 [𝐴𝑘𝛼 ∫ 𝑒𝜖𝑞(𝜖)𝑑𝜖 − ̃𝑉] ≥ 𝑐𝑖

0 + ∫ 𝑐𝑖
1(𝜖)𝑞(𝜖)𝑑𝜖 (37.4)

The right side of inequality (37.4) is the present value of consumer 𝑖’s consumption while the left side is the present value
of consumer 𝑖’s endowment when consumer 𝑖 buys 𝜃𝑖 shares of equity.
From inequality (37.4), we deduce two findings.
1. No arbitrage profits condition:
Unless

̃𝑉 = 𝐴𝑘𝛼 ∫ 𝑒𝜖𝑞(𝜖)𝑑𝜖 (37.5)

an arbitrage opportunity would be open.
If

̃𝑉 > 𝐴𝑘𝛼 ∫ 𝑒𝜖𝑞(𝜖)𝑑𝜖

the consumer could afford an arbitrarily high present value of consumption by setting 𝜃𝑖 to an arbitrarily large negative
number.
If

̃𝑉 < 𝐴𝑘𝛼 ∫ 𝑒𝜖𝑞(𝜖)𝑑𝜖

the consumer could afford an arbitrarily high present value of consumption by setting 𝜃𝑖 to be arbitrarily large positive
number.

658 Chapter 37. Irrelevance of Capital Structures with Complete Markets

Advanced Quantitative Economics with Python

Since resources are finite, there can exist no such arbitrage opportunity in a competitive equilibrium.
Therefore, it must be true that the following no arbitrage condition prevails:

̃𝑉 = ∫ 𝐴𝑘𝛼𝑒𝜖𝑞(𝜖; 𝐾)𝑑𝜖 (37.6)

Equation (37.6) asserts that the value of equity equals the value of the state-contingent dividends 𝐴𝑘𝛼𝑒𝜖 evaluated at the
Arrow security prices 𝑞(𝜖; 𝐾) that we have expressed as a function of 𝐾.
We’ll say more about this equation later.
2. Indeterminacy of portfolio
When the no-arbitrage pricing equation (37.6) prevails, a consumer of type 𝑖’s choice 𝜃𝑖 of equity is indeterminate.
Consumer of type 𝑖 can offset any choice of 𝜃𝑖 by setting an appropriate schedule 𝑎𝑖(𝜖) for purchasing state-contingent
securities.

37.2.5 Computing competitive equilibrium prices and quantities

Having computed an allocation that solves the planning problem, we can readily compute a competitive equilibrium via
the following steps that, as we’ll see, relies heavily on the Big K, little k, Big C, little c logic mentioned
earlier:

• a competitive equilbrium allocation equals the allocation chosen by the planner
• competitive equilibrium prices and the value of a firm’s equity are encoded in shadow prices from the planning
problem that depend on Big 𝐾 and Big 𝐶.

To substantiate that this procedure is valid, we proceed as follows.
With 𝐾 in hand, we make the following guess for competitive equilibrium Arrow securities prices

𝑞(𝜖; 𝐾) = 𝛽 (𝑢′ (𝑤1(𝜖) + 𝐴𝐾𝛼𝑒𝜖)
𝑢′(𝑤0 − 𝐾))

−𝛾
(37.7)

To confirm the guess, we begin by considering its consequences for the firm’s choice of 𝑘.
With Arrow securities prices (37.7), the firm’s first-order necessary condition for choosing 𝑘 becomes

−1 + 𝛼𝐴𝑘𝛼−1 ∫ 𝑒𝜖𝑞(𝜖; 𝐾)𝑑𝜖 = 0 (37.8)

which can be verified to be satisfied if the firm sets

𝑘 = 𝐾

because by setting 𝑘 = 𝐾 equation (37.8) becomes equivalent with the planner’s first-order condition (37.1) for setting
𝐾.
To pose a consumer’s problem in a competitive equilibrium, we require not only the above guess for the Arrow securities
pricing kernel 𝑞(𝜖) but the value of equity ̃𝑉 :

̃𝑉 = ∫ 𝐴𝐾𝛼𝑒𝜖𝑞(𝜖; 𝐾)𝑑𝜖 (37.9)

Let ̃𝑉 be the value of equity implied by Arrow securities price function (37.7) and formula (37.9).
At the Arrow securities prices 𝑞(𝜖) given by (37.7) and equity value ̃𝑉 given by (37.9), consumer 𝑖 = 1, 2 choose
consumption allocations and portolios that satisfy the first-order necessary conditions

𝛽 (𝑢′(𝑐𝑖
1(𝜖))

𝑢′(𝑐𝑖
0)) 𝑔(𝜖) = 𝑞(𝜖; 𝐾)

37.2. Competitive equilibrium 659

Advanced Quantitative Economics with Python

It can be verified directly that the following choices satisfy these equations

𝑐1
0 + 𝑐2

0 = 𝐶0 = 𝑤0 − 𝐾
𝑐1

0(𝜖) + 𝑐2
0(𝜖) = 𝐶1(𝜖) = 𝑤1(𝜖) + 𝐴𝑘𝛼𝑒𝜖

𝑐2
1(𝜖)

𝑐1
1(𝜖) = 𝑐2

0
𝑐1

0
= 1 − 𝜂

𝜂

for an 𝜂 ∈ (0, 1) that depends on consumers’ endowments [𝑤1
0, 𝑤2

0, 𝑤1
1(𝜖), 𝑤2

1(𝜖), 𝜃1
0, 𝜃2

0].
Remark: Multiple arrangements of endowments [𝑤1

0, 𝑤2
0, 𝑤1

1(𝜖), 𝑤2
1(𝜖), 𝜃1

0, 𝜃2
0] associated with the same distribution of

wealth 𝜂. Can you explain why?

Hint: Think about the portfolio indeterminacy finding above.

37.2.6 Modigliani-Miller theorem

We now allow a firm to issue both bonds and equity.
Payouts from equity and bonds, respectively, are

𝑑𝑒(𝑘, 𝑏; 𝜖) = max {𝑒𝜖𝐴𝑘𝛼 − 𝑏, 0}

𝑑𝑏(𝑘, 𝑏; 𝜖) = min{𝑒𝜖𝐴𝑘𝛼

𝑏 , 1}

Thus, one unit of the bond pays one unit of consumption at time 1 in state 𝜖 if 𝐴𝑘𝛼𝑒𝜖 − 𝑏 ≥ 0, which is true when
𝜖 ≥ 𝜖∗ = log 𝑏

𝐴𝑘𝛼 , and pays 𝐴𝑘𝛼𝑒𝜖
𝑏 units of time 1 consumption in state 𝜖 when 𝜖 < 𝜖∗.

The value of the firm is now the sum of equity plus the value of bonds, which we denote

̃𝑉 + 𝑏𝑝(𝑘, 𝑏)

where 𝑝(𝑘, 𝑏) is the price of one unit of the bond when a firm with 𝑘 units of physical capital issues 𝑏 bonds.
We continue to assume that there are complete markets in Arrow securities with pricing kernel 𝑞(𝜖).
A version of the no-arbitrage-in-equilibrium argument that we presented earlier implies that the value of equity and the
price of bonds are

̃𝑉 = 𝐴𝑘𝛼 ∫
∞

𝜖∗
𝑒𝜖𝑞(𝜖)𝑑𝜖 − 𝑏 ∫

∞

𝜖∗
𝑞(𝜖)𝑑𝜖

𝑝(𝑘, 𝑏) = 𝐴𝑘𝛼

𝑏 ∫
𝜖∗

−∞
𝑒𝜖𝑞(𝜖)𝑑𝜖 + ∫

∞

𝜖∗
𝑞(𝜖)𝑑𝜖

Consequently, the value of the firm is

̃𝑉 + 𝑝(𝑘, 𝑏)𝑏 = 𝐴𝑘𝛼 ∫
∞

−∞
𝑒𝜖𝑞(𝜖)𝑑𝜖,

which is the same expression that we obtained above when we assumed that the firm issued only equity.
We thus obtain a version of the celebrated Modigliani-Miller theorem [MM58] about firms’ finance:
Modigliani-Miller theorem:

• The value of a firm is independent the mix of equity and bonds that it uses to finance its physical capital.

660 Chapter 37. Irrelevance of Capital Structures with Complete Markets

Advanced Quantitative Economics with Python

• The firms’s decision about how much physical capital to purchase does not depend on whether it finances those
purchases by issuing bonds or equity

• The firm’s choice of whether to finance itself by issuing equity or bonds is indeterminant
Please note the role of the assumption of complete markets in Arrow securities in substantiating these claims.
In Equilibrium Capital Structures with Incomplete Markets, we will assume that markets are (very) incomplete – we’ll shut
down markets in almost all Arrow securities.
That will pull the rug from underneath the Modigliani-Miller theorem.

37.3 Code

We create a class object BCG_complete_markets to compute equilibrium allocations of the complete market BCG
model given a list of parameter values.
It consists of 4 functions that do the following things:

• opt_k computes the planner’s optimal capital 𝐾
– First, create a grid for capital.
– Then for each value of capital stock in the grid, compute the left side of the planner’s first-order necessary
condition for 𝑘, that is,

𝛽𝛼𝐴𝐾𝛼−1 ∫ (𝑤1(𝜖) + 𝐴𝐾𝛼𝑒𝜖

𝑤0 − 𝐾)
−𝛾

𝑒𝜖𝑔(𝜖)𝑑𝜖 − 1 = 0

– Find 𝑘 that solves this equation.
• q computes Arrow security prices as a function of the productivity shock 𝜖 and capital 𝐾:

𝑞(𝜖; 𝐾) = 𝛽 (𝑢′ (𝑤1(𝜖) + 𝐴𝐾𝛼𝑒𝜖)
𝑢′(𝑤0 − 𝐾))

• V solves for the firm value given capital 𝑘:

𝑉 = −𝑘 + ∫ 𝐴𝑘𝛼𝑒𝜖𝑞(𝜖; 𝐾)𝑑𝜖

• opt_c computes optimal consumptions 𝑐𝑖
0, and 𝑐𝑖(𝜖):

– The function first computes weight 𝜂 using the budget constraint for agent 1:

𝑤1
0 + 𝜃1

0𝑉 + ∫ 𝑤1
1(𝜖)𝑞(𝜖)𝑑𝜖 = 𝑐1

0 + ∫ 𝑐1
1(𝜖)𝑞(𝜖)𝑑𝜖 = 𝜂 (𝐶0 + ∫ 𝐶1(𝜖)𝑞(𝜖)𝑑𝜖)

where
𝐶0 = 𝑤0 − 𝐾

𝐶1(𝜖) = 𝑤1(𝜖) + 𝐴𝐾𝛼𝑒𝜖

– It computes consumption for each agent as

𝑐1
0 = 𝜂𝐶0

𝑐2
0 = (1 − 𝜂)𝐶0

𝑐1
1(𝜖) = 𝜂𝐶1(𝜖)

𝑐2
1(𝜖) = (1 − 𝜂)𝐶1(𝜖)

37.3. Code 661

Advanced Quantitative Economics with Python

The list of parameters includes:
• 𝜒1, 𝜒2: Correlation parameters for agents 1 and 2. Default values are 0 and 0.9, respectively.
• 𝑤1

0, 𝑤2
0: Initial endowments. Default values are 1.

• 𝜃1
0, 𝜃2

0: Consumers’ initial shares of a representative firm. Default values are 0.5.
• 𝜓: CRRA risk parameter. Default value is 3.
• 𝛼: Returns to scale production function parameter. Default value is 0.6.
• 𝐴: Productivity of technology. Default value is 2.5.
• 𝜇, 𝜎: Mean and standard deviation of the log of the shock. Default values are -0.025 and 0.4, respectively.
• 𝛽: time preference discount factor. Default value is .96.
• nb_points_integ: number of points used for integration through Gauss-Hermite quadrature: default value is
10

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from numba import njit, prange
from quantecon.optimize import root_finding
%matplotlib inline

#=========== Class: BCG for complete markets ===========#
class BCG_complete_markets:

init method or constructor
def __init__(self,

�1 = 0,
�2 = 0.9,
w10 = 1,
w20 = 1,
�10 = 0.5,
�20 = 0.5,
� = 3,
� = 0.6,
A = 2.5,
� = -0.025,
� = 0.4,
� = 0.96,
nb_points_integ = 10):

#=========== Setup ===========#
Risk parameters
self.�1 = �1
self.�2 = �2

Other parameters
self.� = �
self.� = �
self.A = A
self.� = �
self.� = �
self.� = �

(continues on next page)

662 Chapter 37. Irrelevance of Capital Structures with Complete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

Utility
self.u = lambda c: (c**(1-�)) / (1-�)

Production
self.f = njit(lambda k: A * (k ** �))
self.Y = lambda �, k: np.exp(�) * self.f(k)

Initial endowments
self.w10 = w10
self.w20 = w20
self.w0 = w10 + w20

Initial holdings
self.�10 = �10
self.�20 = �20

Endowments at t=1
w11 = njit(lambda �: np.exp(-�1*� - 0.5*(�1**2)*(�**2) + �1*�))
w21 = njit(lambda �: np.exp(-�2*� - 0.5*(�2**2)*(�**2) + �2*�))
self.w11 = w11
self.w21 = w21

self.w1 = njit(lambda �: w11(�) + w21(�))

Normal PDF
self.g = lambda x: norm.pdf(x, loc=�, scale=�)

Integration
x, self.weights = np.polynomial.hermite.hermgauss(nb_points_integ)
self.points_integral = np.sqrt(2) * � * x + �

self.k_foc = k_foc_factory(self)

#=========== Optimal k ===========#
Function: solve for optimal k
def opt_k(self, plot=False):

w0 = self.w0

Grid for k
kgrid = np.linspace(1e-4, w0-1e-4, 100)

get FONC values for each k in the grid
kfoc_list = [];
for k in kgrid:

kfoc = self.k_foc(k, self.�1, self.�2)
kfoc_list.append(kfoc)

Plot FONC for k
if plot:

fig, ax = plt.subplots(figsize=(8,7))
ax.plot(kgrid, kfoc_list, color='blue', label=r'FONC for k')
ax.axhline(0, color='red', linestyle='--')
ax.legend()
ax.set_xlabel(r'k')
plt.show()

(continues on next page)

37.3. Code 663

Advanced Quantitative Economics with Python

(continued from previous page)

Find k that solves the FONC
kk = root_finding.newton_secant(self.k_foc, 1e-2, args=(self.�1, self.�2)).

↪root

return kk

#=========== Arrow security price ===========#
Function: Compute Arrow security price
def q(self,�,k):

� = self.�
� = self.�
w0 = self.w0
w1 = self.w1
fk = self.f(k)
g = self.g

return � * ((w1(�) + np.exp(�)*fk) / (w0 - k))**(-�)

#=========== Firm value V ===========#
Function: compute firm value V
def V(self, k):

q = self.q
fk = self.f(k)
weights = self.weights
integ = lambda �: np.exp(�) * fk * q(�, k)

return -k + np.sum(weights * integ(self.points_integral)) / np.sqrt(np.pi)

#=========== Optimal c ===========#
Function: Compute optimal consumption choices c
def opt_c(self, k=None, plot=False):

w1 = self.w1
w0 = self.w0
w10 = self.w10
w11 = self.w11
�10 = self.�10
Y = self.Y
q = self.q
V = self.V
weights = self.weights

if k is None:
k = self.opt_k()

Solve for the ratio of consumption � from the intertemporal B.C.
fk = self.f(k)

c1 = lambda �: (w1(�) + np.exp(�)*fk)*q(�,k)
denom = np.sum(weights * c1(self.points_integral)) / np.sqrt(np.pi) + (w0 - k)

w11q = lambda �: w11(�)*q(�,k)
num = w10 + �10 * V(k) + np.sum(weights * w11q(self.points_integral)) / np.

↪sqrt(np.pi)

� = num / denom

(continues on next page)

664 Chapter 37. Irrelevance of Capital Structures with Complete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

Consumption choices
c10 = � * (w0 - k)
c20 = (1-�) * (w0 - k)
c11 = lambda �: � * (w1(�)+Y(�,k))
c21 = lambda �: (1-�) * (w1(�)+Y(�,k))

return c10, c20, c11, c21

def k_foc_factory(model):
� = model.�
f = model.f
� = model.�
� = model.�
A = model.A
� = model.�
w0 = model.w0
� = model.�
� = model.�

weights = model.weights
points_integral = model.points_integral

w11 = njit(lambda �, �1, : np.exp(-�1*� - 0.5*(�1**2)*(�**2) + �1*�))
w21 = njit(lambda �, �2: np.exp(-�2*� - 0.5*(�2**2)*(�**2) + �2*�))
w1 = njit(lambda �, �1, �2: w11(�, �1) + w21(�, �2))

@njit
def integrand(�, �1, �2, k=1e-4):

fk = f(k)
return (w1(�, �1, �2) + np.exp(�) * fk) ** (-�) * np.exp(�)

@njit
def k_foc(k, �1, �2):

int_k = np.sum(weights * integrand(points_integral, �1, �2, k=k)) / np.
↪sqrt(np.pi)

mul = � * � * A * k ** (� - 1) / ((w0 - k) ** (-�))
val = mul * int_k - 1

return val

return k_foc

37.3. Code 665

Advanced Quantitative Economics with Python

37.3.1 Examples

Below we provide some examples of how to use BCG_complete markets.

1st example

In the first example, we set up instances of BCG complete markets models.
We can use either default parameter values or set parameter values as we want.
The two instances of the BCG complete markets model, mdl1 and mdl2, represent the model with default parameter
settings and with agent 2’s income correlation altered to be 𝜒2 = −0.9, respectively.

Example: BCG model for complete markets
mdl1 = BCG_complete_markets()
mdl2 = BCG_complete_markets(�2=-0.9)

Let’s plot the agents’ time-1 endowments with respect to shocks to see the difference in the two models:

#==== Figure 1: HH endowments and firm productivity ====#
Realizations of innovation from -3 to 3
epsgrid = np.linspace(-1,1,1000)

fig, ax = plt.subplots(1,2,figsize=(14,6))
ax[0].plot(epsgrid, mdl1.w11(epsgrid), color='black', label='Agent 1\'s endowment')
ax[0].plot(epsgrid, mdl1.w21(epsgrid), color='blue', label='Agent 2\'s endowment')
ax[0].plot(epsgrid, mdl1.Y(epsgrid,1), color='red', label=r'Production with $k=1$')
ax[0].set_xlim([-1,1])
ax[0].set_ylim([0,7])
ax[0].set_xlabel(r'ϵ',fontsize=12)
ax[0].set_title(r'Model with $\chi_1 = 0$, $\chi_2 = 0.9$')
ax[0].legend()
ax[0].grid()

ax[1].plot(epsgrid, mdl2.w11(epsgrid), color='black', label='Agent 1\'s endowment')
ax[1].plot(epsgrid, mdl2.w21(epsgrid), color='blue', label='Agent 2\'s endowment')
ax[1].plot(epsgrid, mdl2.Y(epsgrid,1), color='red', label=r'Production with $k=1$')
ax[1].set_xlim([-1,1])
ax[1].set_ylim([0,7])
ax[1].set_xlabel(r'ϵ',fontsize=12)
ax[1].set_title(r'Model with $\chi_1 = 0$, $\chi_2 = -0.9$')
ax[1].legend()
ax[1].grid()

plt.show()

666 Chapter 37. Irrelevance of Capital Structures with Complete Markets

Advanced Quantitative Economics with Python

Let’s also compare the optimal capital stock, 𝑘, and optimal time-0 consumption of agent 2, 𝑐2
0, for the two models:

Print optimal k
kk_1 = mdl1.opt_k()
kk_2 = mdl2.opt_k()

print('The optimal k for model 1: {:.5f}'.format(kk_1))
print('The optimal k for model 2: {:.5f}'.format(kk_2))

Print optimal time-0 consumption for agent 2
c20_1 = mdl1.opt_c(k=kk_1)[1]
c20_2 = mdl2.opt_c(k=kk_2)[1]

print('The optimal c20 for model 1: {:.5f}'.format(c20_1))
print('The optimal c20 for model 2: {:.5f}'.format(c20_2))

The optimal k for model 1: 0.14235
The optimal k for model 2: 0.13791

The optimal c20 for model 1: 0.90205
The optimal c20 for model 2: 0.92862

2nd example

In the second example, we illustrate how the optimal choice of 𝑘 is influenced by the correlation parameter 𝜒𝑖.
We will need to install the plotly package for 3D illustration. See https://plotly.com/python/getting-started/ for further
instructions.

Mesh grid of �
N = 30
�1grid, �2grid = np.meshgrid(np.linspace(-1,1,N),

np.linspace(-1,1,N))

(continues on next page)

37.3. Code 667

https://plotly.com/python/getting-started/

Advanced Quantitative Economics with Python

(continued from previous page)

k_foc = k_foc_factory(mdl1)

Create grid for k
kgrid = np.zeros_like(�1grid)

w0 = mdl1.w0

@njit(parallel=True)
def fill_k_grid(kgrid):

Loop: Compute optimal k and
for i in prange(N):

for j in prange(N):
X1 = �1grid[i, j]
X2 = �2grid[i, j]
k = root_finding.newton_secant(k_foc, 1e-2, args=(X1, X2)).root
kgrid[i, j] = k

%%time
fill_k_grid(kgrid)

CPU times: user 4.65 s, sys: 179 ms, total: 4.83 s
Wall time: 4.82 s

%%time
Second-run
fill_k_grid(kgrid)

CPU times: user 7.89 ms, sys: 0 ns, total: 7.89 ms
Wall time: 2.03 ms

#=== Example: Plot optimal k with different correlations ===#

from IPython.display import Image
Import plotly
import plotly.graph_objs as go

Plot optimal k
fig = go.Figure(data=[go.Surface(x=�1grid, y=�2grid, z=kgrid)])
fig.update_layout(scene = dict(xaxis_title='x - �1',

yaxis_title='y - �2',
zaxis_title='z - k',
aspectratio=dict(x=1,y=1,z=1)))

fig.update_layout(width=500,
height=500,
margin=dict(l=50, r=50, b=65, t=90))

fig.update_layout(scene_camera=dict(eye=dict(x=2, y=-2, z=1.5)))

Export to PNG file
Image(fig.to_image(format="png"))
fig.show() will provide interactive plot when running
notebook locally

668 Chapter 37. Irrelevance of Capital Structures with Complete Markets

Advanced Quantitative Economics with Python

37.3. Code 669

Advanced Quantitative Economics with Python

670 Chapter 37. Irrelevance of Capital Structures with Complete Markets

CHAPTER

THIRTYEIGHT

EQUILIBRIUM CAPITAL STRUCTURES WITH INCOMPLETE
MARKETS

Contents

• Equilibrium Capital Structures with Incomplete Markets

– Introduction

– Asset Markets

– Equilibrium verification

– Pseudo Code

– Code

– Examples

– A picture worth a thousand words

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon
!pip install interpolation
!conda install -y -c plotly plotly plotly-orca

38.1 Introduction

This is an extension of an earlier lecture Irrelevance of Capital Structure with Complete Markets about a complete markets
model.
In contrast to that lecture, this one describes an instance of a model authored by Bisin, Clementi, and Gottardi [BCG18]
in which financial markets are incomplete.
Instead of being able to trade equities and a full set of one-period Arrow securities as they can in Irrelevance of Capital
Structure with Complete Markets, here consumers and firms trade only equity and a bond.
It is useful to watch how outcomes differ in the two settings.
In the complete markets economy in Irrelevance of Capital Structure with Complete Markets

• there is a unique stochastic discount factor that prices all assets
• consumers’ portfolio choices are indeterminate

671

Advanced Quantitative Economics with Python

• firms’ financial structures are indeterminate, so the model embodies an instance of a Modigliani-Miller irrelevance
theorem [MM58]

• the aggregate of all firms’ financial structures are indeterminate, a consequence of there being redundant assets
In the incomplete markets economy studied here

• there is a not a unique equilibrium stochastic discount factor
• different stochastic discount factors price different assets
• consumers’ portfolio choices are determinate
• while individual firms’ financial structures are indeterminate, thus conforming to part of a Modigliani-Miller the-
orem, [MM58], the aggregate of all firms’ financial structures is determinate.

A Big K, little k analysis played an important role in the previous lecture Irrelevance of Capital Structure with
Complete Markets.
A more subtle version of a Big K, little k features in the BCG incomplete markets environment here.
We use it to convey the heart of what BCG call a rational conjectures equilibrium in which conjectures are about
equilibrium pricing functions in regions of the state space that an average consumer or firm does not visit in equilibrium.
Note that the absence of complete markets means that now we cannot compute competitive equilibrium prices and allo-
cations by first solving the simple planning problem that we did in Irrelevance of Capital Structure with Complete Markets.
Instead, we compute an equilibrium by solving a system of simultaneous inequalities.
(Here we do not address the interesting question of whether there is a different planning problem that we could use to
compute a competitive equlibrium allocation.)

38.1.1 Setup

We adopt specifications of preferences and technologies used by Bisin, Clemente, and Gottardi (2018) [BCG18] and in
our earlier lecture on a complete markets version of their model.
The economy lasts for two periods, 𝑡 = 0, 1.
There are two types of consumers named 𝑖 = 1, 2.
A scalar random variable 𝜖 affects both

• a representative firm’s physical return 𝑓(𝑘)𝑒𝜖 in period 1 from investing 𝑘 ≥ 0 in capital in period 0.
• period 1 endowments 𝑤𝑖

1(𝜖) of the consumption good for agents 𝑖 = 1 and 𝑖 = 2.

38.1.2 Ownership

A consumer of type 𝑖 is endowed with𝑤𝑖
0 units of the time 0 good and𝑤𝑖

1(𝜖) of the time 1 good when the random variable
takes value 𝜖.
At the start of period 0, a consumer of type 𝑖 also owns 𝜃𝑖

0 shares of a representative firm.

672 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

38.1.3 Measures of agents and firms

As in the companion lecture Irrelevance of Capital Structure with Complete Markets that studies a complete markets version
of the model, we follow BCG in assuming that there are unit measures of

• consumers of type 𝑖 = 1
• consumers of type 𝑖 = 2
• firms with access to a production technology that converts 𝑘 units of time 0 good into 𝐴𝑘𝛼𝑒𝜖 units of the time 1
good in random state 𝜖

Thus, let 𝜔 ∈ [0, 1] index a particular consumer of type 𝑖.
Then define Big 𝐶𝑖 as

𝐶𝑖 = ∫
1

0
𝑐𝑖(𝜔)𝑑 𝜔

with components

𝐶𝑖
0 = ∫

1

0
𝑐𝑖

0(𝜔)𝑑 𝜔

𝐶𝑖
1(𝜖) = ∫

1

0
𝑐𝑖

1(𝜖; 𝜔)𝑑 𝜔

In the same spirit, let 𝜁 ∈ [0, 1] index a particular firm and let firm 𝜁 purchase 𝑘(𝜁) units of capital and issue 𝑏(𝜁) bonds.
Then define Big 𝐾 and Big 𝐵 as

𝐾 = ∫
1

0
𝑘(𝜁)𝑑 𝜁, 𝐵 = ∫

1

0
𝑏(𝜁)𝑑 𝜁

The assumption that there are equal measures of our three types of agents justifies our assumption that each individual
agent is a powerless price taker:

• an individual consumer chooses its own (infinitesimal) part 𝑐𝑖(𝜔) of 𝐶𝑖 taking prices as given
• an individual firm chooses its own (infinitesmimal) part 𝑘(𝜁) of 𝐾 and 𝑏(𝜁) of 𝐵 taking pricing functions as given
• However, equilibrium prices depend on the Big K, Big B, Big C objects 𝐾, 𝐵, and 𝐶

The assumption about measures of agents is a powerful device for making a host of competitive agents take as given the
equilibrium prices that turn out to be determined by the decisions of hosts of agents who are just like them.
We call an equilibrium symmetric if

• all type 𝑖 consumers choose the same consumption profiles so that 𝑐𝑖(𝜔) = 𝐶𝑖 for all 𝜔 ∈ [0, 1]
• all firms choose the same levels of 𝑘 and 𝑏 so that 𝑘(𝜁) = 𝐾, 𝑏(𝜁) = 𝐵 for all 𝜁 ∈ [0, 1]

In this lecture, we restrict ourselves to describing symmetric equilibria.

38.1. Introduction 673

Advanced Quantitative Economics with Python

38.1.4 Endowments

Per capital economy-wide endowments in periods 0 and 1 are

𝑤0 = 𝑤1
0 + 𝑤2

0
𝑤1(𝜖) = 𝑤1

1(𝜖) + 𝑤2
1(𝜖) in state 𝜖

38.1.5 Feasibility:

Where 𝛼 ∈ (0, 1) and 𝐴 > 0

𝐶1
0 + 𝐶2

0 = 𝑤1
0 + 𝑤2

0 − 𝐾

𝐶1
1 (𝜖) + 𝐶2

1 (𝜖) = 𝑤1
1(𝜖) + 𝑤2

1(𝜖) + 𝑒𝜖 ∫
1

0
𝑓(𝑘(𝜁))𝑑𝜁, 𝑘 ≥ 0

where 𝑓(𝑘) = 𝐴𝑘𝛼, 𝐴 > 0, 𝛼 ∈ (0, 1).

38.1.6 Parameterizations

Following BCG, we shall employ the following parameterizations:

𝜖 ∼ 𝒩(𝜇, 𝜎2)

𝑢(𝑐) = 𝑐1−𝛾

1 − 𝛾
𝑤𝑖

1(𝜖) = 𝑒−𝜒𝑖𝜇−.5𝜒2
𝑖 𝜎2+𝜒𝑖𝜖, 𝜒𝑖 ∈ [0, 1]

Sometimes instead of asuming 𝜖 ∼ 𝑔(𝜖) = 𝒩(0, 𝜎2), we’ll assume that 𝑔(⋅) is a probability mass function that serves as
a discrete approximation to a standardized normal density.

38.1.7 Preferences:

A consumer of type 𝑖 orders period 0 consumption 𝑐𝑖
0 and state 𝜖-period 1 consumption 𝑐𝑖(𝜖) by

𝑢𝑖 = 𝑢(𝑐𝑖
0) + 𝛽 ∫ 𝑢(𝑐𝑖

1(𝜖))𝑔(𝜖)𝑑𝜖, 𝑖 = 1, 2

𝛽 ∈ (0, 1) and the one-period utility function is

𝑢(𝑐) = {
𝑐1−𝛾
1−𝛾 if 𝛾 ≠ 1
log 𝑐 if 𝛾 = 1

38.1.8 Risk-sharing motives

The two types of agents’ period 1 endowments have different correlations with the physical return on capital.
Endowment differences give agents incentives to trade risks that in the complete market version of the model showed up
in their demands for equity and in their demands and supplies of one-period Arrow securities.
In the incomplete-markets setting under study here, these differences show up in differences in the two types of consumers’
demands for a typical firm’s bonds and equity, the only two assets that agents can now trade.

674 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

38.2 Asset Markets

Markets are incomplete: ex cathedra we the model builders declare that only equities and bonds issued by representative
firms can be traded.
Let 𝜃𝑖 and 𝜉𝑖 be a consumer of type 𝑖’s post-trade holdings of equity and bonds, respectively.
A firm issues bonds promising to pay 𝑏 units of consumption at time 𝑡 = 1 and purchases 𝑘 units of physical capital at
time 𝑡 = 0.
When 𝑒𝜖𝐴𝑘𝛼 < 𝑏 at time 1, the firm defaults and its output is divided equally among bondholders.
Evidently, when the productivity shock 𝜖 < 𝜖∗ = log (𝑏

𝐴𝑘𝛼), the firm defaults on its debt
Payoffs to equity and debt at date 1 as functions of the productivity shock 𝜖 are thus

𝑑𝑒(𝑘, 𝑏; 𝜖) = max {𝑒𝜖𝐴𝑘𝛼 − 𝑏, 0}

𝑑𝑏(𝑘, 𝑏; 𝜖) = min{𝑒𝜖𝐴𝑘𝛼

𝑏 , 1}
(38.1)

A firm faces a bond price function 𝑝(𝑘, 𝑏) when it issues 𝑏 bonds and purchases 𝑘 units of physical capital.
A firm’s equity is worth 𝑞(𝑘, 𝑏) when it issues 𝑏 bonds and purchases 𝑘 units of physical capital.
A firm regards an equity-pricing function 𝑞(𝑘, 𝑏) and a bond pricing function 𝑝(𝑘, 𝑏) as exogenous in the sense that they
are not affected by its choices of 𝑘 and 𝑏.
Consumers face equilibrium prices ̌𝑞 and ̌𝑝 for bonds and equities, where ̌𝑞 and ̌𝑝 are both scalars.
Consumers are price takers and only need to know the scalars ̌𝑞, ̌𝑝.
Firms are price function takers and must know the functions 𝑞(𝑘, 𝑏), 𝑝(𝑘, 𝑏) in order completely to pose their optimum
problems.

38.2.1 Consumers

Each consumer of type 𝑖 is endowed with 𝑤𝑖
0 of the time 0 consumption good, 𝑤𝑖

1(𝜖) of the time 1, state 𝜖 consumption
good and also owns a fraction 𝜃𝑖

0 ∈ (0, 1) of the initial value of a representative firm, where 𝜃1
0 + 𝜃2

0 = 1.
The initial value of a representative firm is 𝑉 (an object to be determined in a rational expectations equilibrium).
Consumer 𝑖 buys 𝜃𝑖 shares of equity and buys bonds worth ̌𝑝𝜉𝑖 where ̌𝑝 is the bond price.
Being a price-taker, a consumer takes 𝑉 , ̌𝑞, ̌𝑝, and 𝐾, 𝐵 as given.
Consumers know that equilibrium payoff functions for bonds and equities take the form

𝑑𝑒(𝐾, 𝐵; 𝜖) = max {𝑒𝜖𝐴𝐾𝛼 − 𝐵, 0}

𝑑𝑏(𝐾, 𝐵; 𝜖) = min{𝑒𝜖𝐴𝐾𝛼

𝐵 , 1}

Consumer 𝑖’s optimization problem is

max
𝑐𝑖

0,𝜃𝑖,𝜉𝑖,𝑐𝑖
1(𝜖)

𝑢(𝑐𝑖
0) + 𝛽 ∫ 𝑢(𝑐𝑖(𝜖))𝑔(𝜖) 𝑑𝜖

subject to 𝑐𝑖
0 = 𝑤𝑖

0 + 𝜃𝑖
0𝑉 − ̌𝑞𝜃𝑖 − ̌𝑝𝜉𝑖,

𝑐𝑖
1(𝜖) = 𝑤𝑖

1(𝜖) + 𝜃𝑖𝑑𝑒(𝐾, 𝐵; 𝜖) + 𝜉𝑖𝑑𝑏(𝐾, 𝐵; 𝜖) ∀ 𝜖,
𝜃𝑖 ≥ 0, 𝜉𝑖 ≥ 0.

The last two inequalities impose that the consumer cannot short sell either equity or bonds.

38.2. Asset Markets 675

Advanced Quantitative Economics with Python

In a rational expectations equilibrium, ̌𝑞 = 𝑞(𝐾, 𝐵) and ̌𝑝 = 𝑝(𝐾, 𝐵)
We form consumer 𝑖’s Lagrangian:

𝐿𝑖 ∶=𝑢(𝑐𝑖
0) + 𝛽 ∫ 𝑢(𝑐𝑖(𝜖))𝑔(𝜖) 𝑑𝜖

+ 𝜆𝑖
0[𝑤𝑖

0 + 𝜃0𝑉 − ̌𝑞𝜃𝑖 − ̌𝑝𝜉𝑖 − 𝑐𝑖
0]

+ 𝛽 ∫ 𝜆𝑖
1(𝜖) [𝑤𝑖

1(𝜖) + 𝜃𝑖𝑑𝑒(𝐾, 𝐵; 𝜖) + 𝜉𝑖𝑑𝑏(𝐾, 𝐵; 𝜖) − 𝑐𝑖
1(𝜖)] 𝑔(𝜖) 𝑑𝜖

Consumer 𝑖’s first-order necessary conditions for an optimum include:
𝑐𝑖

0 ∶ 𝑢′(𝑐𝑖
0) = 𝜆𝑖

0
𝑐𝑖

1(𝜖) ∶ 𝑢′(𝑐𝑖
1(𝜖)) = 𝜆𝑖

1(𝜖)

𝜃𝑖 ∶ 𝛽 ∫ 𝜆𝑖
1(𝜖)𝑑𝑒(𝐾, 𝐵; 𝜖)𝑔(𝜖) 𝑑𝜖 ≤ 𝜆𝑖

0 ̌𝑞 (= if 𝜃𝑖 > 0)

𝜉𝑖 ∶ 𝛽 ∫ 𝜆𝑖
1(𝜖)𝑑𝑏(𝐾, 𝐵; 𝜖)𝑔(𝜖) 𝑑𝜖 ≤ 𝜆𝑖

0 ̌𝑝 (= if 𝑏𝑖 > 0)

We can combine and rearrange consumer 𝑖’s first-order conditions to become:

̌𝑞 ≥ 𝛽 ∫ 𝑢′(𝑐𝑖
1(𝜖))

𝑢′(𝑐𝑖
0) 𝑑𝑒(𝐾, 𝐵; 𝜖)𝑔(𝜖) 𝑑𝜖 (= if 𝜃𝑖 > 0)

̌𝑝 ≥ 𝛽 ∫ 𝑢′(𝑐𝑖
1(𝜖))

𝑢′(𝑐𝑖
0) 𝑑𝑏(𝐾, 𝐵; 𝜖)𝑔(𝜖) 𝑑𝜖 (= if 𝑏𝑖 > 0)

These inequalities imply that in a symmetric rational expectations equilibrium consumption allocations and prices satisfy

̌𝑞 = max
𝑖

𝛽 ∫ 𝑢′(𝑐𝑖
1(𝜖))

𝑢′(𝑐𝑖
0) 𝑑𝑒(𝐾, 𝐵; 𝜖)𝑔(𝜖) 𝑑𝜖

̌𝑝 = max
𝑖

𝛽 ∫ 𝑢′(𝑐𝑖
1(𝜖))

𝑢′(𝑐𝑖
0) 𝑑𝑏(𝐾, 𝐵; 𝜖)𝑔(𝜖) 𝑑𝜖

38.2.2 Pricing functions

When individual firms solve their optimization problems, they take big 𝐶𝑖’s as fixed objects that they don’t influence.
A representative firm faces a price function 𝑞(𝑘, 𝑏) for its equity and a price function 𝑝(𝑘, 𝑏) per unit of bonds that satisfy

𝑞(𝑘, 𝑏) = max
𝑖

𝛽 ∫ 𝑢′(𝐶𝑖
1(𝜖))

𝑢′(𝐶𝑖
0) 𝑑𝑒(𝑘, 𝑏; 𝜖)𝑔(𝜖) 𝑑𝜖

𝑝(𝑘, 𝑏) = max
𝑖

𝛽 ∫ 𝑢′(𝐶𝑖
1(𝜖))

𝑢′(𝐶𝑖
0) 𝑑𝑏(𝑘, 𝑏; 𝜖)𝑔(𝜖) 𝑑𝜖

where the payoff functions are described by equations (38.1).
Notice the appearance of big 𝐶𝑖’s on the right sides of these two equations that define equilibrium pricing functions.
The two price functions describe outcomes not only for equilibrium choices 𝐾, 𝐵 of capital 𝑘 and debt 𝑏, but also for any
out-of-equilibrium pairs (𝑘, 𝑏) ≠ (𝐾, 𝐵).
The firm is assumed to know both price functions.
This means that the firm understands that its choice of 𝑘, 𝑏 influences how markets price its equity and debt.
This package of assumptions is sometimes called rational conjectures (about price functions).
BCG give credit to Makowski for emphasizing and clarifying how rational conjectures are components of rational expec-
tations equilibria.

676 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

38.2.3 Firms

The firm chooses capital 𝑘 and debt 𝑏 to maximize its market value:

𝑉 ≡ max
𝑘,𝑏

−𝑘 + 𝑞(𝑘, 𝑏) + 𝑝(𝑘, 𝑏)𝑏

Attributing value maximization to the firm is a good idea because in equilibrium consumers of both types want a firm to
maximize its value.
In the special quantitative examples studied here

• consumers of types 𝑖 = 1, 2 both hold equity
• only consumers of type 𝑖 = 2 hold debt; consumers of type 𝑖 = 1 hold none.

These outcomes occur because we follow BCG and set parameters so that a type 2 consumer’s stochastic endowment of
the consumption good in period 1 is more correlated with the firm’s output than is a type 1 consumer’s.
This gives consumers of type 2 a motive to hedge their second period endowment risk by holding bonds (they also choose
to hold some equity).
These outcomes mean that the pricing functions end up satisfying

𝑞(𝑘, 𝑏) = 𝛽 ∫ 𝑢′(𝐶1
1 (𝜖))

𝑢′(𝐶1
0) 𝑑𝑒(𝑘, 𝑏; 𝜖)𝑔(𝜖) 𝑑𝜖 = 𝛽 ∫ 𝑢′(𝐶2

1 (𝜖))
𝑢′(𝐶2

0) 𝑑𝑒(𝑘, 𝑏; 𝜖)𝑔(𝜖) 𝑑𝜖

𝑝(𝑘, 𝑏) = 𝛽 ∫ 𝑢′(𝐶2
1 (𝜖))

𝑢′(𝐶2
0) 𝑑𝑏(𝑘, 𝑏; 𝜖)𝑔(𝜖) 𝑑𝜖

Recall that 𝜖∗(𝑘, 𝑏) ≡ log (𝑏
𝐴𝑘𝛼) is a firm’s default threshold.

We can rewrite the pricing functions as:

𝑞(𝑘, 𝑏) = 𝛽 ∫
∞

𝜖∗

𝑢′(𝐶𝑖
1(𝜖))

𝑢′(𝐶𝑖
0) (𝑒𝜖𝐴𝑘𝛼 − 𝑏) 𝑔(𝜖) 𝑑𝜖, 𝑖 = 1, 2

𝑝(𝑘, 𝑏) = 𝛽 ∫
𝜖∗

−∞

𝑢′(𝐶2
1 (𝜖))

𝑢′(𝐶2
0) (𝑒𝜖𝐴𝑘𝛼

𝑏) 𝑔(𝜖) 𝑑𝜖 + 𝛽 ∫
∞

𝜖∗

𝑢′(𝐶2
1 (𝜖))

𝑢′(𝐶2
0) 𝑔(𝜖) 𝑑𝜖

Firm’s optimization problem

The firm’s optimization problem is

𝑉 ≡ max
𝑘,𝑏

{−𝑘 + 𝑞(𝑘, 𝑏) + 𝑝(𝑘, 𝑏)𝑏}

The firm’s first-order necessary conditions with respect to 𝑘 and 𝑏, respectively, are

𝑘 ∶ − 1 + 𝜕𝑞(𝑘, 𝑏)
𝜕𝑘 + 𝑏𝜕𝑝(𝑞, 𝑏)

𝜕𝑘 = 0

𝑏 ∶ 𝜕𝑞(𝑘, 𝑏)
𝜕𝑏 + 𝑝(𝑘, 𝑏) + 𝑏𝜕𝑝(𝑘, 𝑏)

𝜕𝑏 = 0

We use the Leibniz integral rule several times to arrive at the following derivatives:

𝜕𝑞(𝑘, 𝑏)
𝜕𝑘 = 𝛽𝛼𝐴𝑘𝛼−1 ∫

∞

𝜖∗

𝑢′(𝐶𝑖
1(𝜖))

𝑢′(𝐶𝑖
0) 𝑒𝜖𝑔(𝜖)𝑑𝜖, 𝑖 = 1, 2

𝜕𝑞(𝑘, 𝑏)
𝜕𝑏 = −𝛽 ∫

∞

𝜖∗

𝑢′(𝐶𝑖
1(𝜖))

𝑢′(𝐶𝑖
0) 𝑔(𝜖)𝑑𝜖, 𝑖 = 1, 2

38.2. Asset Markets 677

Advanced Quantitative Economics with Python

𝜕𝑝(𝑘, 𝑏)
𝜕𝑘 = 𝛽𝛼𝐴𝑘𝛼−1

𝑏 ∫
𝜖∗

−∞

𝑢′(𝐶2
1 (𝜖))

𝑢′(𝐶2
0) 𝑔(𝜖)𝑑𝜖

𝜕𝑝(𝑘, 𝑏)
𝜕𝑏 = −𝛽 𝐴𝑘𝛼

𝑏2 ∫
𝜖∗

−∞

𝑢′(𝐶2
1 (𝜖))

𝑢′(𝐶2
0) 𝑒𝜖𝑔(𝜖)𝑑𝜖

Special case: We confine ourselves to a special case in which both types of consumer hold positive equities so that 𝜕𝑞(𝑘,𝑏)
𝜕𝑘

and 𝜕𝑞(𝑘,𝑏)
𝜕𝑏 are related to rates of intertemporal substitution for both agents.

Substituting these partial derivatives into the above first-order conditions for 𝑘 and 𝑏, respectively, we obtain the following
versions of those first order conditions:

𝑘 ∶ −1 + 𝛽𝛼𝐴𝑘𝛼−1 ∫
∞

−∞

𝑢′(𝐶2
1 (𝜖))

𝑢′(𝐶2
0) 𝑒𝜖𝑔(𝜖)𝑑𝜖 = 0 (38.2)

𝑏 ∶ ∫
∞

𝜖∗
(𝑢′(𝐶1

1 (𝜖))
𝑢′(𝐶1

0)) 𝑔(𝜖) 𝑑𝜖 = ∫
∞

𝜖∗
(𝑢′(𝐶2

1 (𝜖))
𝑢′(𝐶2

0)) 𝑔(𝜖) 𝑑𝜖 (38.3)

where again recall that 𝜖∗(𝑘, 𝑏) ≡ log (𝑏
𝐴𝑘𝛼).

Taking 𝐶𝑖
0, 𝐶𝑖

1(𝜖) as given, these are two equations that we want to solve for the firm’s optimal decisions 𝑘, 𝑏.

38.3 Equilibrium verification

On page 5 of BCG (2018), the authors say
If the price conjectures corresponding to the plan chosen by firms in equilibrium are correct, that is equal to the market prices

̌𝑞 and ̌𝑝, it is immediate to verify that the rationality of the conjecture coincides with the agents’ Euler equations.

Here BCG are describing how they go about verifying that when they set little 𝑘, little 𝑏 from the firm’s first-order
conditions equal to the big 𝐾, big 𝐵 at the big 𝐶 ’s that appear in the pricing functions, then

• consumers’ Euler equations are satisfied if little 𝑐’s are equated to Big 𝐶 ’s
• firms’ first-order necessary conditions for 𝑘, 𝑏 are satisfied.
• ̌𝑞 = 𝑞(𝐾, 𝐵) and ̌𝑝 = 𝑝(𝐾, 𝐵).

38.4 Pseudo Code

Before displaying our Python code for computing a BCG incomplete markets equilibrium, we’ll sketch some pseudo code
that describes its logical flow.
Here goes:

1. Set upper and lower bounds for firm value as 𝑉ℎ and 𝑉𝑙, for capital as 𝑘ℎ and 𝑘𝑙, and for debt as 𝑏ℎ and 𝑏𝑙.
2. Conjecture firm value 𝑉 = 1

2 (𝑉ℎ + 𝑉𝑙)
3. Conjecture debt level 𝑏 = 1

2 (𝑏ℎ + 𝑏𝑙).
4. Conjecture capital 𝑘 = 1

2 (𝑘ℎ + 𝑘𝑙).
5. Compute the default threshold 𝜖∗ ≡ log (𝑏

𝐴𝑘𝛼).
6. (In this step we abuse notation by freezing 𝑉 , 𝑘, 𝑏 and in effect temporarily treating them as Big𝐾, 𝐵 values. Thus,

in this step 6 little 𝑘, 𝑏 are frozen at guessed at value of 𝐾, 𝐵.) Fixing the values of 𝑉 , 𝑏 and 𝑘, compute optimal
choices of consumption 𝑐𝑖 with consumers’ FOCs. Assume that only agent 2 holds debt: 𝜉2 = 𝑏 and that both
agents hold equity: 0 < 𝜃𝑖 < 1 for 𝑖 = 1, 2.

678 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

7. Set high and low bounds for equity holdings for agent 1 as 𝜃1
ℎ and 𝜃1

𝑙 . Guess 𝜃1 = 1
2 (𝜃1

ℎ + 𝜃1
𝑙), and 𝜃2 = 1 − 𝜃1.

While |𝜃1
ℎ − 𝜃1

𝑙 | is large:
• Compute agent 1’s valuation of the equity claim with a fixed-point iteration:

𝑞1 = 𝛽 ∫ 𝑢′(𝑐1
1(𝜖))

𝑢′(𝑐1
0) 𝑑𝑒(𝑘, 𝑏; 𝜖)𝑔(𝜖) 𝑑𝜖

where
𝑐1

1(𝜖) = 𝑤1
1(𝜖) + 𝜃1𝑑𝑒(𝑘, 𝑏; 𝜖)

and
𝑐1

0 = 𝑤1
0 + 𝜃1

0𝑉 − 𝑞1𝜃1

• Compute agent 2’s valuation of the bond claim with a fixed-point iteration:

𝑝 = 𝛽 ∫ 𝑢′(𝑐2
1(𝜖))

𝑢′(𝑐2
0) 𝑑𝑏(𝑘, 𝑏; 𝜖)𝑔(𝜖) 𝑑𝜖

where
𝑐2

1(𝜖) = 𝑤2
1(𝜖) + 𝜃2𝑑𝑒(𝑘, 𝑏; 𝜖) + 𝑏

and
𝑐2

0 = 𝑤2
0 + 𝜃2

0𝑉 − 𝑞1𝜃2 − 𝑝𝑏
• Compute agent 2’s valuation of the equity claim with a fixed-point iteration:

𝑞2 = 𝛽 ∫ 𝑢′(𝑐2
1(𝜖))

𝑢′(𝑐2
0) 𝑑𝑒(𝑘, 𝑏; 𝜖)𝑔(𝜖) 𝑑𝜖

where
𝑐2

1(𝜖) = 𝑤2
1(𝜖) + 𝜃2𝑑𝑒(𝑘, 𝑏; 𝜖) + 𝑏

and
𝑐2

0 = 𝑤2
0 + 𝜃2

0𝑉 − 𝑞2𝜃2 − 𝑝𝑏
• If 𝑞1 > 𝑞2, Set 𝜃𝑙 = 𝜃1; otherwise, set 𝜃ℎ = 𝜃1.
• Repeat steps 6Aa through 6Ad until |𝜃1

ℎ − 𝜃1
𝑙 | is small.

8. Set bond price as 𝑝 and equity price as 𝑞 = max(𝑞1, 𝑞2).
9. Compute optimal choices of consumption:

𝑐1
0 = 𝑤1

0 + 𝜃1
0𝑉 − 𝑞𝜃1

𝑐2
0 = 𝑤2

0 + 𝜃2
0𝑉 − 𝑞𝜃2 − 𝑝𝑏

𝑐1
1(𝜖) = 𝑤1

1(𝜖) + 𝜃1𝑑𝑒(𝑘, 𝑏; 𝜖)
𝑐2

1(𝜖) = 𝑤2
1(𝜖) + 𝜃2𝑑𝑒(𝑘, 𝑏; 𝜖) + 𝑏

10. (Here we confess to abusing notation again, but now in a different way. In step 7, we interpret frozen 𝑐𝑖s as Big 𝐶𝑖.
We do this to solve the firm’s problem.) Fixing the values of 𝑐𝑖

0 and 𝑐𝑖
1(𝜖), compute optimal choices of capital 𝑘

and debt level 𝑏 using the firm’s first order necessary conditions.
11. Compute deviations from the firm’s FONC for capital 𝑘 as:

𝑘𝑓𝑜𝑐 = 𝛽𝛼𝐴𝑘𝛼−1 (∫ 𝑢′(𝑐2
1(𝜖))

𝑢′(𝑐2
0) 𝑒𝜖𝑔(𝜖) 𝑑𝜖) − 1

• If 𝑘𝑓𝑜𝑐 > 0, Set 𝑘𝑙 = 𝑘; otherwise, set 𝑘ℎ = 𝑘.
• Repeat steps 4 through 7A until |𝑘ℎ − 𝑘𝑙| is small.

38.4. Pseudo Code 679

Advanced Quantitative Economics with Python

12. Compute deviations from the firm’s FONC for debt level 𝑏 as:

𝑏𝑓𝑜𝑐 = 𝛽 [∫∞
𝜖∗ (𝑢′(𝑐1

1(𝜖))
𝑢′(𝑐1

0)) 𝑔(𝜖) 𝑑𝜖 − ∫∞
𝜖∗ (𝑢′(𝑐2

1(𝜖))
𝑢′(𝑐2

0)) 𝑔(𝜖) 𝑑𝜖]

• If 𝑏𝑓𝑜𝑐 > 0, Set 𝑏ℎ = 𝑏; otherwise, set 𝑏𝑙 = 𝑏.
• Repeat steps 3 through 7B until |𝑏ℎ − 𝑏𝑙| is small.

13. Given prices 𝑞 and 𝑝 from step 6, and the firm choices of 𝑘 and 𝑏 from step 7, compute the synthetic firm value:
𝑉𝑥 = −𝑘 + 𝑞 + 𝑝𝑏

• If 𝑉𝑥 > 𝑉 , then set 𝑉𝑙 = 𝑉 ; otherwise, set 𝑉ℎ = 𝑉 .
• Repeat steps 1 through 8 until |𝑉𝑥 − 𝑉 | is small.

14. Ultimately, the algorithm returns equilibrium capital 𝑘∗, debt 𝑏∗ and firm value 𝑉 ∗, as well as the following equi-
librium values:

• Equity holdings 𝜃1,∗ = 𝜃1(𝑘∗, 𝑏∗)
• Prices 𝑞∗ = 𝑞(𝑘∗, 𝑏∗), 𝑝∗ = 𝑝(𝑘∗, 𝑏∗)
• Consumption plans 𝐶1,∗

0 = 𝑐1
0(𝑘∗, 𝑏∗), 𝐶2,∗

0 = 𝑐2
0(𝑘∗, 𝑏∗), 𝐶1,∗

1 (𝜖) = 𝑐1
1(𝑘∗, 𝑏∗; 𝜖), 𝐶1,∗

1 (𝜖) = 𝑐2
1(𝑘∗, 𝑏∗; 𝜖).

38.5 Code

We create a Python class BCG_incomplete_markets to compute the equilibrium allocations of the incomplete
market BCG model, given a set of parameter values.
The class includes the following methods, i.e., functions:

• solve_eq: solves the BCG model and returns the equilibrium values of capital 𝑘, debt 𝑏 and firm value 𝑉 , as
well as

– agent 1’s equity holdings 𝜃1,∗

– prices 𝑞∗, 𝑝∗

– consumption plans 𝐶1,∗
0 , 𝐶2,∗

0 , 𝐶1,∗
1 (𝜖), 𝐶2,∗

1 (𝜖).
• eq_valuation: inputs equilibrium consumpion plans 𝐶∗ and outputs the following valuations for each pair of

(𝑘, 𝑏) in the grid:
– the firm 𝑉 (𝑘, 𝑏)
– the equity 𝑞(𝑘, 𝑏)
– the bond 𝑝(𝑘, 𝑏).

Parameters include:
• 𝜒1, 𝜒2: correlation parameter for agent 1 and 2. Default values are respectively 0 and 0.9.
• 𝑤1

0, 𝑤2
0: initial endowments. Default values are respectively 0.9 and 1.1.

• 𝜃1
0, 𝜃2

0: initial holding of the firm. Default values are 0.5.
• 𝜓: risk parameter. Default value is 3.
• 𝛼: Production function parameter. Default value is 0.6.
• 𝐴: Productivity of the firm. Default value is 2.5.
• 𝜇, 𝜎: Mean and standard deviation of the shock distribution. Default values are respectively -0.025 and 0.4

680 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

• 𝛽: Discount factor. Default value is 0.96.
• bound: Bound for truncated normal distribution. Default value is 3.

import numpy as np
from scipy.stats import truncnorm
from scipy.integrate import quad
from numba import njit
from interpolation import interp

/usr/share/miniconda3/envs/quantecon/lib/python3.11/site-packages/numba/core/
↪decorators.py:262: NumbaDeprecationWarning: numba.generated_jit is deprecated.␣
↪Please see the documentation at: https://numba.readthedocs.io/en/stable/
↪reference/deprecation.html#deprecation-of-generated-jit for more information and␣
↪advice on a suitable replacement.
warnings.warn(msg, NumbaDeprecationWarning)

class BCG_incomplete_markets:

init method or constructor
def __init__(self,

�1 = 0,
�2 = 0.9,
w10 = 0.9,
w20 = 1.1,
�10 = 0.5,
�20 = 0.5,
�1 = 3,
�2 = 3,
� = 0.6,
A = 2.5,
� = -0.025,
� = 0.4,
� = 0.96,
bound = 3,
Vl = 0,
Vh = 0.5,
kbot = 0.01,
#ktop = (�*A)**(1/(1-�)),
ktop = 0.25,
bbot = 0.1,
btop = 0.8):

#=========== Setup ===========#
Risk parameters
self.�1 = �1
self.�2 = �2

Other parameters
self.�1 = �1
self.�2 = �2
self.� = �
self.A = A
self.� = �
self.� = �
self.� = �
self.bound = bound

(continues on next page)

38.5. Code 681

Advanced Quantitative Economics with Python

(continued from previous page)

Bounds for firm value, capital, and debt
self.Vl = Vl
self.Vh = Vh
self.kbot = kbot
#self.kbot = (�*A)**(1/(1-�))
self.ktop = ktop
self.bbot = bbot
self.btop = btop

Utility
self.u = njit(lambda c: (c**(1-�)) / (1-�))

Initial endowments
self.w10 = w10
self.w20 = w20
self.w0 = w10 + w20

Initial holdings
self.�10 = �10
self.�20 = �20

Endowments at t=1
self.w11 = njit(lambda �: np.exp(-�1*� - 0.5*(�1**2)*(�**2) + �1*�))
self.w21 = njit(lambda �: np.exp(-�2*� - 0.5*(�2**2)*(�**2) + �2*�))
self.w1 = njit(lambda �: self.w11(�) + self.w21(�))

Truncated normal
ta, tb = (-bound - �) / �, (bound - �) / �
rv = truncnorm(ta, tb, loc=�, scale=�)
�_range = np.linspace(ta, tb, 1000000)
pdf_range = rv.pdf(�_range)
self.g = njit(lambda �: interp(�_range, pdf_range, �))

#***
Function: Solve for equilibrium of the BCG model
#***
def solve_eq(self, print_crit=True):

Load parameters
�1 = self.�1
�2 = self.�2
� = self.�
A = self.A
� = self.�
bound = self.bound
Vl = self.Vl
Vh = self.Vh
kbot = self.kbot
ktop = self.ktop
bbot = self.bbot
btop = self.btop
w10 = self.w10
w20 = self.w20
�10 = self.�10

(continues on next page)

682 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

�20 = self.�20
w11 = self.w11
w21 = self.w21
g = self.g

We need to find a fixed point on the value of the firm
V_crit = 1

Y = njit(lambda �, fk: np.exp(�)*fk)
intqq1 = njit(lambda �, fk, �1, �1, b: (w11(�) + �1*(Y(�, fk) - b))**(-

↪�1)*(Y(�, fk) - b)*g(�))
intp1 = njit(lambda �, fk, �2, b: (Y(�, fk)/b)*(w21(�) + Y(�, fk))**(-

↪�2)*g(�))
intp2 = njit(lambda �, fk, �2, �2, b: (w21(�) + �2*(Y(�, fk)-b) + b)**(-

↪�2)*g(�))
intqq2 = njit(lambda �, fk, �2, �2, b: (w21(�) + �2*(Y(�, fk)-b) + b)**(-

↪�2)*(Y(�, fk) - b)*g(�))
intk1 = njit(lambda �, fk, �2: (w21(�) + Y(�, fk))**(-�2)*np.exp(�)*g(�))
intk2 = njit(lambda �, fk, �2, �2, b: (w21(�) + �2*(Y(�, fk)-b) + b)**(-

↪�2)*np.exp(�)*g(�))
intB1 = njit(lambda �, fk, �1, �1, b: (w11(�) + �1*(Y(�, fk) - b))**(-

↪�1)*g(�))
intB2 = njit(lambda �, fk, �2, �2, b: (w21(�) + �2*(Y(�, fk) - b) + b)**(-

↪�2)*g(�))

while V_crit>1e-4:

We begin by adding the guess for the value of the firm to endowment
V = (Vl+Vh)/2
ww10 = w10 + �10*V
ww20 = w20 + �20*V

Figure out the optimal level of debt
bl = bbot
bh = btop
b_crit=1

while b_crit>1e-5:

Setting the conjecture for debt
b = (bl+bh)/2

Figure out the optimal level of capital
kl = kbot
kh = ktop
k_crit=1

while k_crit>1e-5:

Setting the conjecture for capital
k = (kl+kh)/2

Production
fk = A*(k**�)

Y = lambda �: np.exp(�)*fk

(continues on next page)

38.5. Code 683

Advanced Quantitative Economics with Python

(continued from previous page)

Compute integration threshold
epstar = np.log(b/fk)

#**
Compute the prices and allocations consistent with consumers'
Euler equations
#**

We impose the following:
Agent 1 buys equity
Agent 2 buys equity and all debt
Agents trade such that prices converge

#========
Agent 1
#========
Holdings
�1 = 0
�1a = 0.3
�1b = 1

while abs(�1b - �1a) > 0.001:

�1 = (�1a + �1b) / 2

qq1 is the equity price consistent with agent-1 Euler␣
↪Equation

Note: Price is in the date-0 budget constraint of the agent

First, compute the constant term that is not influenced by␣
↪q

that is, �E[u'(c^{1}_{1})d^{e}(k,B)]
intqq1 = lambda �: (w11(�) + �1*(Y(�, fk) - b))**(-�1)*(Y(�,

↪ fk) - b)*g(�)
const_qq1 = � * quad(intqq1,epstar,bound)[0]

const_qq1 = � * quad(intqq1,epstar,bound, args=(fk, �1, �1,␣
↪b))[0]

Second, iterate to get the equity price q
qq1l = 0
qq1h = ww10
diff = 1
while diff > 1e-7:

qq1 = (qq1l+qq1h)/2
rhs = const_qq1/((ww10-qq1*�1)**(-�1));
if (rhs > qq1):

qq1l = qq1
else:

qq1h = qq1
diff = abs(qq1l-qq1h)

#========
Agent 2

(continues on next page)

684 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

#========
�2 = b - �1
�2 = 1 - �1

p is the bond price consistent with agent-2 Euler Equation
Note: Price is in the date-0 budget constraint of the agent

First, compute the constant term that is not influenced by␣
↪p

that is, �E[u'(c^{2}_{1})d^{b}(k,B)]
intp1 = lambda �: (Y(�, fk)/b)*(w21(�) + Y(�, fk))**(-

↪�2)*g(�)
intp2 = lambda �: (w21(�) + �2*(Y(�, fk)-b) + b)**(-�2)*g(�)
const_p = � * (quad(intp1,-bound,epstar)[0] + quad(intp2,

↪epstar,bound)[0])
const_p = � * (quad(intp1,-bound,epstar, args=(fk, �2, b))[0]\

+ quad(intp2,epstar,bound, args=(fk, �2, �2,␣
↪b))[0])

iterate to get the bond price p
pl = 0
ph = ww20/b
diff = 1
while diff > 1e-7:

p = (pl+ph)/2
rhs = const_p/((ww20-qq1*�2-p*b)**(-�2))
if (rhs > p):

pl = p
else:

ph = p
diff = abs(pl-ph)

qq2 is the equity price consistent with agent-2 Euler␣
↪Equation

intqq2 = lambda �: (w21(�) + �2*(Y(�, fk)-b) + b)**(-
↪�2)*(Y(�, fk) - b)*g(�)

const_qq2 = � * quad(intqq2,epstar,bound, args=(fk, �2, �2,␣
↪b))[0]

qq2l = 0
qq2h = ww20
diff = 1
while diff > 1e-7:

qq2 = (qq2l+qq2h)/2
rhs = const_qq2/((ww20-qq2*�2-p*b)**(-�2));
if (rhs > qq2):

qq2l = qq2
else:

qq2h = qq2
diff = abs(qq2l-qq2h)

q be the maximum valuation for the equity among agents
This will be the equity price based on Makowski's criterion
q = max(qq1,qq2)

#================
Update holdings

(continues on next page)

38.5. Code 685

Advanced Quantitative Economics with Python

(continued from previous page)

#================
if qq1 > qq2:

�1a = �1
else:

�1b = �1

#================
Get consumption
#================
c10 = ww10 - q*�1
c11 = lambda �: w11(�) + �1*max(Y(�, fk)-b,0)
c20 = ww20 - q*(1-�1) - p*b
c21 = lambda �: w21(�) + (1-�1)*max(Y(�, fk)-b,0) + min(Y(�, fk),

↪b)

#***
Compute the first order conditions for the firm
#***

#===========
Equity FOC
#===========
Only agent 2's IMRS is relevent

intk1 = lambda �: (w21(�) + Y(�, fk))**(-�2)*np.exp(�)*g(�)
intk2 = lambda �: (w21(�) + �2*(Y(�, fk)-b) + b)**(-�2)*np.

↪exp(�)*g(�)
kfoc_num = quad(intk1,-bound,epstar)[0] + quad(intk2,epstar,

↪bound)[0]
kfoc_num = quad(intk1,-bound,epstar, args=(fk, �2))[0] +␣

↪quad(intk2,epstar,bound, args=(fk, �2, �2, b))[0]
kfoc_denom = (ww20- q*�2 - p*b)**(-�2)
kfoc = �*�*A*(k**(�-1))*(kfoc_num/kfoc_denom) - 1

if (kfoc > 0):
kl = k

else:
kh = k

k_crit = abs(kh-kl)

if print_crit:
print("critical value of k: {:.5f}".format(k_crit))

#=========
Bond FOC
#=========

intB1 = lambda �: (w11(�) + �1*(Y(�, fk) - b))**(-�1)*g(�)
intB2 = lambda �: (w21(�) + �2*(Y(�, fk) - b) + b)**(-�2)*g(�)

bfoc1 = quad(intB1,epstar,bound)[0] / (ww10 - q*�1)**(-�1)
bfoc2 = quad(intB2,epstar,bound)[0] / (ww20 - q*�2 - p*b)**(-�2)

bfoc1 = quad(intB1,epstar,bound, args=(fk, �1, �1, b))[0] / (ww10 -␣
↪q*�1)**(-�1)

bfoc2 = quad(intB2,epstar,bound, args=(fk, �2, �2, b))[0] / (ww20 -␣
↪q*�2 - p*b)**(-�2)

(continues on next page)

686 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

bfoc = bfoc1 - bfoc2

if (bfoc > 0):
bh = b

else:
bl = b

b_crit = abs(bh-bl)

if print_crit:
print("#=== critical value of b: {:.5f}".format(b_crit))

Compute the value of the firm
value_x = -k + q + p*b
if (value_x > V):

Vl = V
else:

Vh = V
V_crit = abs(value_x-V)

if print_crit:
print("#====== critical value of V: {:.5f}".format(V_crit))

print('k,b,p,q,kfoc,bfoc,epstar,V,V_crit')
formattedList = ["%.3f" % member for member in [k,

b,
p,
q,
kfoc,
bfoc,
epstar,
V,
V_crit]]

print(formattedList)

#*********************************
Equilibrium values
#*********************************

Return the results
kss = k
bss = b
Vss = V
qss = q
pss = p
c10ss = c10
c11ss = c11
c20ss = c20
c21ss = c21
�1ss = �1

Print the results
print('finished')

print('k,b,p,q,kfoc,bfoc,epstar,V,V_crit')
#formattedList = ["%.3f" % member for member in [kss,
bss,

(continues on next page)

38.5. Code 687

Advanced Quantitative Economics with Python

(continued from previous page)

pss,
qss,
kfoc,
bfoc,
epstar,
Vss,
V_crit]]
#print(formattedList)

return kss,bss,Vss,qss,pss,c10ss,c11ss,c20ss,c21ss,�1ss

#***
Function: Equity and bond valuations by different agents
#***
def valuations_by_agent(self,

c10, c11, c20, c21,
k, b):

Load parameters
�1 = self.�1
�2 = self.�2
� = self.�
A = self.A
� = self.�
bound = self.bound
Vl = self.Vl
Vh = self.Vh
kbot = self.kbot
ktop = self.ktop
bbot = self.bbot
btop = self.btop
w10 = self.w10
w20 = self.w20
�10 = self.�10
�20 = self.�20
w11 = self.w11
w21 = self.w21
g = self.g

Get functions for IMRS/state price density
IMRS1 = lambda �: � * (c11(�)/c10)**(-�1)*g(�)
IMRS2 = lambda �: � * (c21(�)/c20)**(-�2)*g(�)

Production
fk = A*(k**�)
Y = lambda �: np.exp(�)*fk

Compute integration threshold
epstar = np.log(b/fk)

Compute equity valuation with agent 1's IMRS
intQ1 = lambda �: IMRS1(�)*(Y(�) - b)
Q1 = quad(intQ1, epstar, bound)[0]

Compute bond valuation with agent 1's IMRS

(continues on next page)

688 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

intP1 = lambda �: IMRS1(�)*Y(�)/b
P1 = quad(intP1, -bound, epstar)[0] + quad(IMRS1, epstar, bound)[0]

Compute equity valuation with agent 2's IMRS
intQ2 = lambda �: IMRS2(�)*(Y(�) - b)
Q2 = quad(intQ2, epstar, bound)[0]

Compute bond valuation with agent 2's IMRS
intP2 = lambda �: IMRS2(�)*Y(�)/b
P2 = quad(intP2, -bound, epstar)[0] + quad(IMRS2, epstar, bound)[0]

return Q1,Q2,P1,P2

#***
Function: equilibrium valuations for firm, equity, bond
#***
def eq_valuation(self, c10, c11, c20, c21, N=30):

Load parameters
�1 = self.�1
�2 = self.�2
� = self.�
A = self.A
� = self.�
bound = self.bound
Vl = self.Vl
Vh = self.Vh
kbot = self.kbot
ktop = self.ktop
bbot = self.bbot
btop = self.btop
w10 = self.w10
w20 = self.w20
�10 = self.�10
�20 = self.�20
w11 = self.w11
w21 = self.w21
g = self.g

Create grids
kgrid, bgrid = np.meshgrid(np.linspace(kbot,ktop,N),

np.linspace(bbot,btop,N))
Vgrid = np.zeros_like(kgrid)
Qgrid = np.zeros_like(kgrid)
Pgrid = np.zeros_like(kgrid)

Loop: firm value
for i in range(N):

for j in range(N):

Get capital and debt
k = kgrid[i,j]
b = bgrid[i,j]

Valuations by each agent

(continues on next page)

38.5. Code 689

Advanced Quantitative Economics with Python

(continued from previous page)

Q1,Q2,P1,P2 = self.valuations_by_agent(c10,
c11,
c20,
c21,
k,
b)

The prices will be the maximum of the valuations
Q = max(Q1,Q2)
P = max(P1,P2)

Compute firm value
V = -k + Q + P*b
Vgrid[i,j] = V
Qgrid[i,j] = Q
Pgrid[i,j] = P

return kgrid, bgrid, Vgrid, Qgrid, Pgrid

38.6 Examples

Below we show some examples computed with the class BCG_incomplete markets.

38.6.1 First example

In the first example, we set up an instance of the BCG incomplete markets model with default parameter values.

mdl = BCG_incomplete_markets()
kss,bss,Vss,qss,pss,c10ss,c11ss,c20ss,c21ss,�1ss = mdl.solve_eq(print_crit=False)

print(-kss+qss+pss*bss)
print(Vss)
print(�1ss)

0.10073912888808995
0.100830078125
0.98564453125

Python reports to us that the equilibrium firm value is 𝑉 = 0.101, with capital 𝑘 = 0.151 and debt 𝑏 = 0.484.
Let’s verify some things that have to be true if our algorithm has truly found an equilibrium.
Thus, let’s see if the firm is actually maximizing its firm value given the equilibrium pricing function 𝑞(𝑘, 𝑏) for equity
and 𝑝(𝑘, 𝑏) for bonds.

kgrid, bgrid, Vgrid, Qgrid, Pgrid = mdl.eq_valuation(c10ss, c11ss, c20ss, c21ss,N=30)

print('Maximum valuation of the firm value in the (k,B) grid: {:.5f}'.format(Vgrid.
↪max()))

print('Equilibrium firm value: {:.5f}'.format(Vss))

690 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

Maximum valuation of the firm value in the (k,B) grid: 0.10074
Equilibrium firm value: 0.10083

Up to the approximation involved in using a discrete grid, these numbers give us comfort that the firm does indeed seem
to be maximizing its value at the top of the value hill on the (𝑘, 𝑏) plane that it faces.
Below we will plot the firm’s value as a function of 𝑘, 𝑏.
We’ll also plot the equilibrium price functions 𝑞(𝑘, 𝑏) and 𝑝(𝑘, 𝑏).

from IPython.display import Image
import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
import plotly.graph_objs as go

Firm Valuation
fig = go.Figure(data=[go.Scatter3d(x=[kss],

y=[bss],
z=[Vss],
mode='markers',
marker=dict(size=3, color='red')),

go.Surface(x=kgrid,
y=bgrid,
z=Vgrid,
colorscale='Greens',opacity=0.6)])

fig.update_layout(scene = dict(
xaxis_title='x - Capital k',
yaxis_title='y - Debt b',
zaxis_title='z - Firm Value V',
aspectratio = dict(x=1,y=1,z=1)),

width=700,
height=700,
margin=dict(l=50, r=50, b=65, t=90))

fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=-1.5, z=2)))
fig.update_layout(title='Equilibrium firm valuation for the grid of (k,b)')

Export to PNG file
Image(fig.to_image(format="png"))
fig.show() will provide interactive plot when running
code locally

38.6. Examples 691

Advanced Quantitative Economics with Python

A Modigliani-Miller theorem?

The red dot in the above graph is both an equilibrium (𝑏, 𝑘) chosen by a representative firm and the equilibrium 𝐵, 𝐾
pair chosen by the aggregate of all firms.
Thus, in equilibrium it is true that

(𝑏, 𝑘) = (𝐵, 𝐾)

But an individual firm named 𝜁 ∈ [0, 1] neither knows nor cares whether it sets (𝑏(𝜁), 𝑘(𝜁)) = (𝐵, 𝐾).
Indeed the above graph has a ridge of 𝑏(𝜁)’s that also maximize the firm’s value so long as it sets 𝑘(𝜁) = 𝐾.
Here it is important that the measure of firms that deviate from setting 𝑏 at the red dot is very small – measure zero – so
that 𝐵 remains at the red dot even while one firm 𝜁 deviates.

692 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

So within this equilibrium, there is a qualified Modigliani-Miller theorem that asserts that firm 𝜁 ’s value is independent
of how it mixes its financing between equity and bonds (so long as it is not what other firms do on average).
Thus, while an individual firm 𝜁 ’s financial structure is indeterminate, themarket’s financial structure is determinant and
sits at the red dot in the above graph.
This contrasts sharply with the unqualified Modigliani-Miller theorem descibed in the complete markets model in the
lecture Irrelevance of Capital Structure with Complete Markets.
There themarket’s financial structure was indeterminate.
These subtle distinctions bear more thought and exploration.
So we will do some calculations to ferret out a sense in which the equilibrium (𝑘, 𝑏) = (𝐾, 𝐵) outcome at the red dot in
the above graph is stable.
In particular, we’ll explore the consequences of some choices of 𝑏 = 𝐵 that deviate from the red dot and ask whether
firm 𝜁 would want to remain at that 𝑏.
In more detail, here is what we’ll do:

1. Obtain equilibrium values of capital and debt as 𝑘∗ = 𝐾 and 𝑏∗ = 𝐵, the red dot above.
2. Now fix 𝑘∗ and let 𝑏∗∗ = 𝑏∗ − 𝑒 for some 𝑒 > 0. Conjecture that big 𝐾 = 𝑘∗ but big 𝐵 = 𝑏∗∗.
3. Take 𝐾 and 𝐵 and compute intertermporal marginal rates of substitution (IMRS’s) as we did before.
4. Taking the new IMRS to the firm’s problem. Plot 3D surface for the valuations of the firm with this new IMRS.
5. Check if the value at 𝑘∗, 𝑏∗∗ is at the top of this new 3D surface.
6. Repeat these calculations for 𝑏∗∗ = 𝑏∗ + 𝑒.

To conduct the above procedures, we create a function off_eq_check that inputs the BCGmodel instance parameters,
equilibrium capital 𝐾 = 𝑘∗ and debt 𝐵 = 𝑏∗, and a perturbation of debt 𝑒.
The function outputs the fixed point firm values 𝑉 ∗∗, prices 𝑞∗∗, 𝑝∗∗, and consumption choices 𝑐∗∗.
Importantly, we relax the condition that only agent 2 holds bonds.
Now both agents can hold bonds, i.e., 0 ≤ 𝜉1 ≤ 𝐵 and 𝜉1 + 𝜉2 = 𝐵.
That implies the consumers’ budget constraints are:

𝑐1
0 = 𝑤1

0 + 𝜃1
0𝑉 − 𝑞𝜃1 − 𝑝𝜉1

𝑐2
0 = 𝑤2

0 + 𝜃2
0𝑉 − 𝑞𝜃2 − 𝑝𝜉2

𝑐1
1(𝜖) = 𝑤1

1(𝜖) + 𝜃1𝑑𝑒(𝑘, 𝑏; 𝜖) + 𝜉1

𝑐2
1(𝜖) = 𝑤2

1(𝜖) + 𝜃2𝑑𝑒(𝑘, 𝑏; 𝜖) + 𝜉2

The function also outputs agent 1’s bond holdings 𝜉1.

def off_eq_check(mdl,kss,bss,e=0.1):
Big K and big B
k = kss
b = bss + e

Load parameters
�1 = mdl.�1
�2 = mdl.�2
� = mdl.�
A = mdl.A
� = mdl.�
bound = mdl.bound

(continues on next page)

38.6. Examples 693

Advanced Quantitative Economics with Python

(continued from previous page)

Vl = mdl.Vl
Vh = mdl.Vh
kbot = mdl.kbot
ktop = mdl.ktop
bbot = mdl.bbot
btop = mdl.btop
w10 = mdl.w10
w20 = mdl.w20
�10 = mdl.�10
�20 = mdl.�20
w11 = mdl.w11
w21 = mdl.w21
g = mdl.g

Y = njit(lambda �, fk: np.exp(�)*fk)
intqq1 = njit(lambda �, fk, �1, �1, �1, b: (w11(�) + �1*(Y(�, fk) - b) + �1)**(-

↪�1)*(Y(�, fk) - b)*g(�))
intpp1a = njit(lambda �, fk, �1, �1, b: (Y(�, fk)/b)*(w11(�) + Y(�, fk)/b*�1)**(-

↪�1)*g(�))
intpp1b = njit(lambda �, fk, �1, �1, �1, b: (w11(�) + �1*(Y(�, fk)-b) + �1)**(-

↪�1)*g(�))
intpp2a = njit(lambda �, fk, �2, �2, b: (Y(�, fk)/b)*(w21(�) + Y(�, fk)/b*�2)**(-

↪�2)*g(�))
intpp2b = njit(lambda �, fk, �2, �2, �2, b: (w21(�) + �2*(Y(�, fk)-b) + �2)**(-

↪�2)*g(�))
intqq2 = njit(lambda �, fk, �2, �2, b: (w21(�) + �2*(Y(�, fk)-b) + b)**(-�2)*(Y(�,

↪ fk) - b)*g(�))

Loop: Find fixed points V, q and p
V_crit = 1
while V_crit>1e-5:

We begin by adding the guess for the value of the firm to endowment
V = (Vl+Vh)/2
ww10 = w10 + �10*V
ww20 = w20 + �20*V

Production
fk = A*(k**�)

Y = lambda �: np.exp(�)*fk

Compute integration threshold
epstar = np.log(b/fk)

#**
Compute the prices and allocations consistent with consumers'
Euler equations
#**

We impose the following:
Agent 1 buys equity
Agent 2 buys equity and all debt
Agents trade such that prices converge

(continues on next page)

694 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

#========
Agent 1
#========
Holdings
�1a = 0
�1b = b/2
p = 0.3

while abs(�1b - �1a) > 0.001:

�1 = (�1a + �1b) / 2
�1a = 0.3
�1b = 1

while abs(�1b - �1a) > (0.001/b):

�1 = (�1a + �1b) / 2

qq1 is the equity price consistent with agent-1 Euler Equation
Note: Price is in the date-0 budget constraint of the agent

First, compute the constant term that is not influenced by q
that is, �E[u'(c^{1}_{1})d^{e}(k,B)]

intqq1 = lambda �: (w11(�) + �1*(Y(�, fk) - b) + �1)**(-�1)*(Y(�,␣
↪fk) - b)*g(�)

const_qq1 = � * quad(intqq1,epstar,bound)[0]
const_qq1 = � * quad(intqq1,epstar,bound, args=(fk, �1, �1, �1, b))[0]

Second, iterate to get the equity price q
qq1l = 0
qq1h = ww10
diff = 1
while diff > 1e-7:

qq1 = (qq1l+qq1h)/2
rhs = const_qq1/((ww10-qq1*�1-p*�1)**(-�1));
if (rhs > qq1):

qq1l = qq1
else:

qq1h = qq1
diff = abs(qq1l-qq1h)

pp1 is the bond price consistent with agent-2 Euler Equation
Note: Price is in the date-0 budget constraint of the agent

First, compute the constant term that is not influenced by p
that is, �E[u'(c^{1}_{1})d^{b}(k,B)]

intpp1a = lambda �: (Y(�, fk)/b)*(w11(�) + Y(�, fk)/b*�1)**(-
↪�1)*g(�)

intpp1b = lambda �: (w11(�) + �1*(Y(�, fk)-b) + �1)**(-�1)*g(�)
const_pp1 = � * (quad(intpp1a,-bound,epstar)[0] + quad(intpp1b,

↪epstar,bound)[0])
const_pp1 = � * (quad(intpp1a,-bound,epstar, args=(fk, �1, �1, b))[0]␣

↪\
+ quad(intpp1b,epstar,bound, args=(fk, �1, �1, �1,␣

↪b))[0])

(continues on next page)

38.6. Examples 695

Advanced Quantitative Economics with Python

(continued from previous page)

iterate to get the bond price p
pp1l = 0
pp1h = ww10/b
diff = 1
while diff > 1e-7:

pp1 = (pp1l+pp1h)/2
rhs = const_pp1/((ww10-qq1*�1-pp1*�1)**(-�1))
if (rhs > pp1):

pp1l = pp1
else:

pp1h = pp1
diff = abs(pp1l-pp1h)

#========
Agent 2
#========
�2 = b - �1
�2 = 1 - �1

pp2 is the bond price consistent with agent-2 Euler Equation
Note: Price is in the date-0 budget constraint of the agent

First, compute the constant term that is not influenced by p
that is, �E[u'(c^{2}_{1})d^{b}(k,B)]

intpp2a = lambda �: (Y(�, fk)/b)*(w21(�) + Y(�, fk)/b*�2)**(-
↪�2)*g(�)

intpp2b = lambda �: (w21(�) + �2*(Y(�, fk)-b) + �2)**(-�2)*g(�)
const_pp2 = � * (quad(intpp2a,-bound,epstar)[0] + quad(intpp2b,

↪epstar,bound)[0])
const_pp2 = � * (quad(intpp2a,-bound,epstar, args=(fk, �2, �2, b))[0]␣

↪\
+ quad(intpp2b,epstar,bound, args=(fk, �2, �2, �2,␣

↪b))[0])

iterate to get the bond price p
pp2l = 0
pp2h = ww20/b
diff = 1
while diff > 1e-7:

pp2 = (pp2l+pp2h)/2
rhs = const_pp2/((ww20-qq1*�2-pp2*�2)**(-�2))
if (rhs > pp2):

pp2l = pp2
else:

pp2h = pp2
diff = abs(pp2l-pp2h)

p be the maximum valuation for the bond among agents
This will be the equity price based on Makowski's criterion
p = max(pp1,pp2)

qq2 is the equity price consistent with agent-2 Euler Equation
intqq2 = lambda �: (w21(�) + �2*(Y(�, fk)-b) + b)**(-�2)*(Y(�, fk) -

↪ b)*g(�)
const_qq2 = � * quad(intqq2,epstar,bound)[0]

(continues on next page)

696 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

(continued from previous page)

const_qq2 = � * quad(intqq2,epstar,bound, args=(fk, �2, �2, b))[0]
qq2l = 0
qq2h = ww20
diff = 1
while diff > 1e-7:

qq2 = (qq2l+qq2h)/2
rhs = const_qq2/((ww20-qq2*�2-p*�2)**(-�2));
if (rhs > qq2):

qq2l = qq2
else:

qq2h = qq2
diff = abs(qq2l-qq2h)

q be the maximum valuation for the equity among agents
This will be the equity price based on Makowski's criterion
q = max(qq1,qq2)

#================
Update holdings
#================
if qq1 > qq2:

�1a = �1
else:

�1b = �1

#print(p,q,�1,�1)

if pp1 > pp2:
�1a = �1

else:
�1b = �1

#================
Get consumption
#================
c10 = ww10 - q*�1 - p*�1
c11 = lambda �: w11(�) + �1*max(Y(�, fk)-b,0) + �1*min(Y(�, fk)/b,1)
c20 = ww20 - q*(1-�1) - p*(b-�1)
c21 = lambda �: w21(�) + (1-�1)*max(Y(�, fk)-b,0) + (b-�1)*min(Y(�, fk)/b,1)

Compute the value of the firm
value_x = -k + q + p*b
if (value_x > V):

Vl = V
else:

Vh = V
V_crit = abs(value_x-V)

return V,k,b,p,q,c10,c11,c20,c21,�1

Here is our strategy for checking stability of an equilibrium.
We use off_eq_check to obtain consumption plans for both agents at the conjectured big 𝐾 and big 𝐵.
Then we input consumption plans into the function eq_valuation from the BCG model class and plot the agents’
valuations associated with different choices of 𝑘 and 𝑏.

38.6. Examples 697

Advanced Quantitative Economics with Python

Our hunch is that (𝑘∗, 𝑏∗∗) is not at the top of the firm valuation 3D surface so that the firm is not maximizing its value
if it chooses 𝑘 = 𝐾 = 𝑘∗ and 𝑏 = 𝐵 = 𝑏∗∗.
That indicates that (𝑘∗, 𝑏∗∗) is not an equilibrium capital structure for the firm.
We first check the case in which 𝑏∗∗ = 𝑏∗ − 𝑒 where 𝑒 = 0.1:

#====================== Experiment 1 ======================#
Ve1,ke1,be1,pe1,qe1,c10e1,c11e1,c20e1,c21e1,�1e1 = off_eq_check(mdl,

kss,
bss,
e=-0.1)

Firm Valuation
kgride1, bgride1, Vgride1, Qgride1, Pgride1 = mdl.eq_valuation(c10e1, c11e1, c20e1,␣

↪c21e1,N=20)

print('Maximum valuation of the firm value in the (k,b) grid: {:.4f}'.format(Vgride1.
↪max()))

print('Equilibrium firm value: {:.4f}'.format(Ve1))

fig = go.Figure(data=[go.Scatter3d(x=[ke1],
y=[be1],
z=[Ve1],
mode='markers',
marker=dict(size=3, color='red')),

go.Surface(x=kgride1,
y=bgride1,
z=Vgride1,
colorscale='Greens',opacity=0.6)])

fig.update_layout(scene = dict(
xaxis_title='x - Capital k',
yaxis_title='y - Debt b',
zaxis_title='z - Firm Value V',
aspectratio = dict(x=1,y=1,z=1)),

width=700,
height=700,
margin=dict(l=50, r=50, b=65, t=90))

fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=-1.5, z=2)))
fig.update_layout(title='Equilibrium firm valuation for the grid of (k,b)')

Export to PNG file
Image(fig.to_image(format="png"))
fig.show() will provide interactive plot when running
code locally

Maximum valuation of the firm value in the (k,b) grid: 0.1191
Equilibrium firm value: 0.1118

698 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

In the above 3D surface of prospective firm valuations, the perturbed choice (𝑘∗, 𝑏∗ − 𝑒), represented by the red dot, is
not at the top.
The firm could issue more debts and attain a higher firm valuation from the market.
Therefore, (𝑘∗, 𝑏∗ − 𝑒) would not be an equilibrium.
Next, we check for 𝑏∗∗ = 𝑏∗ + 𝑒.

#====================== Experiment 2 ======================#
Ve2,ke2,be2,pe2,qe2,c10e2,c11e2,c20e2,c21e2,�1e2 = off_eq_check(mdl,

kss,
bss,
e=0.1)

Firm Valuation
kgride2, bgride2, Vgride2, Qgride2, Pgride2 = mdl.eq_valuation(c10e2, c11e2, c20e2,␣

↪c21e2,N=20) (continues on next page)

38.6. Examples 699

Advanced Quantitative Economics with Python

(continued from previous page)

print('Maximum valuation of the firm value in the (k,b) grid: {:.4f}'.format(Vgride2.
↪max()))

print('Equilibrium firm value: {:.4f}'.format(Ve2))

fig = go.Figure(data=[go.Scatter3d(x=[ke2],
y=[be2],
z=[Ve2],
mode='markers',
marker=dict(size=3, color='red')),

go.Surface(x=kgride2,
y=bgride2,
z=Vgride2,
colorscale='Greens',opacity=0.6)])

fig.update_layout(scene = dict(
xaxis_title='x - Capital k',
yaxis_title='y - Debt b',
zaxis_title='z - Firm Value V',
aspectratio = dict(x=1,y=1,z=1)),

width=700,
height=700,
margin=dict(l=50, r=50, b=65, t=90))

fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=-1.5, z=2)))
fig.update_layout(title='Equilibrium firm valuation for the grid of (k,b)')

Export to PNG file
Image(fig.to_image(format="png"))
fig.show() will provide interactive plot when running
code locally

Maximum valuation of the firm value in the (k,b) grid: 0.1082
Equilibrium firm value: 0.0974

700 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

In contrast to (𝑘∗, 𝑏∗ −𝑒), the 3D surface for (𝑘∗, 𝑏∗ +𝑒) now indicates that a firm would want o decrease its debt issuance
to attain a higher valuation.
That incentive to deviate means that (𝑘∗, 𝑏∗ + 𝑒) is not an equilibrium capital structure for the firm.
Interestingly, if consumers were to anticipate that firms would over-issue debt, i.e. 𝐵 > 𝑏∗, then both types of consumer
would want to hold corporate debt.
For example, 𝜉1 > 0:

print('Bond holdings of agent 1: {:.3f}'.format(�1e2))

Bond holdings of agent 1: 0.039

Our two stability experiments suggest that the equilibrium capital structure (𝑘∗, 𝑏∗) is locally unique even though at the
equilibrium an individual firm would be willing to deviate from the representative firms’ equilibrium debt choice.

38.6. Examples 701

Advanced Quantitative Economics with Python

These experiments thus refine our discussion of the qualified Modigliani-Miller theorem that prevails in this example
economy.

Equilibrium equity and bond price functions

It is also interesting to look at the equilibrium price functions 𝑞(𝑘, 𝑏) and 𝑝(𝑘, 𝑏) faced by firms in our rational expectations
equilibrium.

Equity Valuation
fig = go.Figure(data=[go.Scatter3d(x=[kss],

y=[bss],
z=[qss],
mode='markers',
marker=dict(size=3, color='red')),

go.Surface(x=kgrid,
y=bgrid,
z=Qgrid,
colorscale='Blues',opacity=0.6)])

fig.update_layout(scene = dict(
xaxis_title='x - Capital k',
yaxis_title='y - Debt b',
zaxis_title='z - Equity price q',
aspectratio = dict(x=1,y=1,z=1)),

width=700,
height=700,
margin=dict(l=50, r=50, b=65, t=90))

fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=-1.5, z=2)))
fig.update_layout(title='Equilibrium equity valuation for the grid of (k,b)')

Export to PNG file
Image(fig.to_image(format="png"))
fig.show() will provide interactive plot when running
code locally

702 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

Bond Valuation
fig = go.Figure(data=[go.Scatter3d(x=[kss],

y=[bss],
z=[pss],
mode='markers',
marker=dict(size=3, color='red')),

go.Surface(x=kgrid,
y=bgrid,
z=Pgrid,
colorscale='Oranges',opacity=0.6)])

fig.update_layout(scene = dict(
xaxis_title='x - Capital k',
yaxis_title='y - Debt b',
zaxis_title='z - Bond price q',
aspectratio = dict(x=1,y=1,z=1)),

(continues on next page)

38.6. Examples 703

Advanced Quantitative Economics with Python

(continued from previous page)

width=700,
height=700,
margin=dict(l=50, r=50, b=65, t=90))

fig.update_layout(scene_camera=dict(eye=dict(x=1.5, y=-1.5, z=2)))
fig.update_layout(title='Equilibrium bond valuation for the grid of (k,b)')

Export to PNG file
Image(fig.to_image(format="png"))
fig.show() will provide interactive plot when running
code locally

704 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

38.6.2 Comments on equilibrium pricing functions

The equilibrium pricing functions displayed above merit study and reflection.
They reveal the countervailing effects on a firm’s valuations of bonds and equities that lie beneath the Modigliani-Miller
ridge apparent in our earlier graph of an individual firm 𝜁 ’s value as a function of 𝑘(𝜁), 𝑏(𝜁).

38.6.3 Another example economy

We illustrate how the fraction of initial endowments held by agent 2,𝑤2
0/(𝑤1

0+𝑤2
0) affects an equilibrium capital structure

(𝑘, 𝑏) = (𝐾, 𝐵) well as associated equilibrium allocations.
We are interested in how agents 1 and 2 value equity and bond.

𝑄𝑖 = 𝛽 ∫ 𝑢′(𝐶𝑖,∗
1 (𝜖))

𝑢′(𝐶𝑖,∗
0)

𝑑𝑒(𝑘∗, 𝑏∗; 𝜖)𝑔(𝜖) 𝑑𝜖

𝑃 𝑖 = 𝛽 ∫ 𝑢′(𝐶𝑖,∗
1 (𝜖))

𝑢′(𝐶𝑖,∗
0)

𝑑𝑏(𝑘∗, 𝑏∗; 𝜖)𝑔(𝜖) 𝑑𝜖

The function valuations_by_agent is used in calculating these valuations.

Lists for storage
wlist = []
klist = []
blist = []
qlist = []
plist = []
Vlist = []
tlist = []
q1list = []
q2list = []
p1list = []
p2list = []

For loop: optimization for each endowment combination
for i in range(10):

print(i)

Save fraction
w10 = 0.9 - 0.05*i
w20 = 1.1 + 0.05*i
wlist.append(w20/(w10+w20))

Create the instance
mdl = BCG_incomplete_markets(w10 = w10, w20 = w20, ktop = 0.5, btop = 2.5)

Solve for equilibrium
kss,bss,Vss,qss,pss,c10ss,c11ss,c20ss,c21ss,�1ss = mdl.solve_eq(print_crit=False)

Store the equilibrium results
klist.append(kss)
blist.append(bss)
qlist.append(qss)
plist.append(pss)
Vlist.append(Vss)

(continues on next page)

38.6. Examples 705

Advanced Quantitative Economics with Python

(continued from previous page)

tlist.append(�1ss)

Evaluations of equity and bond by each agent
Q1,Q2,P1,P2 = mdl.valuations_by_agent(c10ss, c11ss, c20ss, c21ss, kss, bss)

Save the valuations
q1list.append(Q1)
q2list.append(Q2)
p1list.append(P1)
p2list.append(P2)

Plot
fig, ax = plt.subplots(3,2,figsize=(12,12))
ax[0,0].plot(wlist,klist)
ax[0,0].set_title('capital')
ax[0,1].plot(wlist,blist)
ax[0,1].set_title('debt')
ax[1,0].plot(wlist,qlist)
ax[1,0].set_title('equity price')
ax[1,1].plot(wlist,plist)
ax[1,1].set_title('bond price')
ax[2,0].plot(wlist,Vlist)
ax[2,0].set_title('firm value')
ax[2,0].set_xlabel('fraction of initial endowment held by agent 2',fontsize=13)

Create a list of Default thresholds
A = mdl.A
� = mdl.�
epslist = []
for i in range(len(wlist)):

bb = blist[i]
kk = klist[i]
eps = np.log(bb/(A*kk**�))
epslist.append(eps)

Plot (cont.)
ax[2,1].plot(wlist,epslist)
ax[2,1].set_title(r'default threshold ϵ^*')
ax[2,1].set_xlabel('fraction of initial endowment held by agent 2',fontsize=13)
plt.show()

706 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Advanced Quantitative Economics with Python

38.7 A picture worth a thousand words

Please stare at the above panels.
They describe how equilibrium prices and quantities respond to alterations in the structure of society’s hedging desires
across economies with different allocations of the initial endowment to our two types of agents.
Now let’s see how the two types of agents value bonds and equities, keeping in mind that the type that values the asset
highest determines the equilibrium price (and thus the pertinent set of Big 𝐶 ’s).

Comparing the prices
fig, ax = plt.subplots(1,3,figsize=(16,6))

(continues on next page)

38.7. A picture worth a thousand words 707

Advanced Quantitative Economics with Python

(continued from previous page)

ax[0].plot(wlist,q1list,label='agent 1',color='green')
ax[0].plot(wlist,q2list,label='agent 2',color='blue')
ax[0].plot(wlist,qlist,label='equity price',color='red',linestyle='--')
ax[0].legend()
ax[0].set_title('equity valuations')
ax[0].set_xlabel('fraction of initial endowment held by agent 2',fontsize=11)

ax[1].plot(wlist,p1list,label='agent 1',color='green')
ax[1].plot(wlist,p2list,label='agent 2',color='blue')
ax[1].plot(wlist,plist,label='bond price',color='red',linestyle='--')
ax[1].legend()
ax[1].set_title('bond valuations')
ax[1].set_xlabel('fraction of initial endowment held by agent 2',fontsize=11)

ax[2].plot(wlist,tlist,color='blue')
ax[2].set_title('equity holdings by agent 1')
ax[2].set_xlabel('fraction of initial endowment held by agent 2',fontsize=11)

plt.show()

It is rewarding to stare at the above plots too.
In equilibrium, equity valuations are the same across the two types of agents but bond valuations are not.
Agents of type 2 value bonds more highly (they want more hedging).
Taken together with our earlier plot of equity holdings, these graphs confirm our earlier conjecture that while both type
of agents hold equities, only agents of type 2 holds bonds.

708 Chapter 38. Equilibrium Capital Structures with Incomplete Markets

Part VIII

Dynamic Programming Squared

709

CHAPTER

THIRTYNINE

OPTIMAL UNEMPLOYMENT INSURANCE

39.1 Overview

This lecture describes a model of optimal unemployment insurance created by Shavell and Weiss (1979) [SW79].
We use recursive techniques of Hopenhayn and Nicolini (1997) [HN97] to compute optimal insurance plans for Shavell
and Weiss’s model.
Hopenhayn and Nicolini’s model is a generalization of Shavell and Weiss’s along dimensions that we’ll soon describe.

39.2 Shavell and Weiss’s Model

An unemployed worker orders stochastic processes of consumption and search effort {𝑐𝑡, 𝑎𝑡}∞
𝑡=0 according to

𝐸
∞

∑
𝑡=0

𝛽𝑡 [𝑢(𝑐𝑡) − 𝑎𝑡] (39.1)

where 𝛽 ∈ (0, 1) and 𝑢(𝑐) is strictly increasing, twice differentiable, and strictly concave.
We assume that 𝑢(0) is well defined.
We require that 𝑐𝑡 ≥ 0 and 𝑎𝑡 ≥ 0.
All jobs are alike and pay wage 𝑤 > 0 units of the consumption good each period forever.
An unemployed worker searches with effort 𝑎 and with probability 𝑝(𝑎) receives a permanent job at the beginning of the
next period.
Furthermore, 𝑎 = 0 when the worker is employed.
The probability of finding a job is 𝑝(𝑎) where 𝑝 is an increasing, strictly concave, and twice differentiable function of 𝑎
that satisfies 𝑝(𝑎) ∈ [0, 1] for 𝑎 ≥ 0, 𝑝(0) = 0.
The consumption good is nonstorable.
An unemployed worker has no savings and cannot borrow or lend.
An insurance agency or planner is the unemployed worker’s only source of consumption smoothing over time and across
states.
Once a worker has found a job, he is beyond the planner’s grasp.

• This is Shavell and Weiss’s assumption, but not Hopenhayn and Nicolini’s.
• Hopenhayn andNicolini allow the unemployment insurance agency to impose history-dependent taxes on previously
unemployed workers.

711

Advanced Quantitative Economics with Python

• Since there is no incentive problem after the worker has found a job, it is optimal for the agency to provide an
employed worker with a constant level of consumption.

• Hence, Hopenhayn and Nicolini’s insurance agency imposes a permanent per-period history-dependent tax on a
previously unemployed but presently employed worker.

39.2.1 Autarky

As a benchmark, we first study the fate of an unemployed worker who has no access to unemployment insurance.
Because employment is an absorbing state for the worker, we work backward from that state.
Let 𝑉 𝑒 be the expected sum of discounted one-period utilities of an employed worker.
Once the worker is employed, 𝑎 = 0, making his period utility be 𝑢(𝑐) − 𝑎 = 𝑢(𝑤) forever.
Therefore,

𝑉 𝑒 = 𝑢(𝑤)
(1 − 𝛽) . (39.2)

Now let 𝑉 𝑢 be the expected discounted present value of utility for an unemployed worker who chooses consumption,
effort pair (𝑐, 𝑎) optimally.
It satisfies the Bellman equation

𝑉 𝑢 = max
𝑎≥0

{𝑢(0) − 𝑎 + 𝛽 [𝑝(𝑎)𝑉 𝑒 + (1 − 𝑝(𝑎))𝑉 𝑢]}. (39.3)

The first-order condition for a maximum is

𝛽𝑝′(𝑎) [𝑉 𝑒 − 𝑉 𝑢] ≤ 1, (39.4)

with equality if 𝑎 > 0.
Since there is no state variable in this infinite horizon problem, there is a time-invariant optimal search intensity 𝑎 and an
associated value of being unemployed 𝑉 𝑢.
Let 𝑉aut = 𝑉 𝑢 solve Bellman equation (39.3).
Equations (39.3) and (39.4) form the basis for an iterative algorithm for computing 𝑉 𝑢 = 𝑉aut.

• Let 𝑉 𝑢
𝑗 be the estimate of 𝑉aut at the 𝑗th iteration.

• Use this value in equation (39.4) and solve for an estimate of effort 𝑎𝑗.
• Use this value in a version of equation (39.3) with 𝑉 𝑢

𝑗 on the right side to compute 𝑉 𝑢
𝑗+1.

• Iterate to convergence.

39.2.2 Full Information

Another benchmark model helps set the stage for the model with private information that we ultimately want to study.
In this model, the unemployment agency has full information about the unemployed work.
We study optimal provision of insurance with full information.
An insurance agency can set both the consumption and search effort of an unemployed person.
The agency wants to design an unemployment insurance contract to give the unemployed worker expected discounted
utility 𝑉 > 𝑉aut.

712 Chapter 39. Optimal Unemployment Insurance

Advanced Quantitative Economics with Python

The planner wants to deliver value 𝑉 efficiently, meaning in a way that minimizes expected discounted cost, using 𝛽 as
the discount factor.
We formulate the optimal insurance problem recursively.
Let 𝐶(𝑉) be the expected discounted cost of giving the worker expected discounted utility 𝑉 .
The cost function is strictly convex because a higher 𝑉 implies a lower marginal utility of the worker; that is, additional
expected utils can be awarded to the worker only at an increasing marginal cost in terms of the consumption good.
Given 𝑉 , the planner assigns first-period pair (𝑐, 𝑎) and promised continuation value 𝑉 𝑢, should the worker be unlucky
and not find a job.
(𝑐, 𝑎, 𝑉 𝑢) are chosen to be functions of 𝑉 and to satisfy the Bellman equation

𝐶(𝑉) = min
𝑐,𝑎,𝑉 𝑢

{𝑐 + 𝛽[1 − 𝑝(𝑎)]𝐶(𝑉 𝑢)}, (39.5)

where minimization is subject to the promise-keeping constraint

𝑉 ≤ 𝑢(𝑐) − 𝑎 + 𝛽 {𝑝(𝑎)𝑉 𝑒 + [1 − 𝑝(𝑎)]𝑉 𝑢} . (39.6)

Here 𝑉 𝑒 is given by equation (39.2), which reflects the assumption that once the worker is employed, he is beyond the
reach of the unemployment insurance agency.
The right side of Bellman equation (39.5) is attained by policy functions 𝑐 = 𝑐(𝑉), 𝑎 = 𝑎(𝑉), and 𝑉 𝑢 = 𝑉 𝑢(𝑉).
The promise-keeping constraint, equation (39.6), asserts that the 3-tuple (𝑐, 𝑎, 𝑉 𝑢) attains at least 𝑉 .
Let 𝜃 be a Lagrange multiplier on constraint (39.6).
At an interior solution, the first-order conditions with respect to 𝑐, 𝑎, and 𝑉 𝑢, respectively, are

𝜃 = 1
𝑢′(𝑐) ,

𝐶(𝑉 𝑢) = 𝜃 [1
𝛽𝑝′(𝑎) − (𝑉 𝑒 − 𝑉 𝑢)] ,

𝐶′(𝑉 𝑢) = 𝜃 .

(39.7)

The envelope condition 𝐶′(𝑉) = 𝜃 and the third equation of (39.7) imply that 𝐶′(𝑉 𝑢) = 𝐶′(𝑉).
Strict convexity of 𝐶 then implies that 𝑉 𝑢 = 𝑉
Applied repeatedly over time, 𝑉 𝑢 = 𝑉 makes the continuation value remain constant during the entire spell of unem-
ployment.
The first equation of (39.7) determines 𝑐, and the second equation of (39.7) determines 𝑎, both as functions of promised
value 𝑉 .
That 𝑉 𝑢 = 𝑉 then implies that 𝑐 and 𝑎 are held constant during the unemployment spell.
Thus, the unemployed worker’s consumption 𝑐 and search effort 𝑎 are both fully smoothed during the unemployment
spell.
But the worker’s consumption is not smoothed across states of employment and unemployment unless 𝑉 = 𝑉 𝑒.

39.2. Shavell and Weiss’s Model 713

Advanced Quantitative Economics with Python

39.2.3 Incentive Problem

The preceding efficient insurance scheme requires that the insurance agency control both 𝑐 and 𝑎.
It will not do for the insurance agency simply to announce 𝑐 and then allow the worker to choose 𝑎.
Here is why.
The agency delivers a value 𝑉 𝑢 higher than the autarky value 𝑉aut by doing two things.
It increases the unemployed worker’s consumption 𝑐 and decreases his search effort 𝑎.
But the prescribed search effort is higher than what the worker would choose if he were to be guaranteed consumption
level 𝑐 while he remains unemployed.
This follows from the first two equations of (39.7) and the fact that the insurance scheme is costly, 𝐶(𝑉 𝑢) > 0, which
imply [𝛽𝑝′(𝑎)]−1 > (𝑉 𝑒 − 𝑉 𝑢).
But look at the worker’s first-order condition (39.4) under autarky.
It implies that if search effort 𝑎 > 0, then [𝛽𝑝′(𝑎)]−1 = [𝑉 𝑒 − 𝑉 𝑢], which is inconsistent with the preceding inequality
[𝛽𝑝′(𝑎)]−1 > (𝑉 𝑒 − 𝑉 𝑢) that prevails when 𝑎 > 0 under the social insurance arrangement.
If he were free to choose 𝑎, the worker would therefore want to fulfill (39.4), either at equality so long as 𝑎 > 0, or by
setting 𝑎 = 0 otherwise.
Starting from the 𝑎 associated with the social insurance scheme, he would establish the desired equality in (39.4) by
lowering 𝑎, thereby decreasing the term [𝛽𝑝′(𝑎)]−1 (which also lowers (𝑉 𝑒 − 𝑉 𝑢) when the value of being unemployed
𝑉 𝑢 increases).
If an equality can be established before 𝑎 reaches zero, this would be the worker’s preferred search effort; otherwise the
worker would find it optimal to accept the insurance payment, set 𝑎 = 0, and never work again.
Thus, since the worker does not take the cost of the insurance scheme into account, he would choose a search effort below
the socially optimal one.
The efficient contract relies on the agency’s ability to control both the unemployed worker’s consumption and his search
effort.

39.3 Private Information

Following Shavell and Weiss (1979) [SW79] and Hopenhayn and Nicolini (1997) [HN97], now assume that the unem-
ployment insurance agency cannot observe or enforce 𝑎, though it can observe and control 𝑐.
The worker is free to choose 𝑎, which puts expression (39.4), the worker’s first-order condition under autarky, back in
the picture.

• We are assuming that the worker’s best response to the unemployment insurance arrangement is completely char-
acterized by the first-order condition (39.4), an instance of the so-called first-order approach to incentive problems.

Given a contract, the individual will choose search effort according to first-order condition (39.4).
This fact leads the insurance agency to design the unemployment insurance contract to respect this restriction.
Thus, the recursive contract design problem is now to minimize the right side of equation (39.5) subject to expression
(39.6) and the incentive constraint (39.4).
Since the restrictions (39.4) and (39.6) are not linear and generally do not define a convex set, it becomes difficult to
provide conditions under which the solution to the dynamic programming problem results in a convex function 𝐶(𝑉).

• Sometimes this complication can be handled by convexifying the constraint set through the introduction of lotteries.

714 Chapter 39. Optimal Unemployment Insurance

Advanced Quantitative Economics with Python

• A common finding is that optimal plans do not involve lotteries, because convexity of the constraint set is a sufficient
but not necessary condition for convexity of the cost function.

• Following Hopenhayn andNicolini (1997) [HN97], we therefore proceed under the assumption that𝐶(𝑉) is strictly
convex in order to characterize the optimal solution.

Let 𝜂 be the multiplier on constraint (39.4), while 𝜃 continues to denote the multiplier on constraint (39.6).
But now we replace the weak inequality in (39.6) by an equality.
The unemployment insurance agency cannot award a higher utility than 𝑉 because that might violate an incentive-
compatibility constraint for exerting the proper search effort in earlier periods.
At an interior solution, first-order conditions with respect to 𝑐, 𝑎, and 𝑉 𝑢, respectively, are

𝜃 = 1
𝑢′(𝑐) ,

𝐶(𝑉 𝑢) = 𝜃 [1
𝛽𝑝′(𝑎) − (𝑉 𝑒 − 𝑉 𝑢)] − 𝜂 𝑝″(𝑎)

𝑝′(𝑎) (𝑉 𝑒 − 𝑉 𝑢)

= −𝜂 𝑝″(𝑎)
𝑝′(𝑎) (𝑉 𝑒 − 𝑉 𝑢) ,

𝐶′(𝑉 𝑢) = 𝜃 − 𝜂 𝑝′(𝑎)
1 − 𝑝(𝑎) ,

(39.8)

where the second equality in the second equation in (39.8) follows from strict equality of the incentive constraint (39.4)
when 𝑎 > 0.
As long as the insurance scheme is associated with costs, so that 𝐶(𝑉 𝑢) > 0, first-order condition in the second equation
of (39.8) implies that the multiplier 𝜂 is strictly positive.
The first-order condition in the second equation of the third equality in (39.8) and the envelope condition 𝐶′(𝑉) = 𝜃
together allow us to conclude that 𝐶′(𝑉 𝑢) < 𝐶′(𝑉).
Convexity of 𝐶 then implies that 𝑉 𝑢 < 𝑉 .
After we have also used the first equation of (39.8), it follows that in order to provide the proper incentives, the consump-
tion of the unemployed worker must decrease as the duration of the unemployment spell lengthens.
It also follows from (39.4) at equality that search effort 𝑎 rises as 𝑉 𝑢 falls, i.e., it rises with the duration of unemployment.
The duration dependence of benefits is designed to provide incentives to search.
To see this, from the third equation of (39.8), notice how the conclusion that consumption falls with the duration of
unemployment depends on the assumption that more search effort raises the prospect of finding a job, i.e., that 𝑝′(𝑎) > 0.
If 𝑝′(𝑎) = 0, then the third equation of (39.8) and the strict convexity of 𝐶 imply that 𝑉 𝑢 = 𝑉 .
Thus, when 𝑝′(𝑎) = 0, there is no reason for the planner to make consumption fall with the duration of unemployment.

39.3.1 Computational Details

It is useful to note that there are natural lower and upper bounds to the set of continuation values 𝑉 𝑢.
The lower bound is the expected lifetime utility in autarky, 𝑉aut.
To compute the upper bound, represent condition (39.4) as

𝑉 𝑢 ≥ 𝑉 𝑒 − [𝛽𝑝′(𝑎)]−1,

with equality if 𝑎 > 0.
If there is zero search effort, then 𝑉 𝑢 ≥ 𝑉 𝑒 − [𝛽𝑝′(0)]−1.

39.3. Private Information 715

Advanced Quantitative Economics with Python

Therefore, to rule out zero search effort we require

𝑉 𝑢 < 𝑉 𝑒 − [𝛽𝑝′(0)]−1.

(Remember that 𝑝″(𝑎) < 0.)
This step gives our upper bound for 𝑉 𝑢.
To formulate the Bellman equation numerically, we suggest using the constraints to eliminate 𝑐 and 𝑎 as choice variables,
thereby reducing the Bellman equation to a minimization over the one choice variable 𝑉 𝑢.
First express the promise-keeping constraint (39.6) at equality as

𝑢(𝑐) = 𝑉 + 𝑎 − 𝛽{𝑝(𝑎)𝑉 𝑒 + [1 − 𝑝(𝑎)]𝑉 𝑢}

so that consumption is

𝑐 = 𝑢−1 (𝑉 + 𝑎 − 𝛽[𝑝(𝑎)𝑉 𝑒 + (1 − 𝑝(𝑎))𝑉 𝑢]) . (39.9)

Similarly, solving the inequality (39.4) for 𝑎 leads to

𝑎 = max{0, 𝑝′−1 (1
𝛽(𝑉 𝑒 − 𝑉 𝑢))} . (39.10)

When we specialize (39.10) to the functional form for 𝑝(𝑎) used by Hopenhayn and Nicolini, we obtain

𝑎 = max{0, log[𝑟𝛽(𝑉 𝑒 − 𝑉 𝑢)]
𝑟 } . (39.11)

Formulas (39.9) and (39.11) express (𝑐, 𝑎) as functions of 𝑉 and the continuation value 𝑉 𝑢.
Using these functions allows us to write the Bellman equation in 𝐶(𝑉) as

𝐶(𝑉) = min
𝑉 𝑢

{𝑐 + 𝛽[1 − 𝑝(𝑎)]𝐶(𝑉 𝑢)} (39.12)

where 𝑐 and 𝑎 are given by equations (39.9) and (39.11).

39.3.2 Python Computations

We’ll approximate the planner’s optimal cost function with cubic splines.
To do this, we’ll load some useful modules

import numpy as np
import scipy as sp
import matplotlib.pyplot as plt

We first create a class to set up a particular parametrization.

class params_instance:

def __init__(self,
r,
β = 0.999,
σ = 0.500,
w = 100,
n_grid = 50):

(continues on next page)

716 Chapter 39. Optimal Unemployment Insurance

Advanced Quantitative Economics with Python

(continued from previous page)

self.β,self.σ,self.w,self.r = β,σ,w,r
self.n_grid = n_grid
uw = self.w**(1-self.σ)/(1-self.σ) #Utility from consuming all wage
self.Ve = uw/(1-β)

39.3.3 Parameter Values

For the other parameters we have just loaded in the above Python code, we’ll set brate the net interest rate 𝑟 to match the
hazard rate – the probability of finding a job in one period – in US data.
In particular, we seek an 𝑟 so that in autarky p(a(r)) = 0.1, where a is the optimal search effort.
First, we create some helper functions.

The probability of finding a job given search effort, a and interest rate r.
def p(a,r):

return 1-np.exp(-r*a)

def invp_prime(x,r):
return -np.log(x/r)/r

def p_prime(a,r):
return r*np.exp(-r*a)

The utiliy function
def u(self,c):

return (c**(1-self.σ))/(1-self.σ)

def u_inv(self,x):
return ((1-self.σ)*x)**(1/(1-self.σ))

Recall that under autarky the value for an unemployed worker satisfies the Bellman equation

𝑉 𝑢 = max
𝑎

{𝑢(0) − 𝑎 + 𝛽 [𝑝𝑟(𝑎)𝑉 𝑒 + (1 − 𝑝𝑟(𝑎))𝑉 𝑢]} (39.13)

At the optimal choice of 𝑎, we have the first order condition for this problem as:

𝛽𝑝′
𝑟(𝑎)[𝑉 𝑒 − 𝑉 𝑢] ≤ 1 (39.14)

with equality when a >0.
Given an interest rate ̄𝑟, we can solve the autarky problem as follows:

1. Guess 𝑉 𝑢 ∈ ℝ+

2. Given 𝑉 𝑢, use the FOC (39.14) to calculate the implied optimal search effort 𝑎
3. Evaluate the difference between the LHS and RHS of the Bellman equation (39.13)
4. Update guess for 𝑉 𝑢 accordingly, then return to 2) and repeat until the Bellman equation is satisfied.

For a given 𝑟 and guess 𝑉 𝑢, the function Vu_error calculates the error in the Bellman equation under the optimal
search intensity.
We’ll soon use this as an input to computing 𝑉 𝑢.

39.3. Private Information 717

Advanced Quantitative Economics with Python

The error in the Bellman equation that requires equality at
the optimal choices.
def Vu_error(self,Vu,r):

β= self.β
Ve = self.Ve

a = invp_prime(1/(β*(Ve-Vu)),r)
error = u(self,0) -a + β*(p(a,r)*Ve + (1-p(a,r))*Vu) - Vu
return error

Since the calibration exercise is to match the hazard rate under autarky to the data, we must find an interest rate 𝑟 to
match p(a,r) = 0.1.
The function below r_error calculates, for a given guess of 𝑟 the difference between the model implied equilibrium
hazard rate and 0.1.
This will be used to solve for the a calibrated 𝑟∗.

The error of our p(a^*) relative to our calibration target
def r_error(self,r):

β = self.β
Ve = self.Ve

Vu_star = sp.optimize.fsolve(Vu_error_Λ,15000,args = (r))
a_star = invp_prime(1/(β*(Ve-Vu_star)),r) # Assuming a>0
return p(a_star,r) - 0.1

Now, let us create an instance of the model with our parametrization

params = params_instance(r = 1e-2)
Create some lambda functions useful for fsolve function
Vu_error_Λ = lambda Vu,r: Vu_error(params,Vu,r)
r_error_Λ = lambda r: r_error(params,r)

We want to compute an 𝑟 that is consistent with the hazard rate 0.1 in autarky.
To do so, we will use a bisection strategy.

r_calibrated = sp.optimize.brentq(r_error_Λ,1e-10,1-1e-10)
print(f"Interest rate to match 0.1 hazard rate: r = {r_calibrated}")

Vu_aut = sp.optimize.fsolve(Vu_error_Λ,15000,args = (r_calibrated))[0]
a_aut = invp_prime(1/(params.β*(params.Ve-Vu_aut)),r_calibrated)

print(f"Check p at r: {p(a_aut,r_calibrated)}")

Interest rate to match 0.1 hazard rate: r = 0.0003431409393866592
Check p at r: 0.10000000000001996

/usr/share/miniconda3/envs/quantecon/lib/python3.11/site-packages/scipy/optimize/_
↪minpack_py.py:177: RuntimeWarning: The iteration is not making good progress, as␣
↪measured by the
improvement from the last five Jacobian evaluations.
warnings.warn(msg, RuntimeWarning)

Now that we have calibrated our interest rate 𝑟, we can continue with solving the model with private information.

718 Chapter 39. Optimal Unemployment Insurance

Advanced Quantitative Economics with Python

39.3.4 Computation under Private Information

Our approach to solving the full model is a variant on Judd (1998) [Jud98], who uses a polynomial to approximate the
value function and a numerical optimizer to perform the optimization at each iteration.
In contrast, we will use cubic splines to interpolate across a pre-set grid of points to approximate the value function. For
further details of the Judd (1998) [Jud98] method, see [LS18], Section 5.7.
Our strategy involves finding a function𝐶(𝑉) – the expected cost of giving the worker value 𝑉 – that satisfies the Bellman
equation:

𝐶(𝑉) = min
𝑐,𝑎,𝑉 𝑢

{𝑐 + 𝛽 [1 − 𝑝(𝑎)] 𝐶(𝑉 𝑢)} (39.15)

To solve this model, notice that in equations (39.9) and (39.11), we have analytical solutions of 𝑐 and 𝑎 in terms of (at
most) promised value 𝑉 and 𝑉 𝑢 (and other parameters).
We can substitute these equations for 𝑐 and 𝑎 and obtain the functional equation (39.12) that we want to solve.

def calc_c(self,Vu,V,a):
'''
Calculates the optimal consumption choice coming from the constraint of the␣

↪insurer's problem
(which is also a Bellman equation)
'''
β,Ve,r = self.β,self.Ve,self.r

c = u_inv(self,V + a - β*(p(a,r)*Ve + (1-p(a,r))*Vu))
return c

def calc_a(self,Vu):
'''
Calculates the optimal effort choice coming from the worker's effort optimality␣

↪condition.
'''

r,β,Ve = self.r,self.β,self.Ve

a_temp = np.log(r*β*(Ve - Vu))/r
a = max(0,a_temp)
return a

With these analytical solutions for optimal 𝑐 and 𝑎 in hand, we can reduce the minimization to (39.12) in the single
variable 𝑉 𝑢.
With this in hand, we have our algorithm.

39.3.5 Algorithm

1. Fix a set of grid points 𝑔𝑟𝑖𝑑𝑉 for 𝑉 and 𝑉 𝑢𝑔𝑟𝑖𝑑 for 𝑉 𝑢

2. Guess a function 𝐶0(𝑉) that is evaluated at a grid 𝑔𝑟𝑖𝑑𝑉 .
3. For each point in 𝑔𝑟𝑖𝑑𝑉 find the 𝑉 𝑢 that minimizes the expression on right side of (39.12). We find the minimum

by evaluating the right side of (39.12) at each point in 𝑉 𝑢𝑔𝑟𝑖𝑑 and then finding the minimum using cubic splines.
4. Evaluating the minimum across all points in 𝑔𝑟𝑖𝑑𝑉 gives you another function 𝐶1(𝑉).
5. If 𝐶0(𝑉) and 𝐶1(𝑉) are sufficiently different, then repeat steps 3-4 again. Otherwise, we are done.
6. Thus, the iterations are 𝐶𝑗+1(𝑉) = min𝑐,𝑎,𝑉 𝑢{𝑐 − 𝛽[1 − 𝑝(𝑎)]𝐶𝑗(𝑉)}.

39.3. Private Information 719

Advanced Quantitative Economics with Python

The function iterate_C below executes step 3 in the above algorithm.

Operator iterate_C that calculates the next iteration of the cost function.
def iterate_C(self,C_old,Vu_grid):

'''
We solve the model by minimising the value function across a grid of possible␣

↪promised values.
'''
β,r,n_grid = self.β,self.r,self.n_grid

C_new = np.zeros(n_grid)
cons_star = np.zeros(n_grid)
a_star = np.zeros(n_grid)
V_star = np.zeros(n_grid)

C_new2 = np.zeros(n_grid)
V_star2 = np.zeros(n_grid)

for V_i in range(n_grid):
C_Vi_temp = np.zeros(n_grid)
cons_Vi_temp = np.zeros(n_grid)
a_Vi_temp = np.zeros(n_grid)

for Vu_i in range(n_grid):
a_i = calc_a(self,Vu_grid[Vu_i])
c_i = calc_c(self,Vu_grid[Vu_i],Vu_grid[V_i],a_i)

C_Vi_temp[Vu_i] = c_i + β*(1-p(a_i,r))*C_old[Vu_i]
cons_Vi_temp[Vu_i] = c_i
a_Vi_temp[Vu_i] = a_i

Interpolate across the grid to get better approximation of the minimum
C_Vi_temp_interp = sp.interpolate.interp1d(Vu_grid,C_Vi_temp, kind = 'cubic')
cons_Vi_temp_interp = sp.interpolate.interp1d(Vu_grid,cons_Vi_temp, kind =

↪'cubic')
a_Vi_temp_interp = sp.interpolate.interp1d(Vu_grid,a_Vi_temp, kind = 'cubic')

res = sp.optimize.minimize_scalar(C_Vi_temp_interp,method='bounded',bounds =␣
↪(Vu_min,Vu_max))

V_star[V_i] = res.x
C_new[V_i] = res.fun

Save the associated consumpton and search policy functions as well
cons_star[V_i] = cons_Vi_temp_interp(V_star[V_i])
a_star[V_i] = a_Vi_temp_interp(V_star[V_i])

return C_new,V_star,cons_star,a_star

The below code executes steps 4 and 5 in the Algorithm until convergence to a function 𝐶∗(𝑉).

def solve_incomplete_info_model(self,Vu_grid,Vu_aut,tol = 1e-6,max_iter = 10000):
iter = 0
error = 1

C_init = np.ones(self.n_grid)*0
C_old = np.copy(C_init)

(continues on next page)

720 Chapter 39. Optimal Unemployment Insurance

Advanced Quantitative Economics with Python

(continued from previous page)

while iter<max_iter and error >tol:
C_new,V_new,cons_star,a_star = iterate_C(self,C_old,Vu_grid)
error = np.max(np.abs(C_new - C_old))

#Only print the iterations every 50 steps
if iter % 50 ==0:

print(f"Iteration: {iter}, error:{error}")
C_old = np.copy(C_new)
iter+=1

return C_new,V_new,cons_star,a_star

39.4 Outcomes

Using the above functions, we create another instance of the parameters with the correctly calibrated interest rate, 𝑟.

##? Create another instance with the correct r now
params = params_instance(r = r_calibrated)

#Set up grid
Vu_min = Vu_aut
Vu_max = params.Ve - 1/(params.β*p_prime(0,params.r))
Vu_grid = np.linspace(Vu_min,Vu_max,params.n_grid)

#Solve model
C_star,V_star,cons_star,a_star = solve_incomplete_info_model(params,Vu_grid,Vu_aut,

↪tol = 1e-6,max_iter = 10000) #,cons_star,a_star

Since we have the policy functions in grid form, we will interpolate them to be␣
↪able to

evaluate any promised value
cons_star_interp = sp.interpolate.interp1d(Vu_grid,cons_star)
a_star_interp = sp.interpolate.interp1d(Vu_grid,a_star)
V_star_interp = sp.interpolate.interp1d(Vu_grid,V_star)

Iteration: 0, error:72.95964854907824

Iteration: 50, error:12.222761762480786

Iteration: 100, error:0.12875960366727668

Iteration: 150, error:0.0009402349710398994

Iteration: 200, error:6.115462838351959e-06

39.4. Outcomes 721

Advanced Quantitative Economics with Python

39.4.1 Replacement Ratios and Continuation Values

We want to graph the replacement ratio (𝑐/𝑤) and search effort 𝑎 as functions of the duration of unemployment.
We’ll do this for three levels of 𝑉0, the lowest being the autarky value 𝑉aut.
We accomplish this by using the optimal policy functions V_star, cons_star and a_star computed above as well
the following iterative procedure:

Replacement ratio and effort as a function of unemployment duration
T_max = 52
Vu_t = np.empty((T_max,3))
cons_t = np.empty((T_max-1,3))
a_t = np.empty((T_max-1,3))

Calculate the replacement ratios depending on different initial
promised values
Vu_0_hold = np.array([Vu_aut,16942,17000])

for i,Vu_0, in enumerate(Vu_0_hold):
Vu_t[0,i] = Vu_0
for t in range(1,T_max):

cons_t[t-1,i] = cons_star_interp(Vu_t[t-1,i])
a_t[t-1,i] = a_star_interp(Vu_t[t-1,i])
Vu_t[t,i] = V_star_interp(Vu_t[t-1,i])

fontSize = 10
plt.rc('font', size=fontSize) # controls default text sizes
plt.rc('axes', titlesize=fontSize) # fontsize of the axes title
plt.rc('axes', labelsize=fontSize) # fontsize of the x and y labels
plt.rc('xtick', labelsize=fontSize) # fontsize of the tick labels
plt.rc('ytick', labelsize=fontSize) # fontsize of the tick labels
plt.rc('legend', fontsize=fontSize) # legend fontsize

f1 = plt.figure(figsize = (8,8))
plt.subplot(2,1,1)
plt.plot(range(T_max-1),cons_t[:,0]/params.w,label = 'V^u_0 = 16759 (aut)',color =

↪'red')
plt.plot(range(T_max-1),cons_t[:,1]/params.w,label = 'V^u_0 = 16942',color = 'blue')
plt.plot(range(T_max-1),cons_t[:,2]/params.w,label = 'V^u_0 = 17000',color = 'green

↪')
plt.ylabel("Replacement ratio (c/w)")
plt.legend()
plt.title("Optimal replacement ratio")

plt.subplot(2,1,2)
plt.plot(range(T_max-1),a_t[:,0],color = 'red')
plt.plot(range(T_max-1),a_t[:,1],color = 'blue')
plt.plot(range(T_max-1),a_t[:,2],color = 'green')
plt.ylim(0,320)
plt.ylabel("Optimal search effort (a)")
plt.xlabel("Duration of unemployment")
plt.title("Optimal search effort")
plt.show()

722 Chapter 39. Optimal Unemployment Insurance

Advanced Quantitative Economics with Python

For an initial promised value 𝑉 𝑢 = 𝑉aut, the planner chooses the autarky level of 0 for the replacement ratio and instructs
the worker to search at the autarky search intensity, regardless of the duration of unemployment
But for 𝑉 𝑢 > 𝑉aut, the planner makes the replacement ratio decline and search effort increase with the duration of
unemployment.

39.4. Outcomes 723

Advanced Quantitative Economics with Python

39.4.2 Interpretations

The downward slope of the replacement ratio when 𝑉 𝑢 > 𝑉aut is a consequence of the the planner’s limited information
about the worker’s search effort.
By providing the worker with a duration-dependent schedule of replacement ratios, the planner induces the worker in
effect to reveal his/her search effort to the planner.
We saw earlier that with full information, the planner would smooth consumption over an unemployment spell by keeping
the replacement ratio constant.
With private information, the planner can’t observe the worker’s search effort and therefore makes the replacement ratio
fall.
Evidently, search effort rise as the duration of unemployment increases, especially early in an unemployment spell.
There is a carrot-and-stick aspect to the replacement rate and search effort schedules:

• the carrot occurs in the forms of high compensation and low search effort early in an unemployment spell.
• the stick occurs in the low compensation and high effort later in the spell.

We shall encounter a related carrot-and-stick feature in our other lectures about dynamic programming squared.
The planner offers declining benefits and induces increased search effort as the duration of an unemployment spell rises in
order to provide an unemployed worker with proper incentives, not to punish an unlucky worker who has been unemployed
for a long time.
The planner believes that a worker who has been unemployed a long time is unlucky, not that he has done anything wrong
(i.e., has not lived up to the contract).
Indeed, the contract is designed to induce the unemployed workers to search in the way the planner expects.
The falling consumption and rising search effort of the unlucky ones with long unemployment spells are simply costs that
have to be paid in order to provide proper incentives.

724 Chapter 39. Optimal Unemployment Insurance

CHAPTER

FORTY

STACKELBERG PLANS

Contents

• Stackelberg Plans

– Overview

– Duopoly

– Stackelberg Problem

– Two Bellman Equations

– Stackelberg Plan for Duopoly

– Recursive Representation of Stackelberg Plan

– Dynamic Programming and Time Consistency of Follower’s Problem

– Computing Stackelberg Plan

– Time Series for Price and Quantities

– Time Inconsistency of Stackelberg Plan

– Recursive Formulation of Follower’s Problem

– Markov Perfect Equilibrium

– Comparing Markov Perfect Equilibrium and Stackelberg Outcome

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

40.1 Overview

This lecture formulates and computes a plan that a Stackelberg leader uses to manipulate forward-looking decisions of a
Stackelberg follower that depend on continuation sequences of decisions made once and for all by the Stackelberg leader
at time 0.
To facilitate computation and interpretation, we formulate things in a context that allows us to apply dynamic programming
for linear-quadratic models.
Technically, our calculations are closely related to ones described this lecture.

725

https://python.quantecon.org/lagrangian_lqdp.html

Advanced Quantitative Economics with Python

From the beginning, we carry along a linear-quadratic model of duopoly in which firms face adjustment costs that make
them want to forecast actions of other firms that influence future prices.
Let’s start with some standard imports:

import numpy as np
import numpy.linalg as la
import quantecon as qe
from quantecon import LQ
import matplotlib.pyplot as plt
%matplotlib inline

40.2 Duopoly

Time is discrete and is indexed by 𝑡 = 0, 1, ….
Two firms produce a single good whose demand is governed by the linear inverse demand curve

𝑝𝑡 = 𝑎0 − 𝑎1(𝑞1𝑡 + 𝑞2𝑡)

where 𝑞𝑖𝑡 is output of firm 𝑖 at time 𝑡 and 𝑎0 and 𝑎1 are both positive.
𝑞10, 𝑞20 are given numbers that serve as initial conditions at time 0.
By incurring a cost equal to

𝛾𝑣2
𝑖𝑡, 𝛾 > 0,

firm 𝑖 can change its output according to

𝑞𝑖𝑡+1 = 𝑞𝑖𝑡 + 𝑣𝑖𝑡

Firm 𝑖’s profits at time 𝑡 equal

𝜋𝑖𝑡 = 𝑝𝑡𝑞𝑖𝑡 − 𝛾𝑣2
𝑖𝑡

Firm 𝑖 wants to maximize the present value of its profits
∞

∑
𝑡=0

𝛽𝑡𝜋𝑖𝑡

where 𝛽 ∈ (0, 1) is a time discount factor.

40.2.1 Stackelberg Leader and Follower

Each firm 𝑖 = 1, 2 chooses a sequence ⃗𝑞𝑖 ≡ {𝑞𝑖𝑡+1}∞
𝑡=0 once and for all at time 0.

We let firm 2 be a Stackelberg leader and firm 1 be a Stackelberg follower.
The leader firm 2 goes first and chooses {𝑞2𝑡+1}∞

𝑡=0 once and for all at time 0.
Knowing that firm 2 has chosen {𝑞2𝑡+1}∞

𝑡=0, the follower firm 1 goes second and chooses {𝑞1𝑡+1}∞
𝑡=0 once and for all at

time 0.
In choosing ⃗𝑞2, firm 2 takes into account that firm 1 will base its choice of ⃗𝑞1 on firm 2’s choice of ⃗𝑞2.

726 Chapter 40. Stackelberg Plans

Advanced Quantitative Economics with Python

40.2.2 Statement of Leader’s and Follower’s Problems

We can express firm 1’s problem as

max
⃗𝑞1

Π1(⃗𝑞1; ⃗𝑞2)

where the appearance behind the semi-colon indicates that ⃗𝑞2 is given.
Firm 1’s problem induces the best response mapping

⃗𝑞1 = 𝐵(⃗𝑞2)

(Here 𝐵 maps a sequence into a sequence)
The Stackelberg leader’s problem is

max
⃗𝑞2

Π2(𝐵(⃗𝑞2), ⃗𝑞2)

whosemaximizer is a sequence ⃗𝑞2 that depends on the initial conditions 𝑞10, 𝑞20 and the parameters of the model 𝑎0, 𝑎1, 𝛾.
This formulation captures key features of the model

• Both firms make once-and-for-all choices at time 0.
• This is true even though both firms are choosing sequences of quantities that are indexed by time.
• The Stackelberg leader chooses first within time 0, knowing that the Stackelberg follower will choose second
within time 0.

While our abstract formulation reveals the timing protocol and equilibrium concept well, it obscures details that must be
addressed when we want to compute and interpret a Stackelberg plan and the follower’s best response to it.
To gain insights about these things, we study them in more detail.

40.2.3 Firms’ Problems

Firm 1 acts as if firm 2’s sequence {𝑞2𝑡+1}∞
𝑡=0 is given and beyond its control.

Firm 2 knows that firm 1 chooses second and takes this into account in choosing {𝑞2𝑡+1}∞
𝑡=0.

In the spirit of working backward, we study firm 1’s problem first, taking {𝑞2𝑡+1}∞
𝑡=0 as given.

We can formulate firm 1’s optimum problem in terms of the Lagrangian

𝐿 =
∞

∑
𝑡=0

𝛽𝑡{𝑎0𝑞1𝑡 − 𝑎1𝑞2
1𝑡 − 𝑎1𝑞1𝑡𝑞2𝑡 − 𝛾𝑣2

1𝑡 + 𝜆𝑡[𝑞1𝑡 + 𝑣1𝑡 − 𝑞1𝑡+1]}

Firm 1 seeks a maximum with respect to {𝑞1𝑡+1, 𝑣1𝑡}∞
𝑡=0 and a minimum with respect to {𝜆𝑡}∞

𝑡=0.
We approach this problem using methods described in [LS18], chapter 2, appendix A and [Sar87], chapter IX.
First-order conditions for this problem are

𝜕𝐿
𝜕𝑞1𝑡

= 𝑎0 − 2𝑎1𝑞1𝑡 − 𝑎1𝑞2𝑡 + 𝜆𝑡 − 𝛽−1𝜆𝑡−1 = 0, 𝑡 ≥ 1

𝜕𝐿
𝜕𝑣1𝑡

= −2𝛾𝑣1𝑡 + 𝜆𝑡 = 0, 𝑡 ≥ 0

40.2. Duopoly 727

Advanced Quantitative Economics with Python

These first-order conditions and the constraint 𝑞1𝑡+1 = 𝑞1𝑡 + 𝑣1𝑡 can be rearranged to take the form

𝑣1𝑡 = 𝛽𝑣1𝑡+1 + 𝛽𝑎0
2𝛾 − 𝛽𝑎1

𝛾 𝑞1𝑡+1 − 𝛽𝑎1
2𝛾 𝑞2𝑡+1

𝑞𝑡+1 = 𝑞1𝑡 + 𝑣1𝑡

We can substitute the second equation into the first equation to obtain

(𝑞1𝑡+1 − 𝑞1𝑡) = 𝛽(𝑞1𝑡+2 − 𝑞1𝑡+1) + 𝑐0 − 𝑐1𝑞1𝑡+1 − 𝑐2𝑞2𝑡+1

where 𝑐0 = 𝛽𝑎0
2𝛾 , 𝑐1 = 𝛽𝑎1

𝛾 , 𝑐2 = 𝛽𝑎1
2𝛾 .

This equation can in turn be rearranged to become

−𝑞1𝑡 + (1 + 𝛽 + 𝑐1)𝑞1𝑡+1 − 𝛽𝑞1𝑡+2 = 𝑐0 − 𝑐2𝑞2𝑡+1 (40.1)

Equation (40.1) is a second-order difference equation in the sequence ⃗𝑞1 whose solution we want.
It satisfies two boundary conditions:

• an initial condition that 𝑞1,0, which is given

• a terminal condition requiring that lim𝑇 →+∞ 𝛽𝑇 𝑞2
1𝑡 < +∞

Using the lag operators described in [Sar87], chapter IX, difference equation (40.1) can be written as

𝛽(1 − 1 + 𝛽 + 𝑐1
𝛽 𝐿 + 𝛽−1𝐿2)𝑞1𝑡+2 = −𝑐0 + 𝑐2𝑞2𝑡+1

The polynomial in the lag operator on the left side can be factored as

(1 − 1 + 𝛽 + 𝑐1
𝛽 𝐿 + 𝛽−1𝐿2) = (1 − 𝛿1𝐿)(1 − 𝛿2𝐿) (40.2)

where 0 < 𝛿1 < 1 < 1√𝛽 < 𝛿2.

Because 𝛿2 > 1√𝛽 the operator (1−𝛿2𝐿) contributes an unstable component if solved backwards but a stable component
if solved forwards.
Mechanically, write

(1 − 𝛿2𝐿) = −𝛿2𝐿(1 − 𝛿−1
2 𝐿−1)

and compute the following inverse operator

[−𝛿2𝐿(1 − 𝛿−1
2 𝐿−1)]−1 = −𝛿2(1 − 𝛿2

−1)−1𝐿−1

Operating on both sides of equation (40.2) with 𝛽−1 times this inverse operator gives the follower’s decision rule for
setting 𝑞1𝑡+1 in the feedback-feedforward form

𝑞1𝑡+1 = 𝛿1𝑞1𝑡 − 𝑐0𝛿−1
2 𝛽−1 1

1 − 𝛿−1
2

+ 𝑐2𝛿−1
2 𝛽−1

∞
∑
𝑗=0

𝛿𝑗
2𝑞2𝑡+𝑗+1, 𝑡 ≥ 0 (40.3)

The problem of the Stackelberg leader firm 2 is to choose the sequence {𝑞2𝑡+1}∞
𝑡=0 to maximize its discounted profits

∞
∑
𝑡=0

𝛽𝑡{(𝑎0 − 𝑎1(𝑞1𝑡 + 𝑞2𝑡))𝑞2𝑡 − 𝛾(𝑞2𝑡+1 − 𝑞2𝑡)2}

subject to the sequence of constraints (40.3) for 𝑡 ≥ 0.

728 Chapter 40. Stackelberg Plans

Advanced Quantitative Economics with Python

We can put a sequence {𝜃𝑡}∞
𝑡=0 of Lagrange multipliers on the sequence of equations (40.3) and formulate the following

Lagrangian for the Stackelberg leader firm 2’s problem

�̃� =
∞

∑
𝑡=0

𝛽𝑡{(𝑎0 − 𝑎1(𝑞1𝑡 + 𝑞2𝑡))𝑞2𝑡 − 𝛾(𝑞2𝑡+1 − 𝑞2𝑡)2}

+
∞

∑
𝑡=0

𝛽𝑡𝜃𝑡{𝛿1𝑞1𝑡 − 𝑐0𝛿−1
2 𝛽−1 1

1 − 𝛿−1
2

+ 𝑐2𝛿−1
2 𝛽−1

∞
∑
𝑗=0

𝛿−𝑗
2 𝑞2𝑡+𝑗+1 − 𝑞1𝑡+1}

(40.4)

subject to initial conditions for 𝑞1𝑡, 𝑞2𝑡 at 𝑡 = 0.
Remarks: We have formulated the Stackelberg problem in a space of sequences.
The max-min problem associated with firm 2’s Lagrangian (40.4) is unpleasant because the time 𝑡 component of firm 2’s
payoff function depends on the entire future of its choices of {𝑞2𝑡+𝑗}∞

𝑗=0.
This renders a direct attack on the problem in the space of sequences cumbersome.
Therefore, below we will formulate the Stackelberg leader’s problem recursively.
We’ll proceed by putting our duopoly model into a broader class of models with the same general structure.

40.3 Stackelberg Problem

We formulate a class of linear-quadratic Stackelberg leader-follower problems of which our duopoly model is an instance.
We use the optimal linear regulator (a.k.a. the linear-quadratic dynamic programming problem described in LQDynamic
Programming problems) to represent a Stackelberg leader’s problem recursively.
Let 𝑧𝑡 be an 𝑛𝑧 × 1 vector of natural state variables.
Let 𝑥𝑡 be an 𝑛𝑥 × 1 vector of endogenous forward-looking variables that are physically free to jump at 𝑡.
In our duopoly example 𝑥𝑡 = 𝑣1𝑡, the time 𝑡 decision of the Stackelberg follower.
Let 𝑢𝑡 be a vector of decisions chosen by the Stackelberg leader at 𝑡.
The 𝑧𝑡 vector is inherited from the past.
But 𝑥𝑡 is a decision made by the Stackelberg follower at time 𝑡 that is the follower’s best response to the choice of an
entire sequence of decisions made by the Stackelberg leader at time 𝑡 = 0.
Let

𝑦𝑡 = [𝑧𝑡
𝑥𝑡

]

Represent the Stackelberg leader’s one-period loss function as

𝑟(𝑦, 𝑢) = 𝑦′𝑅𝑦 + 𝑢′𝑄𝑢

Subject to an initial condition for 𝑧0, but not for 𝑥0, the Stackelberg leader wants to maximize

−
∞

∑
𝑡=0

𝛽𝑡𝑟(𝑦𝑡, 𝑢𝑡) (40.5)

The Stackelberg leader faces the model

[𝐼 0
𝐺21 𝐺22

] [𝑧𝑡+1
𝑥𝑡+1

] = [
̂𝐴11 ̂𝐴12
̂𝐴21 ̂𝐴22

] [𝑧𝑡
𝑥𝑡

] + �̂�𝑢𝑡 (40.6)

40.3. Stackelberg Problem 729

https://python-intro.quantecon.org/lqcontrol.html
https://python-intro.quantecon.org/lqcontrol.html

Advanced Quantitative Economics with Python

We assume that the matrix [𝐼 0
𝐺21 𝐺22

] on the left side of equation (40.6) is invertible, so that we can multiply both
sides by its inverse to obtain

[𝑧𝑡+1
𝑥𝑡+1

] = [𝐴11 𝐴12
𝐴21 𝐴22

] [𝑧𝑡
𝑥𝑡

] + 𝐵𝑢𝑡 (40.7)

or

𝑦𝑡+1 = 𝐴𝑦𝑡 + 𝐵𝑢𝑡 (40.8)

40.3.1 Interpretation of Second Block of Equations

The Stackelberg follower’s best response mapping is summarized by the second block of equations of (40.7).
In particular, these equations are the first-order conditions of the Stackelberg follower’s optimization problem (i.e., its
Euler equations).
These Euler equations summarize the forward-looking aspect of the follower’s behavior and express how its time 𝑡 decision
depends on the leader’s actions at times 𝑠 ≥ 𝑡.
When combinedwith a stability condition to be imposed below, the Euler equations summarize the follower’s best response
to the sequence of actions by the leader.
The Stackelberg leadermaximizes (40.5) by choosing sequences {𝑢𝑡, 𝑥𝑡, 𝑧𝑡+1}∞

𝑡=0 subject to (40.8) and an initial condition
for 𝑧0.
Note that we have an initial condition for 𝑧0 but not for 𝑥0.
𝑥0 is among the variables to be chosen at time 0 by the Stackelberg leader.
The Stackelberg leader uses its understanding of the responses restricted by (40.8) to manipulate the follower’s decisions.

40.3.2 More Mechanical Details

For any vector 𝑎𝑡, define ⃗𝑎𝑡 = [𝑎𝑡, 𝑎𝑡+1 …].
Define a feasible set of (⃗𝑦1, �⃗�0) sequences

Ω(𝑦0) = {(⃗𝑦1, �⃗�0) ∶ 𝑦𝑡+1 = 𝐴𝑦𝑡 + 𝐵𝑢𝑡, ∀𝑡 ≥ 0}

Please remember that the follower’s system of Euler equations is embedded in the system of dynamic equations 𝑦𝑡+1 =
𝐴𝑦𝑡 + 𝐵𝑢𝑡.
Note that the definition of Ω(𝑦0) treats 𝑦0 as given.
Although it is taken as given in Ω(𝑦0), eventually, the 𝑥0 component of 𝑦0 is to be chosen by the Stackelberg leader.

40.3.3 Two Subproblems

Once again we use backward induction.
We express the Stackelberg problem in terms of two subproblems.
Subproblem 1 is solved by a continuation Stackelberg leader at each date 𝑡 ≥ 0.
Subproblem 2 is solved by the Stackelberg leader at 𝑡 = 0.
The two subproblems are designed

730 Chapter 40. Stackelberg Plans

Advanced Quantitative Economics with Python

• to respect the timing protocol in which the follower chooses ⃗𝑞1 after seeing ⃗𝑞2 chosen by the leader
• to make the leader choose ⃗𝑞2 while respecting that ⃗𝑞1 will be the follower’s best response to ⃗𝑞2

• to represent the leader’s problem recursively by artfully choosing the leader’s state variables and the control variables
available to the leader

Subproblem 1

𝑣(𝑦0) = max
(⃗𝑦1,�⃗�0)∈Ω(𝑦0)

−
∞

∑
𝑡=0

𝛽𝑡𝑟(𝑦𝑡, 𝑢𝑡)

Subproblem 2
𝑤(𝑧0) = max

𝑥0
𝑣(𝑦0)

Subproblem 1 takes the vector of forward-looking variables 𝑥0 as given.
Subproblem 2 optimizes over 𝑥0.
The value function 𝑤(𝑧0) tells the value of the Stackelberg plan as a function of the vector of natural state variables 𝑧0 at
time 0.

40.4 Two Bellman Equations

We now describe Bellman equations for 𝑣(𝑦) and 𝑤(𝑧0).
Subproblem 1
The value function 𝑣(𝑦) in subproblem 1 satisfies the Bellman equation

𝑣(𝑦) = max
𝑢,𝑦∗

{−𝑟(𝑦, 𝑢) + 𝛽𝑣(𝑦∗)} (40.9)

where the maximization is subject to

𝑦∗ = 𝐴𝑦 + 𝐵𝑢
and 𝑦∗ denotes next period’s value.
Substituting 𝑣(𝑦) = −𝑦′𝑃 𝑦 into Bellman equation (40.9) gives

−𝑦′𝑃𝑦 = max𝑢,𝑦∗ {−𝑦′𝑅𝑦 − 𝑢′𝑄𝑢 − 𝛽𝑦∗′𝑃𝑦∗}
which as in lecture linear regulator gives rise to the algebraic matrix Riccati equation

𝑃 = 𝑅 + 𝛽𝐴′𝑃𝐴 − 𝛽2𝐴′𝑃𝐵(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴
and the optimal decision rule coefficient vector

𝐹 = 𝛽(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴
where the optimal decision rule is

𝑢𝑡 = −𝐹𝑦𝑡

Subproblem 2
We find an optimal 𝑥0 by equating to zero the gradient of 𝑣(𝑦0) with respect to 𝑥0:

−2𝑃21𝑧0 − 2𝑃22𝑥0 = 0,
which implies that

𝑥0 = −𝑃 −1
22 𝑃21𝑧0 (40.10)

40.4. Two Bellman Equations 731

https://python-intro.quantecon.org/lqcontrol.html

Advanced Quantitative Economics with Python

40.5 Stackelberg Plan for Duopoly

Now let’s map our duopoly model into the above setup.
We formulate a state vector

𝑦𝑡 = [𝑧𝑡
𝑥𝑡

]

where for our duopoly model

𝑧𝑡 = ⎡⎢
⎣

1
𝑞2𝑡
𝑞1𝑡

⎤⎥
⎦

, 𝑥𝑡 = 𝑣1𝑡,

where 𝑥𝑡 = 𝑣1𝑡 is the time 𝑡 decision of the follower firm 1, 𝑢𝑡 is the time 𝑡 decision of the leader firm 2 and

𝑣1𝑡 = 𝑞1𝑡+1 − 𝑞1𝑡, 𝑢𝑡 = 𝑞2𝑡+1 − 𝑞2𝑡.

For our duopoly model, initial conditions for the natural state variables in 𝑧𝑡 are

𝑧0 = ⎡⎢
⎣

1
𝑞20
𝑞10

⎤⎥
⎦

while 𝑥0 = 𝑣10 = 𝑞11 − 𝑞10 is a choice variable for the Stackelberg leader firm 2, one that will ultimately be chosen
according an optimal rule prescribed by (40.10) for subproblem 2 above.
That the Stackelberg leader firm 2 chooses 𝑥0 = 𝑣10 is subtle.
Of course, 𝑥0 = 𝑣10 emerges from the feedback-feedforward solution (40.3) of firm 1’s system of Euler equations, so
that it is actually firm 1 that sets 𝑥0.
But firm 2 manipulates firm 1’s choice through firm 2’s choice of the sequence ⃗𝑞2,1 = {𝑞2𝑡+1}∞

𝑡=0.

40.5.1 Calculations to Prepare Duopoly Model

Now we’ll proceed to cast our duopoly model within the framework of the more general linear-quadratic structure de-
scribed above.
That will allow us to compute a Stackelberg plan simply by enlisting a Riccati equation to solve a linear-quadratic dynamic
program.
As emphasized above, firm 1 acts as if firm 2’s decisions {𝑞2𝑡+1, 𝑣2𝑡}∞

𝑡=0 are given and beyond its control.

40.5.2 Firm 1’s Problem

We again formulate firm 1’s optimum problem in terms of the Lagrangian

𝐿 =
∞

∑
𝑡=0

𝛽𝑡{𝑎0𝑞1𝑡 − 𝑎1𝑞2
1𝑡 − 𝑎1𝑞1𝑡𝑞2𝑡 − 𝛾𝑣2

1𝑡 + 𝜆𝑡[𝑞1𝑡 + 𝑣1𝑡 − 𝑞1𝑡+1]}

Firm 1 seeks a maximum with respect to {𝑞1𝑡+1, 𝑣1𝑡}∞
𝑡=0 and a minimum with respect to {𝜆𝑡}∞

𝑡=0.
First-order conditions for this problem are

𝜕𝐿
𝜕𝑞1𝑡

= 𝑎0 − 2𝑎1𝑞1𝑡 − 𝑎1𝑞2𝑡 + 𝜆𝑡 − 𝛽−1𝜆𝑡−1 = 0, 𝑡 ≥ 1

𝜕𝐿
𝜕𝑣1𝑡

= −2𝛾𝑣1𝑡 + 𝜆𝑡 = 0, 𝑡 ≥ 0

732 Chapter 40. Stackelberg Plans

Advanced Quantitative Economics with Python

These first-order order conditions and the constraint 𝑞1𝑡+1 = 𝑞1𝑡 + 𝑣1𝑡 can be rearranged to take the form

𝑣1𝑡 = 𝛽𝑣1𝑡+1 + 𝛽𝑎0
2𝛾 − 𝛽𝑎1

𝛾 𝑞1𝑡+1 − 𝛽𝑎1
2𝛾 𝑞2𝑡+1

𝑞𝑡+1 = 𝑞1𝑡 + 𝑣1𝑡

We use these two equations as components of the following linear system that confronts a Stackelberg continuation leader
at time 𝑡

⎡
⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0

𝛽𝑎0
2𝛾 − 𝛽𝑎1

2𝛾 − 𝛽𝑎1
𝛾 𝛽

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

1
𝑞2𝑡+1
𝑞1𝑡+1
𝑣1𝑡+1

⎤
⎥⎥
⎦

=
⎡
⎢⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

⎤
⎥⎥
⎦

⎡
⎢⎢
⎣

1
𝑞2𝑡
𝑞1𝑡
𝑣1𝑡

⎤
⎥⎥
⎦

+
⎡
⎢⎢
⎣

0
1
0
0

⎤
⎥⎥
⎦

𝑣2𝑡

Time 𝑡 revenues of firm 2 are 𝜋2𝑡 = 𝑎0𝑞2𝑡 − 𝑎1𝑞2
2𝑡 − 𝑎1𝑞1𝑡𝑞2𝑡 which evidently equal

𝑧′
𝑡𝑅1𝑧𝑡 ≡ ⎡⎢

⎣

1
𝑞2𝑡
𝑞1𝑡

⎤⎥
⎦

′

⎡⎢
⎣

0 𝑎0
2 0

𝑎0
2 −𝑎1 − 𝑎1

2
0 − 𝑎1

2 0
⎤⎥
⎦

⎡⎢
⎣

1
𝑞2𝑡
𝑞1𝑡

⎤⎥
⎦

If we set 𝑄 = 𝛾, then firm 2’s period 𝑡 profits can then be written

𝑦′
𝑡𝑅𝑦𝑡 − 𝑄𝑣2

2𝑡

where

𝑦𝑡 = [𝑧𝑡
𝑥𝑡

]

with 𝑥𝑡 = 𝑣1𝑡 and

𝑅 = [𝑅1 0
0 0]

We’ll report results of implementing this code soon.
But first, we want to represent the Stackelberg leader’s optimal choices recursively.
It is important to do this for several reasons:

• properly to interpret a representation of the Stackelberg leader’s choice as a sequence of history-dependent functions
• to formulate a recursive version of the follower’s choice problem

First, let’s get a recursive representation of the Stackelberg leader’s choice of ⃗𝑞2 for our duopoly model.

40.6 Recursive Representation of Stackelberg Plan

In order to attain an appropriate representation of the Stackelberg leader’s history-dependent plan, we will employ what
amounts to a version of the Big K, little k device often used in macroeconomics by distinguishing 𝑧𝑡, which depends
partly on decisions 𝑥𝑡 of the followers, from another vector ̌𝑧𝑡, which does not.
We will use ̌𝑧𝑡 and its history ̌𝑧𝑡 = [̌𝑧𝑡, ̌𝑧𝑡−1, … , ̌𝑧0] to describe the sequence of the Stackelberg leader’s decisions that
the Stackelberg follower takes as given.
Thus, we let ̌𝑦′

𝑡 = [̌𝑧′
𝑡 ̌𝑥′

𝑡] with initial condition ̌𝑧0 = 𝑧0 given.
That we distinguish ̌𝑧𝑡 from 𝑧𝑡 is part and parcel of the Big K, little k device in this instance.

40.6. Recursive Representation of Stackelberg Plan 733

Advanced Quantitative Economics with Python

We have demonstrated that a Stackelberg plan for {𝑢𝑡}∞
𝑡=0 has a recursive representation

̌𝑥0 = −𝑃 −1
22 𝑃21𝑧0

𝑢𝑡 = −𝐹 ̌𝑦𝑡, 𝑡 ≥ 0
̌𝑦𝑡+1 = (𝐴 − 𝐵𝐹) ̌𝑦𝑡, 𝑡 ≥ 0

From this representation, we can deduce the sequence of functions 𝜎 = {𝜎𝑡(̌𝑧𝑡)}∞
𝑡=0 that comprise a Stackelberg plan.

For convenience, let ̌𝐴 ≡ 𝐴 − 𝐵𝐹 and partition ̌𝐴 conformably to the partition 𝑦𝑡 = [̌𝑧𝑡
̌𝑥𝑡
] as

[
̌𝐴11 ̌𝐴12
̌𝐴21 ̌𝐴22

]

Let 𝐻0
0 ≡ −𝑃 −1

22 𝑃21 so that ̌𝑥0 = 𝐻0
0 ̌𝑧0.

Then iterations on ̌𝑦𝑡+1 = ̌𝐴 ̌𝑦𝑡 starting from initial condition ̌𝑦0 = [̌𝑧0
𝐻0

0 ̌𝑧0
] imply that for 𝑡 ≥ 1

̌𝑥𝑡 =
𝑡

∑
𝑗=1

𝐻𝑡
𝑗 ̌𝑧𝑡−𝑗

where

𝐻𝑡
1 = ̌𝐴21

𝐻𝑡
2 = ̌𝐴22 ̌𝐴21
⋮ ⋮

𝐻𝑡
𝑡−1 = ̌𝐴𝑡−2

22 ̌𝐴21

𝐻𝑡
𝑡 = ̌𝐴𝑡−1

22 (̌𝐴21 + ̌𝐴22𝐻0
0)

An optimal decision rule for the Stackelberg leader’s choice of 𝑢𝑡 is

𝑢𝑡 = −𝐹 ̌𝑦𝑡 ≡ − [𝐹𝑧 𝐹𝑥] [̌𝑧𝑡
𝑥𝑡

]

or

𝑢𝑡 = −𝐹𝑧 ̌𝑧𝑡 − 𝐹𝑥
𝑡

∑
𝑗=1

𝐻𝑡
𝑗𝑧𝑡−𝑗 = 𝜎𝑡(̌𝑧𝑡) (40.11)

Representation (40.11) confirms that whenever 𝐹𝑥 ≠ 0, the typical situation, the time 𝑡 component 𝜎𝑡 of a Stackelberg
plan is history-dependent, meaning that the Stackelberg leader’s choice 𝑢𝑡 depends not just on ̌𝑧𝑡 but on components of

̌𝑧𝑡−1.

40.6.1 Comments and Interpretations

Because we set ̌𝑧0 = 𝑧0, it will turn out that 𝑧𝑡 = ̌𝑧𝑡 for all 𝑡 ≥ 0.
Then why did we distinguish ̌𝑧𝑡 from 𝑧𝑡?
The answer is that if we want to present to the Stackelberg follower a history-dependent representation of the Stackel-
berg leader’s sequence ⃗𝑞2, we must use representation (40.11) cast in terms of the history ̌𝑧𝑡 and not a corresponding
representation cast in terms of 𝑧𝑡.

734 Chapter 40. Stackelberg Plans

Advanced Quantitative Economics with Python

40.7 Dynamic Programming and Time Consistency of Follower’s
Problem

Given the sequence ⃗𝑞2 chosen by the Stackelberg leader in our duopoly model, it turns out that the Stackelberg follower’s
problem is recursive in the natural state variables that confront a follower at any time 𝑡 ≥ 0.
This means that the follower’s plan is time consistent.
To verify these claims, we’ll formulate a recursive version of a follower’s problem that builds on our recursive represen-
tation of the Stackelberg leader’s plan and our use of the Big K, little k idea.

40.7.1 Recursive Formulation of a Follower’s Problem

We now use what amounts to another “Big𝐾, little 𝑘” trick (see rational expectations equilibrium) to formulate a recursive
version of a follower’s problem cast in terms of an ordinary Bellman equation.
Firm 1, the follower, faces {𝑞2𝑡}∞

𝑡=0 as a given quantity sequence chosen by the leader and believes that its output price
at 𝑡 satisfies

𝑝𝑡 = 𝑎0 − 𝑎1(𝑞1𝑡 + 𝑞2𝑡), 𝑡 ≥ 0

Our challenge is to represent {𝑞2𝑡}∞
𝑡=0 as a given sequence.

To do so, recall that under the Stackelberg plan, firm 2 sets output according to the 𝑞2𝑡 component of

𝑦𝑡+1 =
⎡
⎢⎢
⎣

1
𝑞2𝑡
𝑞1𝑡
𝑥𝑡

⎤
⎥⎥
⎦

which is governed by

𝑦𝑡+1 = (𝐴 − 𝐵𝐹)𝑦𝑡

To obtain a recursive representation of a {𝑞2𝑡} sequence that is exogenous to firm 1, we define a state ̃𝑦𝑡

̃𝑦𝑡 =
⎡
⎢⎢
⎣

1
𝑞2𝑡

̃𝑞1𝑡
̃𝑥𝑡

⎤
⎥⎥
⎦

that evolves according to

̃𝑦𝑡+1 = (𝐴 − 𝐵𝐹) ̃𝑦𝑡

subject to the initial condition ̃𝑞10 = 𝑞10 and ̃𝑥0 = 𝑥0 where 𝑥0 = −𝑃 −1
22 𝑃21 as stated above.

Firm 1’s state vector is

𝑋𝑡 = [̃𝑦𝑡
𝑞1𝑡

]

It follows that the follower firm 1 faces law of motion

[̃𝑦𝑡+1
𝑞1𝑡+1

] = [𝐴 − 𝐵𝐹 0
0 1] [̃𝑦𝑡

𝑞1𝑡
] + [0

1] 𝑥𝑡 (40.12)

This specification assures that from the point of the view of firm 1, 𝑞2𝑡 is an exogenous process.
Here

40.7. Dynamic Programming and Time Consistency of Follower’s Problem 735

https://python-intro.quantecon.org/rational_expectations.html

Advanced Quantitative Economics with Python

• ̃𝑞1𝑡, ̃𝑥𝑡 play the role of Big K
• 𝑞1𝑡, 𝑥𝑡 play the role of little k

The time 𝑡 component of firm 1’s objective is

�̃�′
𝑡�̃�𝑥𝑡 − 𝑥2

𝑡 �̃� =
⎡
⎢
⎢
⎢
⎣

1
𝑞2𝑡

̃𝑞1𝑡
̃𝑥𝑡

𝑞1𝑡

⎤
⎥
⎥
⎥
⎦

′

⎡
⎢
⎢
⎢
⎣

0 0 0 0 𝑎0
2

0 0 0 0 − 𝑎1
2

0 0 0 0 0
0 0 0 0 0
𝑎0
2 − 𝑎1

2 0 0 −𝑎1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

1
𝑞2𝑡

̃𝑞1𝑡
̃𝑥𝑡

𝑞1𝑡

⎤
⎥
⎥
⎥
⎦

− 𝛾𝑥2
𝑡

Firm 1’s optimal decision rule is

𝑥𝑡 = − ̃𝐹𝑋𝑡

and its state evolves according to

�̃�𝑡+1 = (̃𝐴 − �̃� ̃𝐹)𝑋𝑡

under its optimal decision rule.
Later we shall compute ̃𝐹 and verify that when we set

𝑋0 =
⎡
⎢
⎢
⎢
⎣

1
𝑞20
𝑞10
𝑥0
𝑞10

⎤
⎥
⎥
⎥
⎦

we recover

𝑥0 = − ̃𝐹�̃�0,

which will verify that we have properly set up a recursive representation of the follower’s problem facing the Stackelberg
leader’s ⃗𝑞2.

40.7.2 Time Consistency of Follower’s Plan

The follower can solve its problem using dynamic programming because its problem is recursive in what for it are the
natural state variables, namely

⎡
⎢⎢
⎣

1
𝑞2𝑡

̃𝑞1𝑡
̃𝑥𝑡

⎤
⎥⎥
⎦

It follows that the follower’s plan is time consistent.

40.8 Computing Stackelberg Plan

Here is our code to compute a Stackelberg plan via the linear-quadratic dynamic program describe above.
Let’s use it to compute the Stackelberg plan.

736 Chapter 40. Stackelberg Plans

Advanced Quantitative Economics with Python

Parameters
a0 = 10
a1 = 2
β = 0.96
γ = 120
n = 300
tol0 = 1e-8
tol1 = 1e-16
tol2 = 1e-2

βs = np.ones(n)
βs[1:] = β
βs = βs.cumprod()

In LQ form
Alhs = np.eye(4)

Euler equation coefficients
Alhs[3, :] = β * a0 / (2 * γ), -β * a1 / (2 * γ), -β * a1 / γ, β

Arhs = np.eye(4)
Arhs[2, 3] = 1

Alhsinv = la.inv(Alhs)

A = Alhsinv @ Arhs

B = Alhsinv @ np.array([[0, 1, 0, 0]]).T

R = np.array([[0, -a0 / 2, 0, 0],
[-a0 / 2, a1, a1 / 2, 0],
[0, a1 / 2, 0, 0],
[0, 0, 0, 0]])

Q = np.array([[γ]])

Solve using QE's LQ class
LQ solves minimization problems which is why the sign of R and Q was changed
lq = LQ(Q, R, A, B, beta=β)
P, F, d = lq.stationary_values(method='doubling')

P22 = P[3:, 3:]
P21 = P[3:, :3]
P22inv = la.inv(P22)
H_0_0 = -P22inv @ P21

Simulate forward

π_leader = np.zeros(n)

z0 = np.array([[1, 1, 1]]).T
x0 = H_0_0 @ z0
y0 = np.vstack((z0, x0))

yt, ut = lq.compute_sequence(y0, ts_length=n)[:2]

(continues on next page)

40.8. Computing Stackelberg Plan 737

Advanced Quantitative Economics with Python

(continued from previous page)

π_matrix = (R + F. T @ Q @ F)

for t in range(n):
π_leader[t] = -(yt[:, t].T @ π_matrix @ yt[:, t])

Display policies
print("Computed policy for Continuation Stackelberg leader\n")
print(f"F = {F}")

Computed policy for Continuation Stackelberg leader

F = [[-1.58004454 0.29461313 0.67480938 6.53970594]]

40.9 Time Series for Price and Quantities

Now let’s use the code to compute and display outcomes as a Stackelberg plan unfolds.
The following code plots quantities chosen by the Stackelberg leader and follower, together with the equilibrium output
price.

q_leader = yt[1, :-1]
q_follower = yt[2, :-1]
q = q_leader + q_follower # Total output, Stackelberg
p = a0 - a1 * q # Price, Stackelberg

fig, ax = plt.subplots(figsize=(9, 5.8))
ax.plot(range(n), q_leader, 'b-', lw=2, label='leader output')
ax.plot(range(n), q_follower, 'r-', lw=2, label='follower output')
ax.plot(range(n), p, 'g-', lw=2, label='price')
ax.set_title('Output and prices, Stackelberg duopoly')
ax.legend(frameon=False)
ax.set_xlabel('t')
plt.show()

738 Chapter 40. Stackelberg Plans

Advanced Quantitative Economics with Python

40.9.1 Value of Stackelberg Leader

We’ll compute the value 𝑤(𝑥0) attained by the Stackelberg leader, where 𝑥0 is given by the maximizer (40.10) of sub-
problem 2.
We’ll compute it two ways and get the same answer.
In addition to being a useful check on the accuracy of our coding, computing things in these two ways helps us think about
the structure of the problem.

v_leader_forward = np.sum(βs * π_leader)
v_leader_direct = -yt[:, 0].T @ P @ yt[:, 0]

Display values
print("Computed values for the Stackelberg leader at t=0:\n")
print(f"v_leader_forward(forward sim) = {v_leader_forward:.4f}")
print(f"v_leader_direct (direct) = {v_leader_direct:.4f}")

Computed values for the Stackelberg leader at t=0:

v_leader_forward(forward sim) = 150.0316
v_leader_direct (direct) = 150.0324

40.9. Time Series for Price and Quantities 739

Advanced Quantitative Economics with Python

Manually checks whether P is approximately a fixed point
P_next = (R + F.T @ Q @ F + β * (A - B @ F).T @ P @ (A - B @ F))
(P - P_next < tol0).all()

True

Manually checks whether two different ways of computing the
value function give approximately the same answer
v_expanded = -((y0.T @ R @ y0 + ut[:, 0].T @ Q @ ut[:, 0] +

β * (y0.T @ (A - B @ F).T @ P @ (A - B @ F) @ y0)))
(v_leader_direct - v_expanded < tol0)[0, 0]

True

40.10 Time Inconsistency of Stackelberg Plan

In the code below we compare two values
• the continuation value 𝑣(𝑦𝑡) = −𝑦′

𝑡𝑃𝑦𝑡 earned by a continuation Stackelberg leader who inherits state 𝑦𝑡 at 𝑡
• the value 𝑤(̂𝑥𝑡) of a reborn Stackelberg leader who, at date 𝑡 along the Stackelberg plan, inherits state 𝑧𝑡 at 𝑡 but
who discards 𝑥𝑡 from the time 𝑡 continuation of the original Stackelberg plan and resets it to ̂𝑥𝑡 = −𝑃 −1

22 𝑃21𝑧𝑡

The difference between these two values is a tell-tale sign of the time inconsistency of the Stackelberg plan

Compute value function over time with a reset at time t
vt_leader = np.zeros(n)
vt_reset_leader = np.empty_like(vt_leader)

yt_reset = yt.copy()
yt_reset[-1, :] = (H_0_0 @ yt[:3, :])

for t in range(n):
vt_leader[t] = -yt[:, t].T @ P @ yt[:, t]
vt_reset_leader[t] = -yt_reset[:, t].T @ P @ yt_reset[:, t]

fig, axes = plt.subplots(3, 1, figsize=(10, 7))

axes[0].plot(range(n+1), (- F @ yt).flatten(), 'bo',
label='Stackelberg leader', ms=2)

axes[0].plot(range(n+1), (- F @ yt_reset).flatten(), 'ro',
label='reborn at t Stackelberg leader', ms=2)

axes[0].set(title=r' $u_{t} = q_{2t+1} - q_t$', xlabel='t')
axes[0].legend()

axes[1].plot(range(n+1), yt[3, :], 'bo', ms=2)
axes[1].plot(range(n+1), yt_reset[3, :], 'ro', ms=2)
axes[1].set(title=r' $x_{t} = q_{1t+1} - q_{1t}$', xlabel='t')

axes[2].plot(range(n), vt_leader, 'bo', ms=2)
axes[2].plot(range(n), vt_reset_leader, 'ro', ms=2)
axes[2].set(title=r'$v(y_{t})$ and $w(\hat x_t)$', xlabel='t')

(continues on next page)

740 Chapter 40. Stackelberg Plans

Advanced Quantitative Economics with Python

(continued from previous page)

plt.tight_layout()
plt.show()

The figure above shows
• in the third panel that for 𝑡 ≥ 1 the reborn at 𝑡 Stackelberg leader’s’s value 𝑤(̂𝑥0) exceeds the continuation value

𝑣(𝑦𝑡) of the time 0 Stackelberg leader
• in the first panel that for 𝑡 ≥ 1 the reborn at 𝑡 Stackelberg leader wants to reduce his output below that prescribed
by the time 0 Stackelberg leader

• in the second panel that for 𝑡 ≥ 1 the reborn at 𝑡 Stackelberg leader wants to increase the output of the follower
firm 2 below that prescribed by the time 0 Stackelberg leader

Taken together, these outcomes express the time inconsistency of the original time 0 Stackelberg leaders’s plan.

40.11 Recursive Formulation of Follower’s Problem

We now formulate and compute the recursive version of the follower’s problem.
We check that the recursive Big 𝐾 , little 𝑘 formulation of the follower’s problem produces the same output path ⃗𝑞1 that
we computed when we solved the Stackelberg problem

A_tilde = np.eye(5)
A_tilde[:4, :4] = A - B @ F

(continues on next page)

40.11. Recursive Formulation of Follower’s Problem 741

Advanced Quantitative Economics with Python

(continued from previous page)

R_tilde = np.array([[0, 0, 0, 0, -a0 / 2],
[0, 0, 0, 0, a1 / 2],
[0, 0, 0, 0, 0],
[0, 0, 0, 0, 0],
[-a0 / 2, a1 / 2, 0, 0, a1]])

Q_tilde = Q
B_tilde = np.array([[0, 0, 0, 0, 1]]).T

lq_tilde = LQ(Q_tilde, R_tilde, A_tilde, B_tilde, beta=β)
P_tilde, F_tilde, d_tilde = lq_tilde.stationary_values(method='doubling')

y0_tilde = np.vstack((y0, y0[2]))
yt_tilde = lq_tilde.compute_sequence(y0_tilde, ts_length=n)[0]

Checks that the recursive formulation of the follower's problem gives
the same solution as the original Stackelberg problem
fig, ax = plt.subplots()
ax.plot(yt_tilde[4], 'r', label="q_tilde")
ax.plot(yt_tilde[2], 'b', label="q")
ax.legend()
plt.show()

Note: Variables with _tilde are obtained from solving the follower’s problem – those without are from the Stackelberg
problem

742 Chapter 40. Stackelberg Plans

Advanced Quantitative Economics with Python

Maximum absolute difference in quantities over time between
the first and second solution methods
np.max(np.abs(yt_tilde[4] - yt_tilde[2]))

4.440892098500626e-16

x0 == x0_tilde
yt[:, 0][-1] - (yt_tilde[:, 1] - yt_tilde[:, 0])[-1] < tol0

True

40.11.1 Explanation of Alignment

If we inspect coefficients in the decision rule − ̃𝐹 , we should be able to spot why the follower chooses to set 𝑥𝑡 = ̃𝑥𝑡 when
it sets 𝑥𝑡 = − ̃𝐹𝑋𝑡 in the recursive formulation of the follower problem.

Can you spot what features of ̃𝐹 imply this?

Hint: Remember the components of 𝑋𝑡

Policy function in the follower's problem
F_tilde.round(4)

array([[0. , -0. , -0.1032, -1. , 0.1032]])

Value function in the Stackelberg problem
P

array([[963.54083615, -194.60534465, -511.62197962, -5258.22585724],
[-194.60534465, 37.3535753 , 81.97712513, 784.76471234],
[-511.62197962, 81.97712513, 247.34333344, 2517.05126111],
[-5258.22585724, 784.76471234, 2517.05126111, 25556.16504097]])

Value function in the follower's problem
P_tilde

array([[-1.81991134e+01, 2.58003020e+00, 1.56048755e+01,
1.51229815e+02, -5.00000000e+00],

[2.58003020e+00, -9.69465925e-01, -5.26007958e+00,
-5.09764310e+01, 1.00000000e+00],

[1.56048755e+01, -5.26007958e+00, -3.22759027e+01,
-3.12791908e+02, -1.23823802e+01],

[1.51229815e+02, -5.09764310e+01, -3.12791908e+02,
-3.03132584e+03, -1.20000000e+02],

[-5.00000000e+00, 1.00000000e+00, -1.23823802e+01,
-1.20000000e+02, 1.43823802e+01]])

40.11. Recursive Formulation of Follower’s Problem 743

Advanced Quantitative Economics with Python

Manually check that P is an approximate fixed point
(P - ((R + F.T @ Q @ F) + β * (A - B @ F).T @ P @ (A - B @ F)) < tol0).all()

True

Compute `P_guess` using `F_tilde_star`
F_tilde_star = -np.array([[0, 0, 0, 1, 0]])
P_guess = np.zeros((5, 5))

for i in range(1000):
P_guess = ((R_tilde + F_tilde_star.T @ Q @ F_tilde_star) +

β * (A_tilde - B_tilde @ F_tilde_star).T @ P_guess
@ (A_tilde - B_tilde @ F_tilde_star))

Value function in the follower's problem
-(y0_tilde.T @ P_tilde @ y0_tilde)[0, 0]

112.65590740578115

Value function with `P_guess`
-(y0_tilde.T @ P_guess @ y0_tilde)[0, 0]

112.65590740578136

Compute policy using policy iteration algorithm
F_iter = (β * la.inv(Q + β * B_tilde.T @ P_guess @ B_tilde)

@ B_tilde.T @ P_guess @ A_tilde)

for i in range(100):
Compute P_iter
P_iter = np.zeros((5, 5))
for j in range(1000):

P_iter = ((R_tilde + F_iter.T @ Q @ F_iter) + β
* (A_tilde - B_tilde @ F_iter).T @ P_iter
@ (A_tilde - B_tilde @ F_iter))

Update F_iter
F_iter = (β * la.inv(Q + β * B_tilde.T @ P_iter @ B_tilde)

@ B_tilde.T @ P_iter @ A_tilde)

dist_vec = (P_iter - ((R_tilde + F_iter.T @ Q @ F_iter)
+ β * (A_tilde - B_tilde @ F_iter).T @ P_iter
@ (A_tilde - B_tilde @ F_iter)))

if np.max(np.abs(dist_vec)) < 1e-8:
dist_vec2 = (F_iter - (β * la.inv(Q + β * B_tilde.T @ P_iter @ B_tilde)

@ B_tilde.T @ P_iter @ A_tilde))

if np.max(np.abs(dist_vec2)) < 1e-8:
F_iter

else:
print("The policy didn't converge: try increasing the number of \

(continues on next page)

744 Chapter 40. Stackelberg Plans

Advanced Quantitative Economics with Python

(continued from previous page)

outer loop iterations")
else:

print("`P_iter` didn't converge: try increasing the number of inner \
loop iterations")

Simulate the system using `F_tilde_star` and check that it gives the
same result as the original solution

yt_tilde_star = np.zeros((n, 5))
yt_tilde_star[0, :] = y0_tilde.flatten()

for t in range(n-1):
yt_tilde_star[t+1, :] = (A_tilde - B_tilde @ F_tilde_star) \

@ yt_tilde_star[t, :]

fig, ax = plt.subplots()
ax.plot(yt_tilde_star[:, 4], 'r', label="q_tilde")
ax.plot(yt_tilde[2], 'b', label="q")
ax.legend()
plt.show()

Maximum absolute difference
np.max(np.abs(yt_tilde_star[:, 4] - yt_tilde[2, :-1]))

0.0

40.11. Recursive Formulation of Follower’s Problem 745

Advanced Quantitative Economics with Python

40.12 Markov Perfect Equilibrium

The state vector is

𝑧𝑡 = ⎡⎢
⎣

1
𝑞2𝑡
𝑞1𝑡

⎤⎥
⎦

and the state transition dynamics are

𝑧𝑡+1 = 𝐴𝑧𝑡 + 𝐵1𝑣1𝑡 + 𝐵2𝑣2𝑡

where 𝐴 is a 3 × 3 identity matrix and

𝐵1 = ⎡⎢
⎣

0
0
1
⎤⎥
⎦

, 𝐵2 = ⎡⎢
⎣

0
1
0
⎤⎥
⎦

The Markov perfect decision rules are

𝑣1𝑡 = −𝐹1𝑧𝑡, 𝑣2𝑡 = −𝐹2𝑧𝑡

and in the Markov perfect equilibrium, the state evolves according to

𝑧𝑡+1 = (𝐴 − 𝐵1𝐹1 − 𝐵2𝐹2)𝑧𝑡

In LQ form
A = np.eye(3)
B1 = np.array([[0], [0], [1]])
B2 = np.array([[0], [1], [0]])

R1 = np.array([[0, 0, -a0 / 2],
[0, 0, a1 / 2],
[-a0 / 2, a1 / 2, a1]])

R2 = np.array([[0, -a0 / 2, 0],
[-a0 / 2, a1, a1 / 2],
[0, a1 / 2, 0]])

Q1 = Q2 = γ
S1 = S2 = W1 = W2 = M1 = M2 = 0.0

Solve using QE's nnash function
F1, F2, P1, P2 = qe.nnash(A, B1, B2, R1, R2, Q1,

Q2, S1, S2, W1, W2, M1,
M2, beta=β, tol=tol1)

Simulate forward
AF = A - B1 @ F1 - B2 @ F2
z = np.empty((3, n))
z[:, 0] = 1, 1, 1
for t in range(n-1):

z[:, t+1] = AF @ z[:, t]

Display policies
print("Computed policies for firm 1 and firm 2:\n")
print(f"F1 = {F1}")
print(f"F2 = {F2}")

746 Chapter 40. Stackelberg Plans

Advanced Quantitative Economics with Python

Computed policies for firm 1 and firm 2:

F1 = [[-0.22701363 0.03129874 0.09447113]]
F2 = [[-0.22701363 0.09447113 0.03129874]]

q1 = z[1, :]
q2 = z[2, :]
q = q1 + q2 # Total output, MPE
p = a0 - a1 * q # Price, MPE

fig, ax = plt.subplots(figsize=(9, 5.8))
ax.plot(range(n), q, 'b-', lw=2, label='total output')
ax.plot(range(n), p, 'g-', lw=2, label='price')
ax.set_title('Output and prices, duopoly MPE')
ax.legend(frameon=False)
ax.set_xlabel('t')
plt.show()

Computes the maximum difference between the two quantities of the two firms
np.max(np.abs(q1 - q2))

8.881784197001252e-16

40.12. Markov Perfect Equilibrium 747

Advanced Quantitative Economics with Python

Compute values
u1 = (- F1 @ z).flatten()
u2 = (- F2 @ z).flatten()

π_1 = p * q1 - γ * (u1) ** 2
π_2 = p * q2 - γ * (u2) ** 2

v1_forward = np.sum(βs * π_1)
v2_forward = np.sum(βs * π_2)

v1_direct = (- z[:, 0].T @ P1 @ z[:, 0])
v2_direct = (- z[:, 0].T @ P2 @ z[:, 0])

Display values
print("Computed values for firm 1 and firm 2:\n")
print(f"v1(forward sim) = {v1_forward:.4f}; v1 (direct) = {v1_direct:.4f}")
print(f"v2 (forward sim) = {v2_forward:.4f}; v2 (direct) = {v2_direct:.4f}")

Computed values for firm 1 and firm 2:

v1(forward sim) = 133.3303; v1 (direct) = 133.3296
v2 (forward sim) = 133.3303; v2 (direct) = 133.3296

Sanity check
Λ1 = A - B2 @ F2
lq1 = qe.LQ(Q1, R1, Λ1, B1, beta=β)
P1_ih, F1_ih, d = lq1.stationary_values()

v2_direct_alt = - z[:, 0].T @ lq1.P @ z[:, 0] + lq1.d

(np.abs(v2_direct - v2_direct_alt) < tol2).all()

True

40.13 Comparing Markov Perfect Equilibrium and Stackelberg Out-
come

It is enlightening to compare equilbrium values for firms 1 and 2 under two alternative settings:
• A Markov perfect equilibrium like that described in this lecture
• A Stackelberg equilbrium

The following code performs the required computations, then plots the continuation values.

vt_MPE = np.zeros(n)
vt_follower = np.zeros(n)

for t in range(n):
vt_MPE[t] = -z[:, t].T @ P1 @ z[:, t]
vt_follower[t] = -yt_tilde[:, t].T @ P_tilde @ yt_tilde[:, t]

(continues on next page)

748 Chapter 40. Stackelberg Plans

https://python.quantecon.org/markov_perf.html

Advanced Quantitative Economics with Python

(continued from previous page)

fig, ax = plt.subplots()
ax.plot(vt_MPE, 'b', label='MPE')
ax.plot(vt_leader, 'r', label='Stackelberg leader')
ax.plot(vt_follower, 'g', label='Stackelberg follower')
ax.set_title(r'Values for MPE duopolists and Stackelberg firms')
ax.set_xlabel('t')
ax.legend(loc=(1.05, 0))
plt.show()

Display values
print("Computed values:\n")
print(f"vt_leader(y0) = {vt_leader[0]:.4f}")
print(f"vt_follower(y0) = {vt_follower[0]:.4f}")
print(f"vt_MPE(y0) = {vt_MPE[0]:.4f}")

Computed values:

vt_leader(y0) = 150.0324
vt_follower(y0) = 112.6559
vt_MPE(y0) = 133.3296

Compute the difference in total value between the Stackelberg and the MPE
vt_leader[0] + vt_follower[0] - 2 * vt_MPE[0]

-3.9709425620890784

40.13. Comparing Markov Perfect Equilibrium and Stackelberg Outcome 749

Advanced Quantitative Economics with Python

750 Chapter 40. Stackelberg Plans

CHAPTER

FORTYONE

RAMSEY PLANS, TIME INCONSISTENCY, SUSTAINABLE PLANS

Contents

• Ramsey Plans, Time Inconsistency, Sustainable Plans

– Overview

– The Model

– Structure

– Intertemporal Structure

– Four Models of Government Policy

– A Ramsey Planner

– A Constrained-to-a-Constant-Growth-Rate Ramsey Government

– Markov Perfect Governments

– Outcomes under Three Timing Protocols

– A Fourth Model of Government Decision Making

– Sustainable or Credible Plan

– Whose Credible Plan is it?

– Comparison of Equilibrium Values

– Note on Dynamic Programming Squared

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

751

Advanced Quantitative Economics with Python

41.1 Overview

This lecture describes a linear-quadratic version of a model that Guillermo Calvo [Cal78] used to illustrate the time
inconsistency of optimal government plans.
Like Chang [Cha98], we use the model as a laboratory in which to explore the consequences of different timing protocols
for government decision making.
The model focuses attention on intertemporal tradeoffs between

• welfare benefits that anticipated deflation generates by increasing a representative agent’s liquidity as measured by
his or her real money balances, and

• costs associated with distorting taxes that must be used to withdraw money from the economy in order to generate
anticipated deflation

The model features
• rational expectations
• costly government actions at all dates 𝑡 ≥ 1 that increase household utilities at dates before 𝑡
• two Bellman equations, one that expresses the private sector’s expectation of future inflation as a function of current
and future government actions, another that describes the value function of a Ramsey planner

A theme of this lecture is that timing protocols affect outcomes.
We’ll use ideas from papers by Cagan [Cag56], Calvo [Cal78], Stokey [Sto89], [Sto91], Chari and Kehoe [CK90], Chang
[Cha98], and Abreu [Abr88] as well as from chapter 19 of [LS18].
In addition, we’ll use ideas from linear-quadratic dynamic programming described in Linear Quadratic Control as applied
to Ramsey problems in Stackelberg problems.
We specify the model in a way that allows us to use linear-quadratic dynamic programming to compute an optimal
government plan under a timing protocol in which a government chooses an infinite sequence of money supply growth
rates once and for all at time 0.
We’ll start with some imports:

import numpy as np
from quantecon import LQ
import matplotlib.pyplot as plt
%matplotlib inline

41.2 The Model

There is no uncertainty.
Let:

• 𝑝𝑡 be the log of the price level
• 𝑚𝑡 be the log of nominal money balances
• 𝜃𝑡 = 𝑝𝑡+1 − 𝑝𝑡 be the net rate of inflation between 𝑡 and 𝑡 + 1
• 𝜇𝑡 = 𝑚𝑡+1 − 𝑚𝑡 be the net rate of growth of nominal balances

The demand for real balances is governed by a perfect foresight version of the Cagan [Cag56] demand function:

𝑚𝑡 − 𝑝𝑡 = −𝛼(𝑝𝑡+1 − 𝑝𝑡) , 𝛼 > 0 (41.1)

752 Chapter 41. Ramsey Plans, Time Inconsistency, Sustainable Plans

https://python-intro.quantecon.org/lqcontrol.html

Advanced Quantitative Economics with Python

for 𝑡 ≥ 0.
Equation (41.1) asserts that the demand for real balances is inversely related to the public’s expected rate of inflation,
which here equals the actual rate of inflation.
(When there is no uncertainty, an assumption of rational expectations implies perfect foresight).
(See [Sar77] for a rational expectations version of the model when there is uncertainty.)
Subtracting the demand function at time 𝑡 from the demand function at 𝑡 + 1 gives:

𝜇𝑡 − 𝜃𝑡 = −𝛼𝜃𝑡+1 + 𝛼𝜃𝑡

or

𝜃𝑡 = 𝛼
1 + 𝛼𝜃𝑡+1 + 1

1 + 𝛼𝜇𝑡 (41.2)

Because 𝛼 > 0, 0 < 𝛼
1+𝛼 < 1.

Definition: For a scalar 𝑏𝑡, let 𝐿2 be the space of sequences {𝑏𝑡}∞
𝑡=0 satisfying

∞
∑
𝑡=0

𝑏2
𝑡 < +∞

We say that a sequence that belongs to 𝐿2 is square summable.
When we assume that the sequence ⃗𝜇 = {𝜇𝑡}∞

𝑡=0 is square summable and we require that the sequence ⃗𝜃 = {𝜃𝑡}∞
𝑡=0 is

square summable, the linear difference equation (41.2) can be solved forward to get:

𝜃𝑡 = 1
1 + 𝛼

∞
∑
𝑗=0

(𝛼
1 + 𝛼)

𝑗
𝜇𝑡+𝑗 (41.3)

Insight: In the spirit of Chang [Cha98], note that equations (41.1) and (41.3) show that 𝜃𝑡 intermediates how choices of
𝜇𝑡+𝑗, 𝑗 = 0, 1, … impinge on time 𝑡 real balances 𝑚𝑡 − 𝑝𝑡 = −𝛼𝜃𝑡.
We shall use this insight to help us simplify and analyze government policy problems.
That future rates of money creation influence earlier rates of inflation creates optimal government policy problems in
which timing protocols matter.
We can rewrite the model as:

[1
𝜃𝑡+1

] = [1 0
0 1+𝛼

𝛼
] [1

𝜃𝑡
] + [0

− 1
𝛼

] 𝜇𝑡

or

𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝜇𝑡 (41.4)

We write the model in the state-space form (41.4) even though 𝜃0 is to be determined by our model and so is not an initial
condition, as it ordinarily would be in the state-space model described in our lecture on Linear Quadratic Control.
We write the model in the form (41.4) because we want to apply an approach described in our lecture on Stackelberg
problems.
We assume that a government believes that a representative household’s utility of real balances at time 𝑡 is:

𝑈(𝑚𝑡 − 𝑝𝑡) = 𝑎0 + 𝑎1(𝑚𝑡 − 𝑝𝑡) − 𝑎2
2 (𝑚𝑡 − 𝑝𝑡)2, 𝑎0 > 0, 𝑎1 > 0, 𝑎2 > 0 (41.5)

The “bliss level” of real balances is then 𝑎1
𝑎2
.

41.2. The Model 753

https://python-intro.quantecon.org/lqcontrol.html

Advanced Quantitative Economics with Python

The money demand function (41.1) and the utility function (41.5) imply that utility maximizing or bliss level of real
balances is attained when:

𝜃𝑡 = 𝜃∗ = − 𝑎1
𝑎2𝛼

Below, we introduce the discount factor 𝛽 ∈ (0, 1) that a government uses to discount its future utilities.
(If we set parameters so that 𝜃∗ = log(𝛽), then we can regard a recommendation to set 𝜃𝑡 = 𝜃∗ as a “poor man’s Friedman
rule” that attains Milton Friedman’s optimal quantity of money.)
Via equation (41.3), a government plan ⃗𝜇 = {𝜇𝑡}∞

𝑡=0 leads to a sequence of inflation outcomes ⃗𝜃 = {𝜃𝑡}∞
𝑡=0.

We assume that social costs 𝑐
2 𝜇2

𝑡 are incurred at 𝑡 when the government changes the stock of nominal money balances at
rate 𝜇𝑡.
Therefore, the one-period welfare function of a benevolent government is:

−𝑠(𝜃𝑡, 𝜇𝑡) ≡ −𝑟(𝑥𝑡, 𝜇𝑡) = [1
𝜃𝑡

]
′
[𝑎0 − 𝑎1𝛼

2
− 𝑎1𝛼

2 − 𝑎2𝛼2

2
] [1

𝜃𝑡
] − 𝑐

2𝜇2
𝑡 = −𝑥′

𝑡𝑅𝑥𝑡 − 𝑄𝜇2
𝑡 (41.6)

A benevolent government’s time 0 value is

𝑣0 = −
∞

∑
𝑡=0

𝛽𝑡𝑟(𝑥𝑡, 𝜇𝑡) = −
∞

∑
𝑡=0

𝛽𝑡𝑠(𝜃𝑡, 𝜇𝑡) (41.7)

We can represent the dependence of 𝑣0 on (⃗𝜃, ⃗𝜇) recursively via the difference equation

𝑣𝑡 = −𝑠(𝜃𝑡, 𝜇𝑡) + 𝛽𝑣𝑡+1 (41.8)

where the government’s time 𝑡 continuation value 𝑣𝑡 satisfies

𝑣𝑡 = −
∞

∑
𝑗=0

𝛽𝑗𝑠(𝜃𝑡+𝑗, 𝜇𝑡+𝑗).

41.3 Structure

The following structure is induced by private agents’ behavior as summarized by the demand function for money (41.1)
that leads to equation (41.3), which tells how future settings of 𝜇 affect the current value of 𝜃.
Equation (41.3) maps a policy sequence of money growth rates ⃗𝜇 = {𝜇𝑡}∞

𝑡=0 ∈ 𝐿2 into an inflation sequence ⃗𝜃 =
{𝜃𝑡}∞

𝑡=0 ∈ 𝐿2.
These, in turn, induce a discounted value to a government sequence ⃗𝑣 = {𝑣𝑡}∞

𝑡=0 ∈ 𝐿2 that satisfies the recursion

𝑣𝑡 = −𝑠(𝜃𝑡, 𝜇𝑡) + 𝛽𝑣𝑡+1

where we have called 𝑠(𝜃𝑡, 𝜇𝑡) = 𝑟(𝑥𝑡, 𝜇𝑡), as above.
Thus, a triple of sequences (⃗𝜇, ⃗𝜃, ⃗𝑣) depends on a sequence ⃗𝜇 ∈ 𝐿2.
At this point ⃗𝜇 ∈ 𝐿2 is an arbitrary exogenous policy.
A theory of government decisions will make ⃗𝜇 endogenous, i.e., a theoretical output instead of an input.

754 Chapter 41. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Quantitative Economics with Python

41.4 Intertemporal Structure

Criterion function (41.7) and the constraint system (41.4) exhibit the following structure:
• Setting 𝜇𝑡 ≠ 0 imposes costs 𝑐

2 𝜇2
𝑡 at time 𝑡 and at no other times; but

• The money growth rate 𝜇𝑡 affects the government’s one-period utilities at all dates 𝑠 = 0, 1, … , 𝑡.
This structure sets the stage for the emergence of a time-inconsistent optimal government plan under a Ramsey timing
protocol, also called a Stackelberg timing protocol.
We’ll eventually study outcomes under a Ramsey timing protocol.
But we’ll also study the consequences of other timing protocols.

41.5 Four Models of Government Policy

We consider four models of policymakers that differ in
• what a policymaker is allowed to choose, either a sequence ⃗𝜇 or just 𝜇𝑡 in a single period 𝑡.
• when a policymaker chooses, either once and for all at time 0, or at some time or times 𝑡 ≥ 0.
• what a policymaker assumes about how its choice of 𝜇𝑡 affects private agents’ expectations about earlier and later
inflation rates.

In two of our models, a single policymaker chooses a sequence {𝜇𝑡}∞
𝑡=0 once and for all, taking into account how 𝜇𝑡

affects household one-period utilities at dates 𝑠 = 0, 1, … , 𝑡 − 1
• these two models thus employ a Ramsey or Stackelberg timing protocol.

In two other models, there is a sequence of policymakers, each of whom sets 𝜇𝑡 at one 𝑡 only.
• Each such policymaker ignores effects that its choice of 𝜇𝑡 has on household one-period utilities at dates 𝑠 =

0, 1, … , 𝑡 − 1.
The four models differ with respect to timing protocols, constraints on government choices, and government policymakers’
beliefs about how their decisions affect private agents’ beliefs about future government decisions.
The models are distinguished by having either

• A single Ramsey planner chooses a sequence {𝜇𝑡}∞
𝑡=0 once and for all at time 0; or

• A single Ramsey planner chooses a sequence {𝜇𝑡}∞
𝑡=0 once and for all at time 0 subject to the constraint that 𝜇𝑡 = 𝜇

for all 𝑡 ≥ 0; or
• A sequence of separate policymakers chooses 𝜇𝑡 for 𝑡 = 0, 1, 2, …

– a time 𝑡 policymaker chooses 𝜇𝑡 only and forecasts that future government decisions are unaffected by its
choice; or

• A sequence of separate policymakers chooses 𝜇𝑡 for 𝑡 = 0, 1, 2, …
– a time 𝑡 policymaker chooses only 𝜇𝑡 but believes that its choice of 𝜇𝑡 shapes private agents’ beliefs about
future rates of money creation and inflation, and through them, future government actions.

The relationship between outcomes in the first (Ramsey) timing protocol and the fourth timing protocol and belief structure
is the subject of a literature on sustainable or credible public policies (Chari and Kehoe [CK90] [Sto89], and Stokey
[Sto91]).
We’ll discuss that topic later in this lecture.

41.4. Intertemporal Structure 755

Advanced Quantitative Economics with Python

41.6 A Ramsey Planner

First, we consider a Ramsey planner that chooses {𝜇𝑡, 𝜃𝑡}∞
𝑡=0 to maximize (41.7) subject to the law of motion (41.4).

We can split this problem into two stages, as in Stackelberg problems and [LS18] Chapter 19.
In the first stage, we take the initial inflation rate 𝜃0 as given, and then solve the resulting LQ dynamic programming
problem.
In the second stage, we maximize over the initial inflation rate 𝜃0.
Define a feasible set of (⃗⃗⃗𝑥1, ⃗⃗⃗𝜇0) sequences, both of which must belong to 𝐿2:

Ω(𝑥0) = {(⃗⃗ ⃗⃗𝑥1, ⃗⃗⃗𝜇0) ∶ 𝑥𝑡+1 = 𝐴𝑥𝑡 + 𝐵𝜇𝑡 , ∀𝑡 ≥ 0}

41.6.1 Subproblem 1

The value function

𝐽(𝑥0) = max
(⃗⃗ ⃗⃗𝑥1, ⃗⃗⃗ ⃗⃗𝜇0)∈Ω(𝑥0)

−
∞

∑
𝑡=0

𝛽𝑡𝑟(𝑥𝑡, 𝜇𝑡)

satisfies the Bellman equation

𝐽(𝑥) = max
𝜇,𝑥′

{−𝑟(𝑥, 𝜇) + 𝛽𝐽(𝑥′)}

subject to:

𝑥′ = 𝐴𝑥 + 𝐵𝜇

As in Stackelberg problems, we map this problem into a linear-quadratic control problem and deduce an optimal value
function 𝐽(𝑥).
Guessing that 𝐽(𝑥) = −𝑥′𝑃𝑥 and substituting into the Bellman equation gives rise to the algebraic matrix Riccati
equation:

𝑃 = 𝑅 + 𝛽𝐴′𝑃𝐴 − 𝛽2𝐴′𝑃𝐵(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴

and an optimal decision rule

𝜇𝑡 = −𝐹𝑥𝑡

where

𝐹 = 𝛽(𝑄 + 𝛽𝐵′𝑃𝐵)−1𝐵′𝑃𝐴

The QuantEcon LQ class solves for 𝐹 and 𝑃 given inputs 𝑄, 𝑅, 𝐴, 𝐵, and 𝛽.

41.6.2 Subproblem 2

The value of the Ramsey problem is

𝑉 = max
𝑥0

𝐽(𝑥0)

where 𝑉 is the maximum value of 𝑣0 defined in equation (41.7).

756 Chapter 41. Ramsey Plans, Time Inconsistency, Sustainable Plans

https://github.com/QuantEcon/QuantEcon.py/blob/master/quantecon/lqcontrol.py

Advanced Quantitative Economics with Python

The value function

𝐽(𝑥0) = − [1 𝜃0] [𝑃11 𝑃12
𝑃21 𝑃22

] [1
𝜃0

] = −𝑃11 − 2𝑃21𝜃0 − 𝑃22𝜃2
0

Maximizing this with respect to 𝜃0 yields the FOC:
−2𝑃21 − 2𝑃22𝜃0 = 0

which implies

𝜃∗
0 = −𝑃21

𝑃22

41.6.3 Representation of Ramsey Plan

The preceding calculations indicate that we can represent a Ramsey plan ⃗𝜇 recursively with the following system created
in the spirit of Chang [Cha98]:

𝜃0 = 𝜃∗
0

𝜇𝑡 = 𝑏0 + 𝑏1𝜃𝑡
𝜃𝑡+1 = 𝑑0 + 𝑑1𝜃𝑡

(41.9)

To interpret this system, think of the sequence {𝜃𝑡}∞
𝑡=0 as a sequence of synthetic promised inflation rates.

At this point, we can think of these promised inflation rates just as computational devices for generating a sequence ⃗𝜇 of
money growth rates that are to be substituted into equation (41.3) to form actual rates of inflation.
But it can be verified that if we substitute a plan ⃗𝜇 = {𝜇𝑡}∞

𝑡=0 that satisfies these equations into equation (41.3), we obtain
the same sequence ⃗𝜃 generated by the system (41.9).
(Here an application of the Big 𝐾, little 𝑘 trick could once again be enlightening.)
Thus, our construction of a Ramsey plan guarantees that promised inflation equals actual inflation.

41.6.4 Multiple roles of 𝜃𝑡

The inflation rate 𝜃𝑡 plays three roles simultaneously:
• In equation (41.3), 𝜃𝑡 is the actual rate of inflation between 𝑡 and 𝑡 + 1.
• In equation (41.2) and (41.3), 𝜃𝑡 is also the public’s expected rate of inflation between 𝑡 and 𝑡 + 1.
• In system (41.9), 𝜃𝑡 is a promised rate of inflation chosen by the Ramsey planner at time 0.

That the same variable 𝜃𝑡 takes on these multiple roles brings insights about commitment and forward guidance, following
versus leading the market, and dynamic or time inconsistency.

41.6.5 Time Inconsistency

As discussed in Stackelberg problems and Optimal taxation with state-contingent debt, a continuation Ramsey plan is not a
Ramsey plan.
This is a concise way of characterizing the time inconsistency of a Ramsey plan.
The time inconsistency of a Ramsey plan has motivated other models of government decision making that alter either

• the timing protocol and/or
• assumptions about how government decision makers think their decisions affect private agents’ beliefs about future
government decisions

41.6. A Ramsey Planner 757

Advanced Quantitative Economics with Python

41.7 A Constrained-to-a-Constant-Growth-Rate Ramsey Govern-
ment

We now consider a peculiar model of optimal government behavior.
We created this model in order to highlight an aspect of an optimal government policy associated with its time inconsis-
tency, namely, the feature that optimal settings of the policy instrument vary over time.
Instead of allowing the Ramsey government to choose different settings of its instrument at different moments, we now
assume that at time 0, a Ramsey government at time 0 once and for all chooses a constant sequence 𝜇𝑡 = ̌𝜇 for all 𝑡 ≥ 0
to maximize

𝑈(−𝛼 ̌𝜇) − 𝑐
2 ̌𝜇2

Here we have imposed the perfect foresight outcome implied by equation (41.2) that 𝜃𝑡 = ̌𝜇when the government chooses
a constant 𝜇 for all 𝑡 ≥ 0.
With the quadratic form (41.5) for the utility function 𝑈 , the maximizing ̄𝜇 is

̌𝜇 = − 𝛼𝑎1
𝛼2𝑎2 + 𝑐

Summary: We have introduced the constrained-to-a-constant 𝜇 government in order to highlight time-variation of 𝜇𝑡 as
a telltale sign of time inconsistency of a Ramsey plan.

41.8 Markov Perfect Governments

We now alter the timing protocol by considering a sequence of government policymakers, the time 𝑡 representative of
which chooses 𝜇𝑡 and expects all future governments to set 𝜇𝑡+𝑗 = ̄𝜇.
This assumption mirrors an assumption made in a different setting Markov Perfect Equilibrium.
A government policymaker at 𝑡 believes that ̄𝜇 is unaffected by its choice of 𝜇𝑡.
The time 𝑡 rate of inflation is then:

𝜃𝑡 = 𝛼
1 + 𝛼 ̄𝜇 + 1

1 + 𝛼𝜇𝑡

The time 𝑡 government policymaker then chooses 𝜇𝑡 to maximize:

𝑊 = 𝑈(−𝛼𝜃𝑡) − 𝑐
2𝜇2

𝑡 + 𝛽𝑉 (̄𝜇)

where 𝑉 (̄𝜇) is the time 0 value 𝑣0 of recursion (41.8) under a money supply growth rate that is forever constant at ̄𝜇.
Substituting for 𝑈 and 𝜃𝑡 gives:

𝑊 = 𝑎0 + 𝑎1(− 𝛼2

1 + 𝛼 ̄𝜇 − 𝛼
1 + 𝛼𝜇𝑡) − 𝑎2

2 ((− 𝛼2

1 + 𝛼 ̄𝜇 − 𝛼
1 + 𝛼𝜇𝑡)2 − 𝑐

2𝜇2
𝑡 + 𝛽𝑉 (̄𝜇)

The first-order necessary condition for 𝜇𝑡 is then:

− 𝛼
1 + 𝛼𝑎1 − 𝑎2(− 𝛼2

1 + 𝛼 ̄𝜇 − 𝛼
1 + 𝛼𝜇𝑡)(−

𝛼
1 + 𝛼) − 𝑐𝜇𝑡 = 0

Rearranging we get:

𝜇𝑡 = −𝑎1
1+𝛼

𝛼 𝑐 + 𝛼
1+𝛼 𝑎2

− 𝛼2𝑎2
[1+𝛼

𝛼 𝑐 + 𝛼
1+𝛼 𝑎2] (1 + 𝛼) ̄𝜇

758 Chapter 41. Ramsey Plans, Time Inconsistency, Sustainable Plans

https://python-intro.quantecon.org/markov_perf.html

Advanced Quantitative Economics with Python

AMarkov Perfect Equilibrium (MPE) outcome sets 𝜇𝑡 = ̄𝜇:

𝜇𝑡 = ̄𝜇 = −𝑎1
1+𝛼

𝛼 𝑐 + 𝛼
1+𝛼 𝑎2 + 𝛼2

1+𝛼 𝑎2

In light of results presented in the previous section, this can be simplified to:

̄𝜇 = − 𝛼𝑎1
𝛼2𝑎2 + (1 + 𝛼)𝑐

41.9 Outcomes under Three Timing Protocols

Below we compute sequences {𝜃𝑡, 𝜇𝑡} under a Ramsey plan and compare these with the constant levels of 𝜃 and 𝜇 in a)
a Markov Perfect Equilibrium, and b) a Ramsey plan in which the planner is restricted to choose 𝜇𝑡 = ̌𝜇 for all 𝑡 ≥ 0.
We denote the Ramsey sequence as 𝜃𝑅, 𝜇𝑅 and the MPE values as 𝜃𝑀𝑃𝐸, 𝜇𝑀𝑃𝐸.
The bliss level of inflation is denoted by 𝜃∗.
First, we will create a class ChangLQ that solves the models and stores their values

class ChangLQ:
"""
Class to solve LQ Chang model
"""
def __init__(self, α, α0, α1, α2, c, T=1000, θ_n=200):

Record parameters
self.α, self.α0, self.α1 = α, α0, α1
self.α2, self.c, self.T, self.θ_n = α2, c, T, θ_n

Create β using "Poor Man's Friedman Rule"
self.β = np.exp(-α1 / (α * α2))

Solve the Ramsey Problem

LQ Matrices
R = -np.array([[α0, -α1 * α / 2],

[-α1 * α/2, -α2 * α**2 / 2]])
Q = -np.array([[-c / 2]])
A = np.array([[1, 0], [0, (1 + α) / α]])
B = np.array([[0], [-1 / α]])

Solve LQ Problem (Subproblem 1)
lq = LQ(Q, R, A, B, beta=self.β)
self.P, self.F, self.d = lq.stationary_values()

Solve Subproblem 2
self.θ_R = -self.P[0, 1] / self.P[1, 1]

Find bliss level of θ
self.θ_B = np.log(self.β)

Solve the Markov Perfect Equilibrium
self.μ_MPE = -α1 / ((1 + α) / α * c + α / (1 + α)

* α2 + α**2 / (1 + α) * α2)
self.θ_MPE = self.μ_MPE

(continues on next page)

41.9. Outcomes under Three Timing Protocols 759

Advanced Quantitative Economics with Python

(continued from previous page)

self.μ_check = -α * α1 / (α2 * α**2 + c)

Calculate value under MPE and Check economy
self.J_MPE = (α0 + α1 * (-α * self.μ_MPE) - α2 / 2

* (-α * self.μ_MPE)**2 - c/2 * self.μ_MPE**2) / (1 - self.β)
self.J_check = (α0 + α1 * (-α * self.μ_check) - α2/2

* (-α * self.μ_check)**2 - c / 2 * self.μ_check**2) \
/ (1 - self.β)

Simulate Ramsey plan for large number of periods
θ_series = np.vstack((np.ones((1, T)), np.zeros((1, T))))
μ_series = np.zeros(T)
J_series = np.zeros(T)
θ_series[1, 0] = self.θ_R
μ_series[0] = -self.F.dot(θ_series[:, 0])
J_series[0] = -θ_series[:, 0] @ self.P @ θ_series[:, 0].T
for i in range(1, T):

θ_series[:, i] = (A - B @ self.F) @ θ_series[:, i-1]
μ_series[i] = -self.F @ θ_series[:, i]
J_series[i] = -θ_series[:, i] @ self.P @ θ_series[:, i].T

self.J_series = J_series
self.μ_series = μ_series
self.θ_series = θ_series

Find the range of θ in Ramsey plan
θ_LB = min(θ_series[1, :])
θ_LB = min(θ_LB, self.θ_B)
θ_UB = max(θ_series[1, :])
θ_UB = max(θ_UB, self.θ_MPE)
θ_range = θ_UB - θ_LB
self.θ_LB = θ_LB - 0.05 * θ_range
self.θ_UB = θ_UB + 0.05 * θ_range
self.θ_range = θ_range

Find value function and policy functions over range of θ
θ_space = np.linspace(self.θ_LB, self.θ_UB, 200)
J_space = np.zeros(200)
check_space = np.zeros(200)
μ_space = np.zeros(200)
θ_prime = np.zeros(200)
for i in range(200):

J_space[i] = - np.array((1, θ_space[i])) \
@ self.P @ np.array((1, θ_space[i])).T

μ_space[i] = - self.F @ np.array((1, θ_space[i]))
x_prime = (A - B @ self.F) @ np.array((1, θ_space[i]))
θ_prime[i] = x_prime[1]
check_space[i] = (α0 + α1 * (-α * θ_space[i]) -
α2/2 * (-α * θ_space[i])**2 - c/2 * θ_space[i]**2) / (1 - self.β)

J_LB = min(J_space)
J_UB = max(J_space)
J_range = J_UB - J_LB
self.J_LB = J_LB - 0.05 * J_range
self.J_UB = J_UB + 0.05 * J_range
self.J_range = J_range

(continues on next page)

760 Chapter 41. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Quantitative Economics with Python

(continued from previous page)

self.J_space = J_space
self.θ_space = θ_space
self.μ_space = μ_space
self.θ_prime = θ_prime
self.check_space = check_space

We will create an instance of ChangLQ with the following parameters

clq = ChangLQ(α=1, α0=1, α1=0.5, α2=3, c=2)
clq.β

0.8464817248906141

The following code generates a figure that plots the value function from theRamsey Planner’s problem, which ismaximized
at 𝜃𝑅

0 .
The figure also shows the limiting value 𝜃𝑅

∞ to which the inflation rate 𝜃𝑡 converges under the Ramsey plan and compares
it to the MPE value and the bliss value.

def plot_value_function(clq):
"""
Method to plot the value function over the relevant range of θ

Here clq is an instance of ChangLQ

"""
fig, ax = plt.subplots()

ax.set_xlim([clq.θ_LB, clq.θ_UB])
ax.set_ylim([clq.J_LB, clq.J_UB])

Plot value function
ax.plot(clq.θ_space, clq.J_space, lw=2)
plt.xlabel(r"θ", fontsize=18)
plt.ylabel(r"$J(\theta)$", fontsize=18)

t1 = clq.θ_space[np.argmax(clq.J_space)]
tR = clq.θ_series[1, -1]
θ_points = [t1, tR, clq.θ_B, clq.θ_MPE]
labels = [r"θ_0^R", r"θ_∞^R",

r"θ^*", r"θ^{MPE}"]

Add points for θs
for θ, label in zip(θ_points, labels):

ax.scatter(θ, clq.J_LB + 0.02 * clq.J_range, 60, 'black', 'v')
ax.annotate(label,

xy=(θ, clq.J_LB + 0.01 * clq.J_range),
xytext=(θ - 0.01 * clq.θ_range,
clq.J_LB + 0.08 * clq.J_range),
fontsize=18)

plt.tight_layout()
plt.show()

plot_value_function(clq)

41.9. Outcomes under Three Timing Protocols 761

Advanced Quantitative Economics with Python

The next code generates a figure that plots the value function from the Ramsey Planner’s problem as well as that for a
Ramsey planner that must choose a constant 𝜇 (that in turn equals an implied constant 𝜃).

def compare_ramsey_check(clq):
"""
Method to compare values of Ramsey and Check

Here clq is an instance of ChangLQ
"""
fig, ax = plt.subplots()
check_min = min(clq.check_space)
check_max = max(clq.check_space)
check_range = check_max - check_min
check_LB = check_min - 0.05 * check_range
check_UB = check_max + 0.05 * check_range
ax.set_xlim([clq.θ_LB, clq.θ_UB])
ax.set_ylim([check_LB, check_UB])
ax.plot(clq.θ_space, clq.J_space, lw=2, label=r"$J(\theta)$")

plt.xlabel(r"θ", fontsize=18)
ax.plot(clq.θ_space, clq.check_space,

lw=2, label=r"$V^\check(\theta)$")
plt.legend(fontsize=14, loc='upper left')

θ_points = [clq.θ_space[np.argmax(clq.J_space)],
clq.μ_check]

(continues on next page)

762 Chapter 41. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Quantitative Economics with Python

(continued from previous page)

labels = [r"θ_0^R", r"θ^\check"]

for θ, label in zip(θ_points, labels):
ax.scatter(θ, check_LB + 0.02 * check_range, 60, 'k', 'v')
ax.annotate(label,

xy=(θ, check_LB + 0.01 * check_range),
xytext=(θ - 0.02 * check_range,

check_LB + 0.08 * check_range),
fontsize=18)

plt.tight_layout()
plt.show()

compare_ramsey_check(clq)

The next code generates figures that plot the policy functions for a continuation Ramsey planner.
The left figure shows the choice of 𝜃′ chosen by a continuation Ramsey planner who inherits 𝜃.
The right figure plots a continuation Ramsey planner’s choice of 𝜇 as a function of an inherited 𝜃.

def plot_policy_functions(clq):
"""
Method to plot the policy functions over the relevant range of θ

Here clq is an instance of ChangLQ

(continues on next page)

41.9. Outcomes under Three Timing Protocols 763

Advanced Quantitative Economics with Python

(continued from previous page)

"""
fig, axes = plt.subplots(1, 2, figsize=(12, 4))

labels = [r"θ_0^R", r"θ_∞^R"]

ax = axes[0]
ax.set_ylim([clq.θ_LB, clq.θ_UB])
ax.plot(clq.θ_space, clq.θ_prime,

label=r"$\theta'(\theta)$", lw=2)
x = np.linspace(clq.θ_LB, clq.θ_UB, 5)
ax.plot(x, x, 'k--', lw=2, alpha=0.7)
ax.set_ylabel(r"θ'", fontsize=18)

θ_points = [clq.θ_space[np.argmax(clq.J_space)],
clq.θ_series[1, -1]]

for θ, label in zip(θ_points, labels):
ax.scatter(θ, clq.θ_LB + 0.02 * clq.θ_range, 60, 'k', 'v')
ax.annotate(label,

xy=(θ, clq.θ_LB + 0.01 * clq.θ_range),
xytext=(θ - 0.02 * clq.θ_range,

clq.θ_LB + 0.08 * clq.θ_range),
fontsize=18)

ax = axes[1]
μ_min = min(clq.μ_space)
μ_max = max(clq.μ_space)
μ_range = μ_max - μ_min
ax.set_ylim([μ_min - 0.05 * μ_range, μ_max + 0.05 * μ_range])
ax.plot(clq.θ_space, clq.μ_space, lw=2)
ax.set_ylabel(r"$\mu(\theta)$", fontsize=18)

for ax in axes:
ax.set_xlabel(r"θ", fontsize=18)
ax.set_xlim([clq.θ_LB, clq.θ_UB])

for θ, label in zip(θ_points, labels):
ax.scatter(θ, μ_min - 0.03 * μ_range, 60, 'black', 'v')
ax.annotate(label, xy=(θ, μ_min - 0.03 * μ_range),

xytext=(θ - 0.02 * clq.θ_range,
μ_min + 0.03 * μ_range),

fontsize=18)
plt.tight_layout()
plt.show()

plot_policy_functions(clq)

764 Chapter 41. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Quantitative Economics with Python

The following code generates a figure that plots sequences of 𝜇 and 𝜃 in the Ramsey plan and compares these to the
constant levels in a MPE and in a Ramsey plan with a government restricted to set 𝜇𝑡 to a constant for all 𝑡.

def plot_ramsey_MPE(clq, T=15):
"""
Method to plot Ramsey plan against Markov Perfect Equilibrium

Here clq is an instance of ChangLQ
"""
fig, axes = plt.subplots(1, 2, figsize=(12, 4))

plots = [clq.θ_series[1, 0:T], clq.μ_series[0:T]]
MPEs = [clq.θ_MPE, clq.μ_MPE]
labels = [r"\theta", r"\mu"]

axes[0].hlines(clq.θ_B, 0, T-1, 'r', label=r"θ^*")

for ax, plot, MPE, label in zip(axes, plots, MPEs, labels):
ax.plot(plot, label=r"$" + label + "^R$")
ax.hlines(MPE, 0, T-1, 'orange', label=r"$" + label + "^{MPE}$")
ax.hlines(clq.μ_check, 0, T, 'g', label=r"$" + label + "^\check$")
ax.set_xlabel(r"t", fontsize=16)
ax.set_ylabel(r"$" + label + "_t$", fontsize=18)
ax.legend(loc='upper right')

plt.tight_layout()
plt.show()

plot_ramsey_MPE(clq)

41.9. Outcomes under Three Timing Protocols 765

Advanced Quantitative Economics with Python

41.9.1 Time Inconsistency of Ramsey Plan

The variation over time in ⃗𝜇 chosen by the Ramsey planner is a symptom of time inconsistency.
• The Ramsey planner reaps immediate benefits from promising lower inflation later to be achieved by costly dis-
torting taxes.

• These benefits are intermediated by reductions in expected inflation that precede the reductions in money creation
rates that rationalize them, as indicated by equation (41.3).

• A government authority offered the opportunity to ignore effects on past utilities and to reoptimize at date 𝑡 ≥ 1
would, if allowed, want to deviate from a Ramsey plan.

Note: A modified Ramsey plan constructed under the restriction that 𝜇𝑡 must be constant over time is time consistent
(see ̌𝜇 and ̌𝜃 in the above graphs).

41.9.2 Meaning of Time Inconsistency

In settings in which governments actually choose sequentially, many economists regard a time inconsistent plan as im-
plausible because of the incentives to deviate that are presented along the plan.
A way to summarize this defect in a Ramsey plan is to say that it is not credible because there endure incentives for
policymakers to deviate from it.
For that reason, the Markov perfect equilibrium concept attracts many economists.

• A Markov perfect equilibrium plan is constructed to insure that government policymakers who choose sequentially
do not want to deviate from it.

The no incentive to deviate from the plan property is what makes the Markov perfect equilibrium concept attractive.

41.9.3 Ramsey Plans Strike Back

Research by Abreu [Abr88], Chari and Kehoe [CK90] [Sto89], and Stokey [Sto91] discovered conditions under which a
Ramsey plan can be rescued from the complaint that it is not credible.
They accomplished this by expanding the description of a plan to include expectations about adverse consequences of
deviating from it that can serve to deter deviations.
We turn to such theories of sustainable plans next.

41.10 A Fourth Model of Government Decision Making

This is a model in which
• the government chooses {𝜇𝑡}∞

𝑡=0 not once and for all at 𝑡 = 0 but chooses to set 𝜇𝑡 at time 𝑡, not before.
• private agents’ forecasts of {𝜇𝑡+𝑗+1, 𝜃𝑡+𝑗+1}∞

𝑗=0 respond to whether the government at 𝑡 confirms or disappoints
their forecasts of 𝜇𝑡 brought into period 𝑡 from period 𝑡 − 1.

• the government at each time 𝑡 understands how private agents’ forecasts will respond to its choice of 𝜇𝑡.
• at each 𝑡, the government chooses 𝜇𝑡 to maximize a continuation discounted utility.

766 Chapter 41. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Quantitative Economics with Python

41.10.1 A Theory of Government Decision Making

⃗𝜇 is chosen by a sequence of government decision makers, one for each 𝑡 ≥ 0.
We assume the following within-period and between-period timing protocol for each 𝑡 ≥ 0:

• at time 𝑡 − 1, private agents expect that the government will set 𝜇𝑡 = ̃𝜇𝑡, and more generally that it will set
𝜇𝑡+𝑗 = ̃𝜇𝑡+𝑗 for all 𝑗 ≥ 0.

• The forecasts { ̃𝜇𝑡+𝑗}𝑗≥0 determine a 𝜃𝑡 = ̃𝜃𝑡 and an associated log of real balances 𝑚𝑡 − 𝑝𝑡 = −𝛼 ̃𝜃𝑡 at 𝑡.

• Given those expectations and an associated 𝜃𝑡 = ̃𝜃𝑡, at 𝑡 a government is free to set 𝜇𝑡 ∈ R.
• If the government at 𝑡 confirms private agents’ expectations by setting 𝜇𝑡 = ̃𝜇𝑡 at time 𝑡, private agents expect the
continuation government policy { ̃𝜇𝑡+𝑗+1}∞

𝑗=0 and therefore bring expectation ̃𝜃𝑡+1 into period 𝑡 + 1.
• If the government at 𝑡 disappoints private agents by setting 𝜇𝑡 ≠ ̃𝜇𝑡, private agents expect {𝜇𝐴

𝑗 }∞
𝑗=0 as the

continuation policy for 𝑡 + 1, i.e., {𝜇𝑡+𝑗+1} = {𝜇𝐴
𝑗 }∞

𝑗=0 and therefore expect an associated 𝜃𝐴
0 for 𝑡 + 1. Here

⃗𝜇𝐴 = {𝜇𝐴
𝑗 }∞

𝑗=0 is an alternative government plan to be described below.

41.10.2 Temptation to Deviate from Plan

The government’s one-period return function 𝑠(𝜃, 𝜇) described in equation (41.6) above has the property that for all 𝜃

−𝑠(𝜃, 0) ≥ −𝑠(𝜃, 𝜇)

This inequality implies that whenever the policy calls for the government to set 𝜇 ≠ 0, the government could raise its
one-period payoff by setting 𝜇 = 0.
Disappointing private sector expectations in that way would increase the government’s current payoff but would have
adverse consequences for subsequent government payoffs because the private sector would alter its expectations about
future settings of 𝜇.
The temporary gain constitutes the government’s temptation to deviate from a plan.
If the government at 𝑡 is to resist the temptation to raise its current payoff, it is only because it forecasts adverse con-
sequences that its setting of 𝜇𝑡 would bring for continuation government payoffs via alterations in the private sector’s
expectations.

41.11 Sustainable or Credible Plan

We call a plan ⃗𝜇 sustainable or credible if at each 𝑡 ≥ 0 the government chooses to confirm private agents’ prior
expectation of its setting for 𝜇𝑡.
The government will choose to confirm prior expectations only if the long-term loss from disappointing private sector
expectations – coming from the government’s understanding of the way the private sector adjusts its expectations in
response to having its prior expectations at 𝑡 disappointed – outweigh the short-term gain from disappointing those
expectations.
The theory of sustainable or credible plans assumes throughout that private sector expectations about what future gov-
ernments will do are based on the assumption that governments at times 𝑡 ≥ 0 always act to maximize the continuation
discounted utilities that describe those governments’ purposes.
This aspect of the theory means that credible plans always come in pairs:

• a credible (continuation) plan to be followed if the government at 𝑡 confirms private sector expectations

41.11. Sustainable or Credible Plan 767

Advanced Quantitative Economics with Python

• a credible plan to be followed if the government at 𝑡 disappoints private sector expectations
That credible plans come in pairs threaten to bring an explosion of plans to keep track of

• each credible plan itself consists of two credible plans
• therefore, the number of plans underlying one plan is unbounded

But Dilip Abreu showed how to render manageable the number of plans that must be kept track of.
The key is an object called a self-enforcing plan.

41.11.1 Abreu’s Self-Enforcing Plan

A plan ⃗𝜇𝐴 (here the superscipt 𝐴 is for Abreu) is said to be self-enforcing if
• the consequence of disappointing private agents’ expectations at time 𝑗 is to restart plan ⃗𝜇𝐴 at time 𝑗 + 1
• the consequence of restarting the plan is sufficiently adverse that it forever deters all deviations from the plan

More precisely, a government plan ⃗𝜇𝐴 with equilibrium inflation sequence ⃗𝜃𝐴 is self-enforcing if

𝑣𝐴
𝑗 = −𝑠(𝜃𝐴

𝑗 , 𝜇𝐴
𝑗) + 𝛽𝑣𝐴

𝑗+1

≥ −𝑠(𝜃𝐴
𝑗 , 0) + 𝛽𝑣𝐴

0 ≡ 𝑣𝐴,𝐷
𝑗 , 𝑗 ≥ 0

(41.10)

(Here it is useful to recall that setting 𝜇 = 0 is the maximizing choice for the government’s one-period return function)
The first line tells the consequences of confirming private agents’ expectations by following the plan, while the second line
tells the consequences of disappointing private agents’ expectations by deviating from the plan.
A consequence of the inequality stated in the definition is that a self-enforcing plan is credible.
Self-enforcing plans can be used to construct other credible plans, including ones with better values.
Thus, where ⃗𝑣𝐴 is the value associated with a self-enforcing plan ⃗𝜇𝐴, a sufficient condition for another plan ⃗𝜇 associated
with inflation ⃗𝜃 and value ⃗𝑣 to be credible is that

𝑣𝑗 = −𝑠(𝜃𝑗, 𝜇𝑗) + 𝛽𝑣𝑗+1
≥ −𝑠(𝜃𝑗, 0) + 𝛽𝑣𝐴

0 ∀𝑗 ≥ 0 (41.11)

For this condition to be satisfied it is necessary and sufficient that

−𝑠(𝜃𝑗, 0) − (−𝑠(𝜃𝑗, 𝜇𝑗)) < 𝛽(𝑣𝑗+1 − 𝑣𝐴
0)

The left side of the above inequality is the government’s gain from deviating from the plan, while the right side is the
government’s loss from deviating from the plan.
A government never wants to deviate from a credible plan.
Abreu taught us that key step in constructing a credible plan is first constructing a self-enforcing plan that has a low time
0 value.
The idea is to use the self-enforcing plan as a continuation plan whenever the government’s choice at time 𝑡 fails to confirm
private agents’ expectation.
We shall use a construction featured in Abreu ([Abr88]) to construct a self-enforcing plan with low time 0 value.

768 Chapter 41. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Quantitative Economics with Python

41.11.2 Abreu Carrot-Stick Plan

Abreu ([Abr88]) invented a way to create a self-enforcing plan with a low initial value.
Imitating his idea, we can construct a self-enforcing plan ⃗𝜇 with a low time 0 value to the government by insisting that
future government decision makers set 𝜇𝑡 to a value yielding low one-period utilities to the household for a long time,
after which government decisions thereafter yield high one-period utilities.

• Low one-period utilities early are a stick
• High one-period utilities later are a carrot

Consider a candidate plan ⃗𝜇𝐴 that sets 𝜇𝐴
𝑡 = ̄𝜇 (a high positive number) for 𝑇𝐴 periods, and then reverts to the Ramsey

plan.
Denote this sequence by {𝜇𝐴

𝑡 }∞
𝑡=0.

The sequence of inflation rates implied by this plan, {𝜃𝐴
𝑡 }∞

𝑡=0, can be calculated using:

𝜃𝐴
𝑡 = 1

1 + 𝛼
∞

∑
𝑗=0

(𝛼
1 + 𝛼)

𝑗
𝜇𝐴

𝑡+𝑗

The value of {𝜃𝐴
𝑡 , 𝜇𝐴

𝑡 }∞
𝑡=0 at time 0 is

𝑣𝐴
0 = −

𝑇𝐴−1
∑
𝑡=0

𝛽𝑡𝑠(𝜃𝐴
𝑡 , 𝜇𝐴

𝑡) + 𝛽𝑇𝐴𝐽(𝜃𝑅
0)

For an appropriate 𝑇𝐴, this plan can be verified to be self-enforcing and therefore credible.

41.11.3 Example of Self-Enforcing Plan

The following example implements an Abreu stick-and-carrot plan.
The government sets 𝜇𝐴

𝑡 = 0.1 for 𝑡 = 0, 1, … , 9 and then starts the Ramsey plan.
We have computed outcomes for this plan.
For this plan, we plot the 𝜃𝐴, 𝜇𝐴 sequences as well as the implied 𝑣𝐴 sequence.
Notice that because the government sets money supply growth high for 10 periods, inflation starts high.
Inflation gradually slowly declines because people expect the government to lower the money growth rate after period 10.
From the 10th period onwards, the inflation rate 𝜃𝐴

𝑡 associated with this Abreu plan starts the Ramsey plan from its
beginning, i.e., 𝜃𝐴

𝑡+10 = 𝜃𝑅
𝑡 ∀𝑡 ≥ 0.

def abreu_plan(clq, T=1000, T_A=10, μ_bar=0.1, T_Plot=20):

Append Ramsey μ series to stick μ series
clq.μ_A = np.append(np.full(T_A, μ_bar), clq.μ_series[:-T_A])

Calculate implied stick θ series
clq.θ_A = np.zeros(T)
discount = np.zeros(T)
for t in range(T):

discount[t] = (clq.α / (1 + clq.α))**t
for t in range(T):

length = clq.μ_A[t:].shape[0]
clq.θ_A[t] = 1 / (clq.α + 1) * sum(clq.μ_A[t:] * discount[0:length])

(continues on next page)

41.11. Sustainable or Credible Plan 769

Advanced Quantitative Economics with Python

(continued from previous page)

Calculate utility of stick plan
U_A = np.zeros(T)
for t in range(T):

U_A[t] = clq.β**t * (clq.α0 + clq.α1 * (-clq.θ_A[t])
- clq.α2 / 2 * (-clq.θ_A[t])**2 - clq.c * clq.μ_A[t]**2)

clq.V_A = np.zeros(T)
for t in range(T):

clq.V_A[t] = sum(U_A[t:] / clq.β**t)

Make sure Abreu plan is self-enforcing
clq.V_dev = np.zeros(T_Plot)
for t in range(T_Plot):

clq.V_dev[t] = (clq.α0 + clq.α1 * (-clq.θ_A[t])
- clq.α2 / 2 * (-clq.θ_A[t])**2) \
+ clq.β * clq.V_A[0]

fig, axes = plt.subplots(3, 1, figsize=(8, 12))

axes[2].plot(clq.V_dev[0:T_Plot], label="$V^{A, D}_t$", c="orange")

plots = [clq.θ_A, clq.μ_A, clq.V_A]
labels = [r"θ_t^A", r"μ_t^A", r"V^A_t"]

for plot, ax, label in zip(plots, axes, labels):
ax.plot(plot[0:T_Plot], label=label)
ax.set(xlabel="t", ylabel=label)
ax.legend()

plt.tight_layout()
plt.show()

abreu_plan(clq)

770 Chapter 41. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Quantitative Economics with Python

41.11. Sustainable or Credible Plan 771

Advanced Quantitative Economics with Python

To confirm that the plan ⃗𝜇𝐴 is self-enforcing, we plot an object that we call 𝑉 𝐴,𝐷
𝑡 , defined in the key inequality in the

second line of equation (41.10) above.
𝑉 𝐴,𝐷

𝑡 is the value at 𝑡 of deviating from the self-enforcing plan ⃗𝜇𝐴 by setting 𝜇𝑡 = 0 and then restarting the plan at 𝑣𝐴
0

at 𝑡 + 1:

𝑣𝐴,𝐷
𝑡 = −𝑠(𝜃𝑗, 0) + 𝛽𝑣𝐴

0

In the above graph 𝑣𝐴
𝑡 > 𝑣𝐴,𝐷

𝑡 , which confirms that ⃗𝜇𝐴 is a self-enforcing plan.
We can also verify the inequalities required for ⃗𝜇𝐴 to be self-confirming numerically as follows

np.all(clq.V_A[0:20] > clq.V_dev[0:20])

True

Given that plan ⃗𝜇𝐴 is self-enforcing, we can check that the Ramsey plan ⃗𝜇𝑅 is credible by verifying that:

𝑣𝑅
𝑡 ≥ −𝑠(𝜃𝑅

𝑡 , 0) + 𝛽𝑣𝐴
0 , ∀𝑡 ≥ 0

def check_ramsey(clq, T=1000):
Make sure Ramsey plan is sustainable
R_dev = np.zeros(T)
for t in range(T):

R_dev[t] = (clq.α0 + clq.α1 * (-clq.θ_series[1, t])
- clq.α2 / 2 * (-clq.θ_series[1, t])**2) \
+ clq.β * clq.V_A[0]

return np.all(clq.J_series > R_dev)

check_ramsey(clq)

True

41.11.4 Recursive Representation of a Sustainable Plan

We can represent a sustainable plan recursively by taking the continuation value 𝑣𝑡 as a state variable.
We form the following 3-tuple of functions:

̂𝜇𝑡 = 𝜈𝜇(𝑣𝑡)
𝜃𝑡 = 𝜈𝜃(𝑣𝑡)

𝑣𝑡+1 = 𝜈𝑣(𝑣𝑡, 𝜇𝑡)
(41.12)

In addition to these equations, we need an initial value 𝑣0 to characterize a sustainable plan.
The first equation of (41.12) tells the recommended value of ̂𝜇𝑡 as a function of the promised value 𝑣𝑡.
The second equation of (41.12) tells the inflation rate as a function of 𝑣𝑡.
The third equation of (41.12) updates the continuation value in a way that depends on whether the government at 𝑡
confirms private agents’ expectations by setting 𝜇𝑡 equal to the recommended value ̂𝜇𝑡, or whether it disappoints those
expectations.

772 Chapter 41. Ramsey Plans, Time Inconsistency, Sustainable Plans

Advanced Quantitative Economics with Python

41.12 Whose Credible Plan is it?

A credible government plan ⃗𝜇 plays multiple roles.
• It is a sequence of actions chosen by the government.
• It is a sequence of private agents’ forecasts of government actions.

Thus, ⃗𝜇 is both a government policy and a collection of private agents’ forecasts of government policy.
Does the government choose policy actions or does it simply confirm prior private sector forecasts of those actions?
An argument in favor of the government chooses interpretation comes from noting that the theory of credible plans builds
in a theory that the government each period chooses the action that it wants.
An argument in favor of the simply confirm interpretation is gathered from staring at the key inequality (41.11) that defines
a credible policy.

41.13 Comparison of Equilibrium Values

We have computed plans for
• an ordinary (unrestricted) Ramsey planner who chooses a sequence {𝜇𝑡}∞

𝑡=0 at time 0
• a Ramsey planner restricted to choose a constant 𝜇 for all 𝑡 ≥ 0
• a Markov perfect sequence of governments

Below we compare equilibrium time zero values for these three.
We confirm that the value delivered by the unrestricted Ramsey planner exceeds the value delivered by the restricted
Ramsey planner which in turn exceeds the value delivered by the Markov perfect sequence of governments.

clq.J_series[0]

6.67918822960449

clq.J_check

6.676729524674898

clq.J_MPE

6.663435886995107

We have also computed credible plans for a government or sequence of governments that choose sequentially.
These include

• a self-enforcing plan that gives a low initial value 𝑣0.
• a better plan – possibly one that attains values associated with Ramsey plan – that is not self-enforcing.

41.12. Whose Credible Plan is it? 773

Advanced Quantitative Economics with Python

41.14 Note on Dynamic Programming Squared

The theory deployed in this lecture is an application of what we nickname dynamic programming squared.
The nickname refers to the feature that a value satisfying one Bellman equation appears as an argument in a second
Bellman equation.
Thus, our models have involved two Bellman equations:

• equation (41.1) expresses how 𝜃𝑡 depends on 𝜇𝑡 and 𝜃𝑡+1

• equation (41.4) expresses how value 𝑣𝑡 depends on (𝜇𝑡, 𝜃𝑡) and 𝑣𝑡+1

A value 𝜃 from one Bellman equation appears as an argument of a second Bellman equation for another value 𝑣.

774 Chapter 41. Ramsey Plans, Time Inconsistency, Sustainable Plans

CHAPTER

FORTYTWO

OPTIMAL TAXATION WITH STATE-CONTINGENT DEBT

Contents

• Optimal Taxation with State-Contingent Debt

– Overview

– A Competitive Equilibrium with Distorting Taxes

– Recursive Formulation of the Ramsey Problem

– Examples

42.1 Overview

This lecture describes a celebrated model of optimal fiscal policy by Robert E. Lucas, Jr., and Nancy Stokey [LS83].
The model revisits classic issues about how to pay for a war.
Here a war means a more or less temporary surge in an exogenous government expenditure process.
The model features

• a government that must finance an exogenous stream of government expenditures with either
– a flat rate tax on labor, or
– purchases and sales from a full array of Arrow state-contingent securities

• a representative household that values consumption and leisure
• a linear production function mapping labor into a single good
• a Ramsey planner who at time 𝑡 = 0 chooses a plan for taxes and trades of Arrow securities for all 𝑡 ≥ 0

After first presenting the model in a space of sequences, we shall represent it recursively in terms of two Bellman equations
formulated along lines that we encountered in Dynamic Stackelberg models.
As in Dynamic Stackelberg models, to apply dynamic programming we shall define the state vector artfully.
In particular, we shall include forward-looking variables that summarize optimal responses of private agents to a Ramsey
plan.
See Optimal taxation for analysis within a linear-quadratic setting.
Let’s start with some standard imports:

775

https://en.wikipedia.org/wiki/Arrow_security

Advanced Quantitative Economics with Python

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

42.2 A Competitive Equilibrium with Distorting Taxes

At time 𝑡 ≥ 0 a random variable 𝑠𝑡 belongs to a time-invariant set 𝑆 = [1, 2, … , 𝑆].
For 𝑡 ≥ 0, a history 𝑠𝑡 = [𝑠𝑡, 𝑠𝑡−1, … , 𝑠0] of an exogenous state 𝑠𝑡 has joint probability density 𝜋𝑡(𝑠𝑡).
We begin by assuming that government purchases 𝑔𝑡(𝑠𝑡) at time 𝑡 ≥ 0 depend on 𝑠𝑡.
Let 𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡), and 𝑛𝑡(𝑠𝑡) denote consumption, leisure, and labor supply, respectively, at history 𝑠𝑡 and date 𝑡.
A representative household is endowed with one unit of time that can be divided between leisure ℓ𝑡 and labor 𝑛𝑡:

𝑛𝑡(𝑠𝑡) + ℓ𝑡(𝑠𝑡) = 1 (42.1)

Output equals 𝑛𝑡(𝑠𝑡) and can be divided between 𝑐𝑡(𝑠𝑡) and 𝑔𝑡(𝑠𝑡)

𝑐𝑡(𝑠𝑡) + 𝑔𝑡(𝑠𝑡) = 𝑛𝑡(𝑠𝑡) (42.2)

A representative household’s preferences over {𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡)}∞
𝑡=0 are ordered by

∞
∑
𝑡=0

∑
𝑠𝑡

𝛽𝑡𝜋𝑡(𝑠𝑡)𝑢[𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡)] (42.3)

where the utility function 𝑢 is increasing, strictly concave, and three times continuously differentiable in both arguments.
The technology pins down a pre-tax wage rate to unity for all 𝑡, 𝑠𝑡.
The government imposes a flat-rate tax 𝜏𝑡(𝑠𝑡) on labor income at time 𝑡, history 𝑠𝑡.
There are complete markets in one-period Arrow securities.
One unit of an Arrow security issued at time 𝑡 at history 𝑠𝑡 and promising to pay one unit of time 𝑡 + 1 consumption in
state 𝑠𝑡+1 costs 𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡).
The government issues one-period Arrow securities each period.
The government has a sequence of budget constraints whose time 𝑡 ≥ 0 component is

𝑔𝑡(𝑠𝑡) = 𝜏𝑡(𝑠𝑡)𝑛𝑡(𝑠𝑡) + ∑
𝑠𝑡+1

𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡)𝑏𝑡+1(𝑠𝑡+1|𝑠𝑡) − 𝑏𝑡(𝑠𝑡|𝑠𝑡−1) (42.4)

where
• 𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡) is a competitive equilibrium price of one unit of consumption at date 𝑡 + 1 in state 𝑠𝑡+1 at date 𝑡 and
history 𝑠𝑡.

• 𝑏𝑡(𝑠𝑡|𝑠𝑡−1) is government debt falling due at time 𝑡, history 𝑠𝑡.
Government debt 𝑏0(𝑠0) is an exogenous initial condition.
The representative household has a sequence of budget constraints whose time 𝑡 ≥ 0 component is

𝑐𝑡(𝑠𝑡) + ∑
𝑠𝑡+1

𝑝𝑡(𝑠𝑡+1|𝑠𝑡)𝑏𝑡+1(𝑠𝑡+1|𝑠𝑡) = [1 − 𝜏𝑡(𝑠𝑡)] 𝑛𝑡(𝑠𝑡) + 𝑏𝑡(𝑠𝑡|𝑠𝑡−1) ∀𝑡 ≥ 0 (42.5)

776 Chapter 42. Optimal Taxation with State-Contingent Debt

Advanced Quantitative Economics with Python

A government policy is an exogenous sequence {𝑔(𝑠𝑡)}∞
𝑡=0, a tax rate sequence {𝜏𝑡(𝑠𝑡)}∞

𝑡=0, and a government debt
sequence {𝑏𝑡+1(𝑠𝑡+1)}∞

𝑡=0.
A feasible allocation is a consumption-labor supply plan {𝑐𝑡(𝑠𝑡), 𝑛𝑡(𝑠𝑡)}∞

𝑡=0 that satisfies (42.2) at all 𝑡, 𝑠𝑡.
A price system is a sequence of Arrow security prices {𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡)}∞

𝑡=0.
The household faces the price system as a price-taker and takes the government policy as given.
The household chooses {𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡)}∞

𝑡=0 to maximize (42.3) subject to (42.5) and (42.1) for all 𝑡, 𝑠𝑡.
A competitive equilibrium with distorting taxes is a feasible allocation, a price system, and a government policy such
that

• Given the price system and the government policy, the allocation solves the household’s optimization problem.
• Given the allocation, government policy, and price system, the government’s budget constraint is satisfied for all

𝑡, 𝑠𝑡.

Note: There are many competitive equilibria with distorting taxes.

They are indexed by different government policies.
The Ramsey problem or optimal taxation problem is to choose a competitive equilibrium with distorting taxes that
maximizes (42.3).

42.2.1 Arrow-Debreu Version of Price System

We find it convenient sometimes to work with the Arrow-Debreu price system that is implied by a sequence of Arrow
securities prices.
Let 𝑞0

𝑡 (𝑠𝑡) be the price at time 0, measured in time 0 consumption goods, of one unit of consumption at time 𝑡, history
𝑠𝑡.
The following recursion relates Arrow-Debreu prices {𝑞0

𝑡 (𝑠𝑡)}∞
𝑡=0 to Arrow securities prices {𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡)}∞

𝑡=0

𝑞0
𝑡+1(𝑠𝑡+1) = 𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡)𝑞0

𝑡 (𝑠𝑡) 𝑠.𝑡. 𝑞0
0(𝑠0) = 1 (42.6)

Arrow-Debreu prices are useful when we want to compress a sequence of budget constraints into a single intertemporal
budget constraint, as we shall find it convenient to do below.

42.2.2 Primal Approach

We apply a popular approach to solving a Ramsey problem, called the primal approach.
The idea is to use first-order conditions for household optimization to eliminate taxes and prices in favor of quantities,
then pose an optimization problem cast entirely in terms of quantities.
After Ramsey quantities have been found, taxes and prices can then be unwound from the allocation.
The primal approach uses four steps:

1. Obtain first-order conditions of the household’s problem and solve them for {𝑞0
𝑡 (𝑠𝑡), 𝜏𝑡(𝑠𝑡)}∞

𝑡=0 as functions of the
allocation {𝑐𝑡(𝑠𝑡), 𝑛𝑡(𝑠𝑡)}∞

𝑡=0.
2. Substitute these expressions for taxes and prices in terms of the allocation into the household’s present-value budget

constraint.
• This intertemporal constraint involves only the allocation and is regarded as an implementability constraint.

42.2. A Competitive Equilibrium with Distorting Taxes 777

Advanced Quantitative Economics with Python

3. Find the allocation that maximizes the utility of the representative household (42.3) subject to the feasibility con-
straints (42.1) and (42.2) and the implementability condition derived in step 2.

• This optimal allocation is called the Ramsey allocation.
4. Use the Ramsey allocation together with the formulas from step 1 to find taxes and prices.

42.2.3 The Implementability Constraint

By sequential substitution of one one-period budget constraint (42.5) into another, we can obtain the household’s present-
value budget constraint:

∞
∑
𝑡=0

∑
𝑠𝑡

𝑞0
𝑡 (𝑠𝑡)𝑐𝑡(𝑠𝑡) =

∞
∑
𝑡=0

∑
𝑠𝑡

𝑞0
𝑡 (𝑠𝑡)[1 − 𝜏𝑡(𝑠𝑡)]𝑛𝑡(𝑠𝑡) + 𝑏0 (42.7)

{𝑞0
𝑡 (𝑠𝑡)}∞

𝑡=1 can be interpreted as a time 0 Arrow-Debreu price system.
To approach the Ramsey problem, we study the household’s optimization problem.
First-order conditions for the household’s problem for ℓ𝑡(𝑠𝑡) and 𝑏𝑡(𝑠𝑡+1|𝑠𝑡), respectively, imply

(1 − 𝜏𝑡(𝑠𝑡)) = 𝑢𝑙(𝑠𝑡)
𝑢𝑐(𝑠𝑡) (42.8)

and

𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡) = 𝛽𝜋(𝑠𝑡+1|𝑠𝑡) (𝑢𝑐(𝑠𝑡+1)
𝑢𝑐(𝑠𝑡)) (42.9)

where 𝜋(𝑠𝑡+1|𝑠𝑡) is the probability distribution of 𝑠𝑡+1 conditional on history 𝑠𝑡.
Equation (42.9) implies that the Arrow-Debreu price system satisfies

𝑞0
𝑡 (𝑠𝑡) = 𝛽𝑡𝜋𝑡(𝑠𝑡) 𝑢𝑐(𝑠𝑡)

𝑢𝑐(𝑠0) (42.10)

(The stochastic process {𝑞0
𝑡 (𝑠𝑡)} is an instance of what finance economists call a stochastic discount factor process.)

Using the first-order conditions (42.8) and (42.9) to eliminate taxes and prices from (42.7), we derive the implementability
condition

∞
∑
𝑡=0

∑
𝑠𝑡

𝛽𝑡𝜋𝑡(𝑠𝑡)[𝑢𝑐(𝑠𝑡)𝑐𝑡(𝑠𝑡) − 𝑢ℓ(𝑠𝑡)𝑛𝑡(𝑠𝑡)] − 𝑢𝑐(𝑠0)𝑏0 = 0 (42.11)

The Ramsey problem is to choose a feasible allocation that maximizes
∞

∑
𝑡=0

∑
𝑠𝑡

𝛽𝑡𝜋𝑡(𝑠𝑡)𝑢[𝑐𝑡(𝑠𝑡), 1 − 𝑛𝑡(𝑠𝑡)] (42.12)

subject to (42.11).

42.2.4 Solution Details

First, define a “pseudo utility function”

𝑉 [𝑐𝑡(𝑠𝑡), 𝑛𝑡(𝑠𝑡), Φ] = 𝑢[𝑐𝑡(𝑠𝑡), 1 − 𝑛𝑡(𝑠𝑡)] + Φ [𝑢𝑐(𝑠𝑡)𝑐𝑡(𝑠𝑡) − 𝑢ℓ(𝑠𝑡)𝑛𝑡(𝑠𝑡)] (42.13)

778 Chapter 42. Optimal Taxation with State-Contingent Debt

Advanced Quantitative Economics with Python

where Φ is a Lagrange multiplier on the implementability condition (42.7).
Next form the Lagrangian

𝐽 =
∞

∑
𝑡=0

∑
𝑠𝑡

𝛽𝑡𝜋𝑡(𝑠𝑡){𝑉 [𝑐𝑡(𝑠𝑡), 𝑛𝑡(𝑠𝑡), Φ] + 𝜃𝑡(𝑠𝑡)[𝑛𝑡(𝑠𝑡) − 𝑐𝑡(𝑠𝑡) − 𝑔𝑡(𝑠𝑡)]} − Φ𝑢𝑐(0)𝑏0 (42.14)

where {𝜃𝑡(𝑠𝑡); ∀𝑠𝑡}𝑡≥0 is a sequence of Lagrange multipliers on the feasible conditions (42.2).
Given an initial government debt 𝑏0, we want to maximize 𝐽 with respect to {𝑐𝑡(𝑠𝑡), 𝑛𝑡(𝑠𝑡); ∀𝑠𝑡}𝑡≥0 and to minimize
with respect to Φ and with respect to {𝜃(𝑠𝑡); ∀𝑠𝑡}𝑡≥0.
The first-order conditions for the Ramsey problem for periods 𝑡 ≥ 1 and 𝑡 = 0, respectively, are

𝑐𝑡(𝑠𝑡)∶ (1 + Φ)𝑢𝑐(𝑠𝑡) + Φ [𝑢𝑐𝑐(𝑠𝑡)𝑐𝑡(𝑠𝑡) − 𝑢ℓ𝑐(𝑠𝑡)𝑛𝑡(𝑠𝑡)] − 𝜃𝑡(𝑠𝑡) = 0, 𝑡 ≥ 1
𝑛𝑡(𝑠𝑡)∶ − (1 + Φ)𝑢ℓ(𝑠𝑡) − Φ [𝑢𝑐ℓ(𝑠𝑡)𝑐𝑡(𝑠𝑡) − 𝑢ℓℓ(𝑠𝑡)𝑛𝑡(𝑠𝑡)] + 𝜃𝑡(𝑠𝑡) = 0, 𝑡 ≥ 1 (42.15)

and
𝑐0(𝑠0, 𝑏0)∶ (1 + Φ)𝑢𝑐(𝑠0, 𝑏0) + Φ [𝑢𝑐𝑐(𝑠0, 𝑏0)𝑐0(𝑠0, 𝑏0) − 𝑢ℓ𝑐(𝑠0, 𝑏0)𝑛0(𝑠0, 𝑏0)] − 𝜃0(𝑠0, 𝑏0)

− Φ𝑢𝑐𝑐(𝑠0, 𝑏0)𝑏0 = 0
𝑛0(𝑠0, 𝑏0)∶ − (1 + Φ)𝑢ℓ(𝑠0, 𝑏0) − Φ [𝑢𝑐ℓ(𝑠0, 𝑏0)𝑐0(𝑠0, 𝑏0) − 𝑢ℓℓ(𝑠0, 𝑏0)𝑛0(𝑠0, 𝑏0)] + 𝜃0(𝑠0, 𝑏0)

+ Φ𝑢𝑐ℓ(𝑠0, 𝑏0)𝑏0 = 0

(42.16)

Please note how these first-order conditions differ between 𝑡 = 0 and 𝑡 ≥ 1.
It is instructive to use first-order conditions (42.15) for 𝑡 ≥ 1 to eliminate the multipliers 𝜃𝑡(𝑠𝑡).
For convenience, we suppress the time subscript and the index 𝑠𝑡 and obtain

(1 + Φ)𝑢𝑐(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐𝑐(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓ𝑐(𝑐, 1 − 𝑐 − 𝑔)]
= (1 + Φ)𝑢ℓ(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐ℓ(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓℓ(𝑐, 1 − 𝑐 − 𝑔)] (42.17)

where we have imposed conditions (42.1) and (42.2).
Equation (42.17) is one equation that can be solved to express the unknown 𝑐 as a function of the exogenous variable 𝑔
and the Lagrange multiplier Φ.
We also know that time 𝑡 = 0 quantities 𝑐0 and 𝑛0 satisfy

(1 + Φ)𝑢𝑐(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐𝑐(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓ𝑐(𝑐, 1 − 𝑐 − 𝑔)]
= (1 + Φ)𝑢ℓ(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐ℓ(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓℓ(𝑐, 1 − 𝑐 − 𝑔)] + Φ(𝑢𝑐𝑐 − 𝑢𝑐,ℓ)𝑏0

(42.18)

Notice that a counterpart to 𝑏0 does not appear in (42.17), so 𝑐 does not directly depend on it for 𝑡 ≥ 1.
But things are different for time 𝑡 = 0.
An analogous argument for the 𝑡 = 0 equations (42.16) leads to one equation that can be solved for 𝑐0 as a function of
the pair (𝑔(𝑠0), 𝑏0) and the Lagrange multiplier Φ.
These outcomes mean that the following statement would be true even when government purchases are history-dependent
functions 𝑔𝑡(𝑠𝑡) of the history of 𝑠𝑡.
Proposition: If government purchases are equal after two histories 𝑠𝑡 and ̃𝑠𝜏 for 𝑡, 𝜏 ≥ 0, i.e., if

𝑔𝑡(𝑠𝑡) = 𝑔𝜏(̃𝑠𝜏) = 𝑔

then it follows from (42.17) that the Ramsey choices of consumption and leisure, (𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡)) and (𝑐𝑗(̃𝑠𝜏), ℓ𝑗(̃𝑠𝜏)),
are identical.
The proposition asserts that the optimal allocation is a function of the currently realized quantity of government purchases
𝑔 only and does not depend on the specific history that preceded that realization of 𝑔.

42.2. A Competitive Equilibrium with Distorting Taxes 779

Advanced Quantitative Economics with Python

42.2.5 The Ramsey Allocation for a Given Multiplier

Temporarily take Φ as given.
We shall compute 𝑐0(𝑠0, 𝑏0) and 𝑛0(𝑠0, 𝑏0) from the first-order conditions (42.16).
Evidently, for 𝑡 ≥ 1, 𝑐 and 𝑛 depend on the time 𝑡 realization of 𝑔 only.
But for 𝑡 = 0, 𝑐 and 𝑛 depend on both 𝑔0 and the government’s initial debt 𝑏0.
Thus, while 𝑏0 influences 𝑐0 and 𝑛0, there appears no analogous variable 𝑏𝑡 that influences 𝑐𝑡 and 𝑛𝑡 for 𝑡 ≥ 1.
The absence of 𝑏𝑡 as a direct determinant of the Ramsey allocation for 𝑡 ≥ 1 and its presence for 𝑡 = 0 is a symptom of
the time-inconsistency of a Ramsey plan.
Of course, 𝑏0 affects the Ramsey allocation for 𝑡 ≥ 1 indirectly through its effect on Φ.
Φ has to take a value that assures that the household and the government’s budget constraints are both satisfied at a
candidate Ramsey allocation and price system associated with that Φ.

42.2.6 Further Specialization

At this point, it is useful to specialize the model in the following ways.
We assume that 𝑠 is governed by a finite state Markov chain with states 𝑠 ∈ [1, … , 𝑆] and transition matrix Π, where

Π(𝑠′|𝑠) = Prob(𝑠𝑡+1 = 𝑠′|𝑠𝑡 = 𝑠)

Also, assume that government purchases 𝑔 are an exact time-invariant function 𝑔(𝑠) of 𝑠.
We maintain these assumptions throughout the remainder of this lecture.

42.2.7 Determining the Lagrange Multiplier

We complete the Ramsey plan by computing the Lagrange multiplier Φ on the implementability constraint (42.11).
Government budget balance restricts Φ via the following line of reasoning.
The household’s first-order conditions imply

(1 − 𝜏𝑡(𝑠𝑡)) = 𝑢𝑙(𝑠𝑡)
𝑢𝑐(𝑠𝑡) (42.19)

and the implied one-period Arrow securities prices

𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡) = 𝛽Π(𝑠𝑡+1|𝑠𝑡)
𝑢𝑐(𝑠𝑡+1)
𝑢𝑐(𝑠𝑡) (42.20)

Substituting from (42.19), (42.20), and the feasibility condition (42.2) into the recursive version (42.5) of the household
budget constraint gives

𝑢𝑐(𝑠𝑡)[𝑛𝑡(𝑠𝑡) − 𝑔𝑡(𝑠𝑡)] + 𝛽 ∑
𝑠𝑡+1

Π(𝑠𝑡+1|𝑠𝑡)𝑢𝑐(𝑠𝑡+1)𝑏𝑡+1(𝑠𝑡+1|𝑠𝑡)

= 𝑢𝑙(𝑠𝑡)𝑛𝑡(𝑠𝑡) + 𝑢𝑐(𝑠𝑡)𝑏𝑡(𝑠𝑡|𝑠𝑡−1)
(42.21)

Define 𝑥𝑡(𝑠𝑡) = 𝑢𝑐(𝑠𝑡)𝑏𝑡(𝑠𝑡|𝑠𝑡−1).
Notice that 𝑥𝑡(𝑠𝑡) appears on the right side of (42.21) while 𝛽 times the conditional expectation of 𝑥𝑡+1(𝑠𝑡+1) appears
on the left side.

780 Chapter 42. Optimal Taxation with State-Contingent Debt

Advanced Quantitative Economics with Python

Hence the equation shares much of the structure of a simple asset pricing equation with 𝑥𝑡 being analogous to the price
of the asset at time 𝑡.
We learned earlier that for a Ramsey allocation 𝑐𝑡(𝑠𝑡), 𝑛𝑡(𝑠𝑡), and 𝑏𝑡(𝑠𝑡|𝑠𝑡−1), and therefore also 𝑥𝑡(𝑠𝑡), are each func-
tions of 𝑠𝑡 only, being independent of the history 𝑠𝑡−1 for 𝑡 ≥ 1.
That means that we can express equation (42.21) as

𝑢𝑐(𝑠)[𝑛(𝑠) − 𝑔(𝑠)] + 𝛽 ∑
𝑠′

Π(𝑠′|𝑠)𝑥′(𝑠′) = 𝑢𝑙(𝑠)𝑛(𝑠) + 𝑥(𝑠) (42.22)

where 𝑠′ denotes a next period value of 𝑠 and 𝑥′(𝑠′) denotes a next period value of 𝑥.
Given 𝑛(𝑠) for 𝑠 = 1, … , 𝑆, equation (42.22) is easy to solve for 𝑥(𝑠) for 𝑠 = 1, … , 𝑆.
If we let �⃗�, ⃗𝑔, ⃗𝑥 denote 𝑆 × 1 vectors whose 𝑖th elements are the respective 𝑛, 𝑔, and 𝑥 values when 𝑠 = 𝑖, and let Π be
the transition matrix for the Markov state 𝑠, then we can express (42.22) as the matrix equation

�⃗�𝑐(�⃗� − ⃗𝑔) + 𝛽Π ⃗𝑥 = �⃗�𝑙�⃗� + ⃗𝑥 (42.23)

This is a system of 𝑆 linear equations in the 𝑆 × 1 vector 𝑥, whose solution is

⃗𝑥 = (𝐼 − 𝛽Π)−1[�⃗�𝑐(�⃗� − ⃗𝑔) − �⃗�𝑙�⃗�] (42.24)

In these equations, by �⃗�𝑐�⃗�, for example, we mean element-by-element multiplication of the two vectors.
After solving for ⃗𝑥, we can find 𝑏(𝑠𝑡|𝑠𝑡−1) in Markov state 𝑠𝑡 = 𝑠 from 𝑏(𝑠) = 𝑥(𝑠)

𝑢𝑐(𝑠) or the matrix equation

⃗𝑏 = ⃗𝑥
�⃗�𝑐

(42.25)

where division here means an element-by-element division of the respective components of the 𝑆 × 1 vectors ⃗𝑥 and �⃗�𝑐.
Here is a computational algorithm:

1. Start with a guess for the value for Φ, then use the first-order conditions and the feasibility conditions to compute
𝑐(𝑠𝑡), 𝑛(𝑠𝑡) for 𝑠 ∈ [1, … , 𝑆] and 𝑐0(𝑠0, 𝑏0) and 𝑛0(𝑠0, 𝑏0), given Φ.

• these are 2(𝑆 + 1) equations in 2(𝑆 + 1) unknowns.
2. Solve the 𝑆 equations (42.24) for the 𝑆 elements of ⃗𝑥.

• these depend on Φ.
3. Find a Φ that satisfies

𝑢𝑐,0𝑏0 = 𝑢𝑐,0(𝑛0 − 𝑔0) − 𝑢𝑙,0𝑛0 + 𝛽
𝑆

∑
𝑠=1

Π(𝑠|𝑠0)𝑥(𝑠) (42.26)

by gradually raising Φ if the left side of (42.26) exceeds the right side and lowering Φ if the left side is less than
the right side.

4. After computing a Ramsey allocation, recover the flat tax rate on labor from (42.8) and the implied one-period
Arrow securities prices from (42.9).

In summary, when 𝑔𝑡 is a time-invariant function of a Markov state 𝑠𝑡, a Ramsey plan can be constructed by solving
3𝑆 + 3 equations for 𝑆 components each of ⃗𝑐, �⃗�, and ⃗𝑥 together with 𝑛0, 𝑐0, and Φ.

42.2. A Competitive Equilibrium with Distorting Taxes 781

Advanced Quantitative Economics with Python

42.2.8 Time Inconsistency

Let {𝜏𝑡(𝑠𝑡)}∞
𝑡=0, {𝑏𝑡+1(𝑠𝑡+1|𝑠𝑡)}∞

𝑡=0 be a time 0, state 𝑠0 Ramsey plan.
Then {𝜏𝑗(𝑠𝑗)}∞

𝑗=𝑡, {𝑏𝑗+1(𝑠𝑗+1|𝑠𝑗)}∞
𝑗=𝑡 is a time 𝑡, history 𝑠𝑡 continuation of a time 0, state 𝑠0 Ramsey plan.

A time 𝑡, history 𝑠𝑡 Ramsey plan is a Ramsey plan that starts from initial conditions 𝑠𝑡, 𝑏𝑡(𝑠𝑡|𝑠𝑡−1).
A time 𝑡, history 𝑠𝑡 continuation of a time 0, state 0 Ramsey plan is not a time 𝑡, history 𝑠𝑡 Ramsey plan.
The means that a Ramsey plan is not time consistent.
Another way to say the same thing is that a Ramsey plan is time inconsistent.
The reason is that a continuation Ramsey plan takes 𝑢𝑐𝑡𝑏𝑡(𝑠𝑡|𝑠𝑡−1) as given, not 𝑏𝑡(𝑠𝑡|𝑠𝑡−1).
We shall discuss this more below.

42.2.9 Specification with CRRA Utility

In our calculations below and in a subsequent lecture based on an extension of the Lucas-Stokey model by Aiyagari, Marcet,
Sargent, and Seppälä (2002) [AMSSeppala02], we shall modify the one-period utility function assumed above.
(We adopted the preceding utility specification because it was the one used in the original Lucas-Stokey paper [LS83].
We shall soon revert to that specification in a subsequent section.)
We will modify their specification by instead assuming that the representative agent has utility function

𝑢(𝑐, 𝑛) = 𝑐1−𝜎

1 − 𝜎 − 𝑛1+𝛾

1 + 𝛾
where 𝜎 > 0, 𝛾 > 0.
We continue to assume that

𝑐𝑡 + 𝑔𝑡 = 𝑛𝑡

We eliminate leisure from the model.
We also eliminate Lucas and Stokey’s restriction that ℓ𝑡 + 𝑛𝑡 ≤ 1.
We replace these two things with the assumption that labor 𝑛𝑡 ∈ [0, +∞].
With these adjustments, the analysis of Lucas and Stokey prevails once we make the following replacements

𝑢ℓ(𝑐, ℓ) ∼ −𝑢𝑛(𝑐, 𝑛)
𝑢𝑐(𝑐, ℓ) ∼ 𝑢𝑐(𝑐, 𝑛)

𝑢ℓ,ℓ(𝑐, ℓ) ∼ 𝑢𝑛𝑛(𝑐, 𝑛)
𝑢𝑐,𝑐(𝑐, ℓ) ∼ 𝑢𝑐,𝑐(𝑐, 𝑛)
𝑢𝑐,ℓ(𝑐, ℓ) ∼ 0

With these understandings, equations (42.17) and (42.18) simplify in the case of the CRRA utility function.
They become

(1 + Φ)[𝑢𝑐(𝑐) + 𝑢𝑛(𝑐 + 𝑔)] + Φ[𝑐𝑢𝑐𝑐(𝑐) + (𝑐 + 𝑔)𝑢𝑛𝑛(𝑐 + 𝑔)] = 0 (42.27)

and

(1 + Φ)[𝑢𝑐(𝑐0) + 𝑢𝑛(𝑐0 + 𝑔0)] + Φ[𝑐0𝑢𝑐𝑐(𝑐0) + (𝑐0 + 𝑔0)𝑢𝑛𝑛(𝑐0 + 𝑔0)] − Φ𝑢𝑐𝑐(𝑐0)𝑏0 = 0 (42.28)

782 Chapter 42. Optimal Taxation with State-Contingent Debt

Advanced Quantitative Economics with Python

In equation (42.27), it is understood that 𝑐 and 𝑔 are each functions of the Markov state 𝑠.
In addition, the time 𝑡 = 0 budget constraint is satisfied at 𝑐0 and initial government debt 𝑏0:

𝑏0 + 𝑔0 = 𝜏0(𝑐0 + 𝑔0) + 𝛽
𝑆

∑
𝑠=1

Π(𝑠|𝑠0)𝑢𝑐(𝑠)
𝑢𝑐,0

𝑏1(𝑠) (42.29)

where 𝜏0 is the time 𝑡 = 0 tax rate.
In equation (42.29), it is understood that

𝜏0 = 1 − 𝑢𝑙,0
𝑢𝑐,0

42.2.10 Sequence Implementation

The above steps are implemented in a class called SequentialLS

class SequentialLS:

'''
Class that takes a preference object, state transition matrix,
and state contingent government expenditure plan as inputs, and
solves the sequential allocation problem described above.
It returns optimal allocations about consumption and labor supply,
as well as the multiplier on the implementability constraint Φ.
'''

def __init__(self,
pref,
π=np.full((2, 2), 0.5),
g=np.array([0.1, 0.2])):

Initialize from pref object attributes
self.β, self.π, self.g = pref.β, π, g
self.mc = MarkovChain(self.π)
self.S = len(π) # Number of states
self.pref = pref

Find the first best allocation
self.find_first_best()

def FOC_first_best(self, c, g):
'''
First order conditions that characterize
the first best allocation.
'''

pref = self.pref
Uc, Ul = pref.Uc, pref.Ul

n = c + g
l = 1 - n

return Uc(c, l) - Ul(c, l)

def find_first_best(self):

(continues on next page)

42.2. A Competitive Equilibrium with Distorting Taxes 783

Advanced Quantitative Economics with Python

(continued from previous page)

'''
Find the first best allocation
'''
S, g = self.S, self.g

res = root(self.FOC_first_best, np.full(S, 0.5), args=(g,))

if (res.fun > 1e-10).any():
raise Exception('Could not find first best')

self.cFB = res.x
self.nFB = self.cFB + g

def FOC_time1(self, c, Φ, g):
'''
First order conditions that characterize
optimal time 1 allocation problems.
'''

pref = self.pref
Uc, Ucc, Ul, Ull, Ulc = pref.Uc, pref.Ucc, pref.Ul, pref.Ull, pref.Ulc

n = c + g
l = 1 - n

LHS = (1 + Φ) * Uc(c, l) + Φ * (c * Ucc(c, l) - n * Ulc(c, l))
RHS = (1 + Φ) * Ul(c, l) + Φ * (c * Ulc(c, l) - n * Ull(c, l))

diff = LHS - RHS

return diff

def time1_allocation(self, Φ):
'''
Computes optimal allocation for time t >= 1 for a given Φ
'''
pref = self.pref
S, g = self.S, self.g

use the first best allocation as intial guess
res = root(self.FOC_time1, self.cFB, args=(Φ, g))

if (res.fun > 1e-10).any():
raise Exception('Could not find LS allocation.')

c = res.x
n = c + g
l = 1 - n

Compute x
I = pref.Uc(c, n) * c - pref.Ul(c, l) * n
x = np.linalg.solve(np.eye(S) - self.β * self.π, I)

return c, n, x

def FOC_time0(self, c0, Φ, g0, b0):

(continues on next page)

784 Chapter 42. Optimal Taxation with State-Contingent Debt

Advanced Quantitative Economics with Python

(continued from previous page)

'''
First order conditions that characterize
time 0 allocation problem.
'''

pref = self.pref
Ucc, Ulc = pref.Ucc, pref.Ulc

n0 = c0 + g0
l0 = 1 - n0

diff = self.FOC_time1(c0, Φ, g0)
diff -= Φ * (Ucc(c0, l0) - Ulc(c0, l0)) * b0

return diff

def implementability(self, Φ, b0, s0, cn0_arr):
'''
Compute the differences between the RHS and LHS
of the implementability constraint given Φ,
initial debt, and initial state.
'''

pref, π, g, β = self.pref, self.π, self.g, self.β
Uc, Ul = pref.Uc, pref.Ul
g0 = self.g[s0]

c, n, x = self.time1_allocation(Φ)

res = root(self.FOC_time0, cn0_arr[0], args=(Φ, g0, b0))
c0 = res.x
n0 = c0 + g0
l0 = 1 - n0

cn0_arr[:] = c0.item(), n0.item()

LHS = Uc(c0, l0) * b0
RHS = Uc(c0, l0) * c0 - Ul(c0, l0) * n0 + β * π[s0] @ x

return RHS - LHS

def time0_allocation(self, b0, s0):
'''
Finds the optimal time 0 allocation given
initial government debt b0 and state s0
'''

use the first best allocation as initial guess
cn0_arr = np.array([self.cFB[s0], self.nFB[s0]])

res = root(self.implementability, 0., args=(b0, s0, cn0_arr))

if (res.fun > 1e-10).any():
raise Exception('Could not find time 0 LS allocation.')

Φ = res.x[0]

(continues on next page)

42.2. A Competitive Equilibrium with Distorting Taxes 785

Advanced Quantitative Economics with Python

(continued from previous page)

c0, n0 = cn0_arr

return Φ, c0, n0

def τ(self, c, n):
'''
Computes τ given c, n
'''
pref = self.pref
Uc, Ul = pref.Uc, pref.Ul

return 1 - Ul(c, 1-n) / Uc(c, 1-n)

def simulate(self, b0, s0, T, sHist=None):
'''
Simulates planners policies for T periods
'''
pref, π, β = self.pref, self.π, self.β
Uc = pref.Uc

if sHist is None:
sHist = self.mc.simulate(T, s0)

cHist, nHist, Bhist, τHist, ΦHist = np.empty((5, T))
RHist = np.empty(T-1)

Time 0
Φ, cHist[0], nHist[0] = self.time0_allocation(b0, s0)
τHist[0] = self.τ(cHist[0], nHist[0])
Bhist[0] = b0
ΦHist[0] = Φ

Time 1 onward
for t in range(1, T):

c, n, x = self.time1_allocation(Φ)
τ = self.τ(c, n)
u_c = Uc(c, 1-n)
s = sHist[t]
Eu_c = π[sHist[t-1]] @ u_c
cHist[t], nHist[t], Bhist[t], τHist[t] = c[s], n[s], x[s] / u_c[s], τ[s]
RHist[t-1] = Uc(cHist[t-1], 1-nHist[t-1]) / (β * Eu_c)
ΦHist[t] = Φ

gHist = self.g[sHist]
yHist = nHist

return [cHist, nHist, Bhist, τHist, gHist, yHist, sHist, ΦHist, RHist]

786 Chapter 42. Optimal Taxation with State-Contingent Debt

Advanced Quantitative Economics with Python

42.3 Recursive Formulation of the Ramsey Problem

We now temporarily revert to Lucas and Stokey’s specification.
We start by noting that 𝑥𝑡(𝑠𝑡) = 𝑢𝑐(𝑠𝑡)𝑏𝑡(𝑠𝑡|𝑠𝑡−1) in equation (42.21) appears to be a purely “forward-looking” variable.
But 𝑥𝑡(𝑠𝑡) is a natural candidate for a state variable in a recursive formulation of the Ramsey problem, one that records
history-dependence and so is backward-looking.

42.3.1 Intertemporal Delegation

To express a Ramsey plan recursively, we imagine that a time 0 Ramsey planner is followed by a sequence of continuation
Ramsey planners at times 𝑡 = 1, 2, ….
A “continuation Ramsey planner” at time 𝑡 ≥ 1 has a different objective function and faces different constraints and state
variables than does the Ramsey planner at time 𝑡 = 0.
A key step in representing a Ramsey plan recursively is to regard the marginal utility scaled government debts 𝑥𝑡(𝑠𝑡) =
𝑢𝑐(𝑠𝑡)𝑏𝑡(𝑠𝑡|𝑠𝑡−1) as predetermined quantities that continuation Ramsey planners at times 𝑡 ≥ 1 are obligated to attain.
Continuation Ramsey planners do this by choosing continuation policies that induce the representative household to make
choices that imply that 𝑢𝑐(𝑠𝑡)𝑏𝑡(𝑠𝑡|𝑠𝑡−1) = 𝑥𝑡(𝑠𝑡).
A time 𝑡 ≥ 1 continuation Ramsey planner faces 𝑥𝑡, 𝑠𝑡 as state variables.
A time 𝑡 ≥ 1 continuation Ramsey planner delivers 𝑥𝑡 by choosing a suitable 𝑛𝑡, 𝑐𝑡 pair and a list of 𝑠𝑡+1-contingent
continuation quantities 𝑥𝑡+1 to bequeath to a time 𝑡 + 1 continuation Ramsey planner.
While a time 𝑡 ≥ 1 continuation Ramsey planner faces 𝑥𝑡, 𝑠𝑡 as state variables, the time 0 Ramsey planner faces 𝑏0, not
𝑥0, as a state variable.
Furthermore, the Ramsey planner cares about (𝑐0(𝑠0), ℓ0(𝑠0)), while continuation Ramsey planners do not.
The time 0 Ramsey planner hands a state-contingent function that make 𝑥1 a function of 𝑠1 to a time 1, state 𝑠1 contin-
uation Ramsey planner.
These lines of delegated authorities and responsibilities across time express the continuation Ramsey planners’ obligations
to implement their parts of an original Ramsey plan that had been designed once-and-for-all at time 0.

42.3.2 Two Bellman Equations

After 𝑠𝑡 has been realized at time 𝑡 ≥ 1, the state variables confronting the time 𝑡 continuation Ramsey planner are
(𝑥𝑡, 𝑠𝑡).

• Let 𝑉 (𝑥, 𝑠) be the value of a continuation Ramsey plan at 𝑥𝑡 = 𝑥, 𝑠𝑡 = 𝑠 for 𝑡 ≥ 1.
• Let 𝑊(𝑏, 𝑠) be the value of a Ramsey plan at time 0 at 𝑏0 = 𝑏 and 𝑠0 = 𝑠.

We work backward by preparing a Bellman equation for 𝑉 (𝑥, 𝑠) first, then a Bellman equation for 𝑊(𝑏, 𝑠).

42.3. Recursive Formulation of the Ramsey Problem 787

Advanced Quantitative Economics with Python

42.3.3 The Continuation Ramsey Problem

The Bellman equation for a time 𝑡 ≥ 1 continuation Ramsey planner is

𝑉 (𝑥, 𝑠) = max
𝑛,{𝑥′(𝑠′)}

𝑢(𝑛 − 𝑔(𝑠), 1 − 𝑛) + 𝛽 ∑
𝑠′∈𝑆

Π(𝑠′|𝑠)𝑉 (𝑥′, 𝑠′) (42.30)

where maximization over 𝑛 and the 𝑆 elements of 𝑥′(𝑠′) is subject to the single implementability constraint for 𝑡 ≥ 1:

𝑥 = 𝑢𝑐(𝑛 − 𝑔(𝑠)) − 𝑢𝑙𝑛 + 𝛽 ∑
𝑠′∈𝑆

Π(𝑠′|𝑠)𝑥′(𝑠′) (42.31)

Here 𝑢𝑐 and 𝑢𝑙 are today’s values of the marginal utilities.
For each given value of 𝑥, 𝑠, the continuation Ramsey planner chooses 𝑛 and 𝑥′(𝑠′) for each 𝑠′ ∈ 𝑆.
Associated with a value function 𝑉 (𝑥, 𝑠) that solves Bellman equation (42.30) are 𝑆 + 1 time-invariant policy functions

𝑛𝑡 = 𝑓(𝑥𝑡, 𝑠𝑡), 𝑡 ≥ 1
𝑥𝑡+1(𝑠𝑡+1) = ℎ(𝑠𝑡+1; 𝑥𝑡, 𝑠𝑡), 𝑠𝑡+1 ∈ 𝑆, 𝑡 ≥ 1 (42.32)

42.3.4 The Ramsey Problem

The Bellman equation of the time 0 Ramsey planner is

𝑊(𝑏0, 𝑠0) = max
𝑛0,{𝑥′(𝑠1)}

𝑢(𝑛0 − 𝑔0, 1 − 𝑛0) + 𝛽 ∑
𝑠1∈𝑆

Π(𝑠1|𝑠0)𝑉 (𝑥′(𝑠1), 𝑠1) (42.33)

where maximization over 𝑛0 and the 𝑆 elements of 𝑥′(𝑠1) is subject to the time 0 implementability constraint

𝑢𝑐,0𝑏0 = 𝑢𝑐,0(𝑛0 − 𝑔0) − 𝑢𝑙,0𝑛0 + 𝛽 ∑
𝑠1∈𝑆

Π(𝑠1|𝑠0)𝑥′(𝑠1) (42.34)

coming from restriction (42.26).
Associated with a value function 𝑊(𝑏0, 𝑛0) that solves Bellman equation (42.33) are 𝑆 + 1 time 0 policy functions

𝑛0 = 𝑓0(𝑏0, 𝑠0)
𝑥1(𝑠1) = ℎ0(𝑠1; 𝑏0, 𝑠0) (42.35)

Notice the appearance of state variables (𝑏0, 𝑠0) in the time 0 policy functions for the Ramsey planner as compared to
(𝑥𝑡, 𝑠𝑡) in the policy functions (42.32) for the time 𝑡 ≥ 1 continuation Ramsey planners.
The value function 𝑉 (𝑥𝑡, 𝑠𝑡) of the time 𝑡 continuation Ramsey planner equals 𝐸𝑡 ∑∞

𝜏=𝑡 𝛽𝜏−𝑡𝑢(𝑐𝜏 , 𝑙𝜏), where consump-
tion and leisure processes are evaluated along the original time 0 Ramsey plan.

42.3.5 First-Order Conditions

Attach a Lagrange multiplier Φ1(𝑥, 𝑠) to constraint (42.31) and a Lagrange multiplier Φ0 to constraint (42.26).
Time 𝑡 ≥ 1: First-order conditions for the time 𝑡 ≥ 1 constrained maximization problem on the right side of the
continuation Ramsey planner’s Bellman equation (42.30) are

𝛽Π(𝑠′|𝑠)𝑉𝑥(𝑥′, 𝑠′) − 𝛽Π(𝑠′|𝑠)Φ1 = 0 (42.36)

for 𝑥′(𝑠′) and

(1 + Φ1)(𝑢𝑐 − 𝑢𝑙) + Φ1 [𝑛(𝑢𝑙𝑙 − 𝑢𝑙𝑐) + (𝑛 − 𝑔(𝑠))(𝑢𝑐𝑐 − 𝑢𝑙𝑐)] = 0 (42.37)

788 Chapter 42. Optimal Taxation with State-Contingent Debt

Advanced Quantitative Economics with Python

for 𝑛.
Given Φ1, equation (42.37) is one equation to be solved for 𝑛 as a function of 𝑠 (or of 𝑔(𝑠)).
Equation (42.36) implies 𝑉𝑥(𝑥′, 𝑠′) = Φ1, while an envelope condition is 𝑉𝑥(𝑥, 𝑠) = Φ1, so it follows that

𝑉𝑥(𝑥′, 𝑠′) = 𝑉𝑥(𝑥, 𝑠) = Φ1(𝑥, 𝑠) (42.38)

Time 𝑡 = 0: For the time 0 problem on the right side of the Ramsey planner’s Bellman equation (42.33), first-order
conditions are

𝑉𝑥(𝑥(𝑠1), 𝑠1) = Φ0 (42.39)

for 𝑥(𝑠1), 𝑠1 ∈ 𝑆, and

(1 + Φ0)(𝑢𝑐,0 − 𝑢𝑛,0) + Φ0[𝑛0(𝑢𝑙𝑙,0 − 𝑢𝑙𝑐,0) + (𝑛0 − 𝑔(𝑠0))(𝑢𝑐𝑐,0 − 𝑢𝑐𝑙,0)]
− Φ0(𝑢𝑐𝑐,0 − 𝑢𝑐𝑙,0)𝑏0 = 0

(42.40)

Notice similarities and differences between the first-order conditions for 𝑡 ≥ 1 and for 𝑡 = 0.
An additional term is present in (42.40) except in three special cases

• 𝑏0 = 0, or
• 𝑢𝑐 is constant (i.e., preferences are quasi-linear in consumption), or
• initial government assets are sufficiently large to finance all government purchases with interest earnings from those
assets so that Φ0 = 0

Except in these special cases, the allocation and the labor tax rate as functions of 𝑠𝑡 differ between dates 𝑡 = 0 and
subsequent dates 𝑡 ≥ 1.
Naturally, the first-order conditions in this recursive formulation of the Ramsey problem agree with the first-order con-
ditions derived when we first formulated the Ramsey plan in the space of sequences.

42.3.6 State Variable Degeneracy

Equations (42.38) and (42.39) imply that Φ0 = Φ1 and that

𝑉𝑥(𝑥𝑡, 𝑠𝑡) = Φ0 (42.41)

for all 𝑡 ≥ 1.
When 𝑉 is concave in 𝑥, this implies state-variable degeneracy along a Ramsey plan in the sense that for 𝑡 ≥ 1, 𝑥𝑡 will
be a time-invariant function of 𝑠𝑡.
Given Φ0, this function mapping 𝑠𝑡 into 𝑥𝑡 can be expressed as a vector ⃗𝑥 that solves equation (42.34) for 𝑛 and 𝑐 as
functions of 𝑔 that are associated with Φ = Φ0.

42.3.7 Manifestations of Time Inconsistency

While the marginal utility adjusted level of government debt 𝑥𝑡 is a key state variable for the continuation Ramsey planners
at 𝑡 ≥ 1, it is not a state variable at time 0.
The time 0 Ramsey planner faces 𝑏0, not 𝑥0 = 𝑢𝑐,0𝑏0, as a state variable.
The discrepancy in state variables faced by the time 0 Ramsey planner and the time 𝑡 ≥ 1 continuation Ramsey planners
captures the differing obligations and incentives faced by the time 0 Ramsey planner and the time 𝑡 ≥ 1 continuation
Ramsey planners.

42.3. Recursive Formulation of the Ramsey Problem 789

Advanced Quantitative Economics with Python

• The time 0 Ramsey planner is obligated to honor government debt 𝑏0 measured in time 0 consumption goods.
• The time 0 Ramsey planner can manipulate the value of government debt as measured by 𝑢𝑐,0𝑏0.
• In contrast, time 𝑡 ≥ 1 continuation Ramsey planners are obligated not to alter values of debt, as measured by

𝑢𝑐,𝑡𝑏𝑡, that they inherit from a preceding Ramsey planner or continuation Ramsey planner.
When government expenditures 𝑔𝑡 are a time-invariant function of a Markov state 𝑠𝑡, a Ramsey plan and associated
Ramsey allocation feature marginal utilities of consumption 𝑢𝑐(𝑠𝑡) that, given Φ, for 𝑡 ≥ 1 depend only on 𝑠𝑡, but that
for 𝑡 = 0 depend on 𝑏0 as well.
This means that 𝑢𝑐(𝑠𝑡) will be a time-invariant function of 𝑠𝑡 for 𝑡 ≥ 1, but except when 𝑏0 = 0, a different function for
𝑡 = 0.
This in turn means that prices of one-period Arrow securities 𝑝𝑡+1(𝑠𝑡+1|𝑠𝑡) = 𝑝(𝑠𝑡+1|𝑠𝑡) will be the same time-invariant
functions of (𝑠𝑡+1, 𝑠𝑡) for 𝑡 ≥ 1, but a different function 𝑝0(𝑠1|𝑠0) for 𝑡 = 0, except when 𝑏0 = 0.
The differences between these time 0 and time 𝑡 ≥ 1 objects reflect the Ramsey planner’s incentive to manipulate Arrow
security prices and, through them, the value of initial government debt 𝑏0.

42.3.8 Recursive Implementation

The above steps are implemented in a class called RecursiveLS.

class RecursiveLS:

'''
Compute the planner's allocation by solving Bellman
equation.
'''

def __init__(self,
pref,
x_grid,
π=np.full((2, 2), 0.5),
g=np.array([0.1, 0.2])):

self.π, self.g, self.S = π, g, len(π)
self.pref, self.x_grid = pref, x_grid

bounds = np.empty((self.S, 2))

bound for n
bounds[0] = 0, 1

bound for xprime
for s in range(self.S-1):

bounds[s+1] = x_grid.min(), x_grid.max()

self.bounds = bounds

initialization of time 1 value function
self.V = None

def time1_allocation(self, V=None, tol=1e-7):
'''
Solve the optimal time 1 allocation problem
by iterating Bellman value function.

(continues on next page)

790 Chapter 42. Optimal Taxation with State-Contingent Debt

Advanced Quantitative Economics with Python

(continued from previous page)

'''

π, g, S = self.π, self.g, self.S
pref, x_grid, bounds = self.pref, self.x_grid, self.bounds

initial guess of value function
if V is None:

V = np.zeros((len(x_grid), S))

initial guess of policy
z = np.empty((len(x_grid), S, S+2))

guess of n
z[:, :, 1] = 0.5

guess of xprime
for s in range(S):

for i in range(S-1):
z[:, s, i+2] = x_grid

while True:
value function iteration
V_new, z_new = T(V, z, pref, π, g, x_grid, bounds)

if np.max(np.abs(V - V_new)) < tol:
break

V = V_new
z = z_new

self.V = V_new
self.z1 = z_new
self.c1 = z_new[:, :, 0]
self.n1 = z_new[:, :, 1]
self.xprime1 = z_new[:, :, 2:]

return V_new, z_new

def time0_allocation(self, b0, s0):
'''
Find the optimal time 0 allocation by maximization.
'''

if self.V is None:
self.time1_allocation()

π, g, S = self.π, self.g, self.S
pref, x_grid, bounds = self.pref, self.x_grid, self.bounds
V, z1 = self.V, self.z1

x = 1. # x is arbitrary
res = nelder_mead(obj_V,

z1[0, s0, 1:-1],
args=(x, s0, V, pref, π, g, x_grid, b0),
bounds=bounds,
tol_f=1e-10)

(continues on next page)

42.3. Recursive Formulation of the Ramsey Problem 791

Advanced Quantitative Economics with Python

(continued from previous page)

n0, xprime0 = IC(res.x, x, s0, b0, pref, π, g)
c0 = n0 - g[s0]
z0 = np.array([c0, n0, *xprime0])

self.z0 = z0
self.n0 = n0
self.c0 = n0 - g[s0]
self.xprime0 = xprime0

return z0

def τ(self, c, n):
'''
Computes τ given c, n
'''
pref = self.pref
uc, ul = pref.Uc(c, 1-n), pref.Ul(c, 1-n)

return 1 - ul / uc

def simulate(self, b0, s0, T, sHist=None):
'''
Simulates Ramsey plan for T periods
'''
pref, π = self.pref, self.π
Uc = pref.Uc

if sHist is None:
sHist = self.mc.simulate(T, s0)

cHist, nHist, Bhist, τHist, xHist = np.empty((5, T))
RHist = np.zeros(T-1)

Time 0
self.time0_allocation(b0, s0)
cHist[0], nHist[0], xHist[0] = self.c0, self.n0, self.xprime0[s0]
τHist[0] = self.τ(cHist[0], nHist[0])
Bhist[0] = b0

Time 1 onward
for t in range(1, T):

s, x = sHist[t], xHist[t-1]
cHist[t] = interp(self.x_grid, self.c1[:, s], x)
nHist[t] = interp(self.x_grid, self.n1[:, s], x)

τHist[t] = self.τ(cHist[t], nHist[t])

Bhist[t] = x / Uc(cHist[t], 1-nHist[t])

c, n = np.empty((2, self.S))
for sprime in range(self.S):

c[sprime] = interp(x_grid, self.c1[:, sprime], x)
n[sprime] = interp(x_grid, self.n1[:, sprime], x)

Euc = π[sHist[t-1]] @ Uc(c, 1-n)
RHist[t-1] = Uc(cHist[t-1], 1-nHist[t-1]) / (self.pref.β * Euc)

(continues on next page)

792 Chapter 42. Optimal Taxation with State-Contingent Debt

Advanced Quantitative Economics with Python

(continued from previous page)

gHist = self.g[sHist]
yHist = nHist

if t < T-1:
sprime = sHist[t+1]
xHist[t] = interp(self.x_grid, self.xprime1[:, s, sprime], x)

return [cHist, nHist, Bhist, τHist, gHist, yHist, xHist, RHist]

Helper functions

@njit(parallel=True)
def T(V, z, pref, π, g, x_grid, bounds):

'''
One step iteration of Bellman value function.
'''

S = len(π)

V_new = np.empty_like(V)
z_new = np.empty_like(z)

for i in prange(len(x_grid)):
x = x_grid[i]
for s in prange(S):

res = nelder_mead(obj_V,
z[i, s, 1:-1],
args=(x, s, V, pref, π, g, x_grid),
bounds=bounds,
tol_f=1e-10)

optimal policy
n, xprime = IC(res.x, x, s, None, pref, π, g)
z_new[i, s, 0] = n - g[s] # c
z_new[i, s, 1] = n # n
z_new[i, s, 2:] = xprime # xprime

V_new[i, s] = res.fun

return V_new, z_new

@njit
def obj_V(z_sub, x, s, V, pref, π, g, x_grid, b0=None):

'''
The objective on the right hand side of the Bellman equation.
z_sub contains guesses of n and xprime[:-1].
'''

S = len(π)
β, U = pref.β, pref.U

find (n, xprime) that satisfies implementability constraint
n, xprime = IC(z_sub, x, s, b0, pref, π, g)
c, l = n-g[s], 1-n

(continues on next page)

42.3. Recursive Formulation of the Ramsey Problem 793

Advanced Quantitative Economics with Python

(continued from previous page)

if xprime[-1] violates bound, return large penalty
if (xprime[-1] < x_grid.min()):

return -1e9 * (1 + np.abs(xprime[-1] - x_grid.min()))
elif (xprime[-1] > x_grid.max()):

return -1e9 * (1 + np.abs(xprime[-1] - x_grid.max()))

prepare Vprime vector
Vprime = np.empty(S)
for sprime in range(S):

Vprime[sprime] = interp(x_grid, V[:, sprime], xprime[sprime])

compute the objective value
obj = U(c, l) + β * π[s] @ Vprime

return obj

@njit
def IC(z_sub, x, s, b0, pref, π, g):

'''
Find xprime[-1] that satisfies the implementability condition
given the guesses of n and xprime[:-1].
'''

β, Uc, Ul = pref.β, pref.Uc, pref.Ul

n = z_sub[0]
xprime = np.empty(len(π))
xprime[:-1] = z_sub[1:]

c, l = n-g[s], 1-n
uc = Uc(c, l)
ul = Ul(c, l)

if b0 is None:
diff = x

else:
diff = uc * b0

diff -= uc * (n - g[s]) - ul * n + β * π[s][:-1] @ xprime[:-1]
xprime[-1] = diff / (β * π[s][-1])

return n, xprime

NameError Traceback (most recent call last)
Cell In[3], line 159

155 return [cHist, nHist, Bhist, τHist, gHist, yHist, xHist, RHist]
157 # Helper functions

--> 159 @njit(parallel=True)
160 def T(V, z, pref, π, g, x_grid, bounds):
161 '''
162 One step iteration of Bellman value function.
163 '''
165 S = len(π)

NameError: name 'njit' is not defined

794 Chapter 42. Optimal Taxation with State-Contingent Debt

Advanced Quantitative Economics with Python

42.4 Examples

We return to the setup with CRRA preferences described above.

42.4.1 Anticipated One-Period War

This example illustrates in a simple setting how a Ramsey planner manages risk.
Government expenditures are known for sure in all periods except one

• For 𝑡 < 3 and 𝑡 > 3 we assume that 𝑔𝑡 = 𝑔𝑙 = 0.1.
• At 𝑡 = 3 a war occurs with probability 0.5.

– If there is war, 𝑔3 = 𝑔ℎ = 0.2
– If there is no war 𝑔3 = 𝑔𝑙 = 0.1

We define the components of the state vector as the following six (𝑡, 𝑔) pairs: (0, 𝑔𝑙), (1, 𝑔𝑙), (2, 𝑔𝑙), (3, 𝑔𝑙), (3, 𝑔ℎ), (𝑡 ≥
4, 𝑔𝑙).
We think of these 6 states as corresponding to 𝑠 = 1, 2, 3, 4, 5, 6.
The transition matrix is

Π =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0.5 0.5 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Government expenditures at each state are

𝑔 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.1
0.1
0.1
0.1
0.2
0.1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We assume that the representative agent has utility function

𝑢(𝑐, 𝑛) = 𝑐1−𝜎

1 − 𝜎 − 𝑛1+𝛾

1 + 𝛾

and set 𝜎 = 2, 𝛾 = 2, and the discount factor 𝛽 = 0.9.

Note: For convenience in terms of matching our code, we have expressed utility as a function of 𝑛 rather than leisure 𝑙.

This utility function is implemented in the class CRRAutility.

crra_util_data = [
('β', float64),
('σ', float64),
('γ', float64)

(continues on next page)

42.4. Examples 795

Advanced Quantitative Economics with Python

(continued from previous page)

]

@jitclass(crra_util_data)
class CRRAutility:

def __init__(self,
β=0.9,
σ=2,
γ=2):

self.β, self.σ, self.γ = β, σ, γ

Utility function
def U(self, c, l):

Note: `l` should not be interpreted as labor, it is an auxiliary
variable used to conveniently match the code and the equations
in the lecture
σ = self.σ
if σ == 1.:

U = np.log(c)
else:

U = (c**(1 - σ) - 1) / (1 - σ)
return U - (1-l) ** (1 + self.γ) / (1 + self.γ)

Derivatives of utility function
def Uc(self, c, l):

return c ** (-self.σ)

def Ucc(self, c, l):
return -self.σ * c ** (-self.σ - 1)

def Ul(self, c, l):
return (1-l) ** self.γ

def Ull(self, c, l):
return -self.γ * (1-l) ** (self.γ - 1)

def Ucl(self, c, l):
return 0

def Ulc(self, c, l):
return 0

We set initial government debt 𝑏0 = 1.
We can now plot the Ramsey tax under both realizations of time 𝑡 = 3 government expenditures

• black when 𝑔3 = .1, and
• red when 𝑔3 = .2

π = np.array([[0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0],
[0, 0, 0, 0.5, 0.5, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1]])

(continues on next page)

796 Chapter 42. Optimal Taxation with State-Contingent Debt

Advanced Quantitative Economics with Python

(continued from previous page)

g = np.array([0.1, 0.1, 0.1, 0.2, 0.1, 0.1])
crra_pref = CRRAutility()

Solve sequential problem
seq = SequentialLS(crra_pref, π=π, g=g)
sHist_h = np.array([0, 1, 2, 3, 5, 5, 5])
sHist_l = np.array([0, 1, 2, 4, 5, 5, 5])
sim_seq_h = seq.simulate(1, 0, 7, sHist_h)
sim_seq_l = seq.simulate(1, 0, 7, sHist_l)

fig, axes = plt.subplots(3, 2, figsize=(14, 10))
titles = ['Consumption', 'Labor Supply', 'Government Debt',

'Tax Rate', 'Government Spending', 'Output']

for ax, title, sim_l, sim_h in zip(axes.flatten(),
titles,
sim_seq_l[:6],
sim_seq_h[:6]):

ax.set(title=title)
ax.plot(sim_l, '-ok', sim_h, '-or', alpha=0.7)
ax.grid()

plt.tight_layout()
plt.show()

Tax smoothing
• the tax rate is constant for all 𝑡 ≥ 1

– For 𝑡 ≥ 1, 𝑡 ≠ 3, this is a consequence of 𝑔𝑡 being the same at all those dates.
– For 𝑡 = 3, it is a consequence of the special one-period utility function that we have assumed.
– Under other one-period utility functions, the time 𝑡 = 3 tax rate could be either higher or lower than for dates

𝑡 ≥ 1, 𝑡 ≠ 3.
• the tax rate is the same at 𝑡 = 3 for both the high 𝑔𝑡 outcome and the low 𝑔𝑡 outcome

We have assumed that at 𝑡 = 0, the government owes positive debt 𝑏0.
It sets the time 𝑡 = 0 tax rate partly with an eye to reducing the value 𝑢𝑐,0𝑏0 of 𝑏0.
It does this by increasing consumption at time 𝑡 = 0 relative to consumption in later periods.
This has the consequence of lowering the time 𝑡 = 0 value of the gross interest rate for risk-free loans between periods 𝑡
and 𝑡 + 1, which equals

𝑅𝑡 = 𝑢𝑐,𝑡
𝛽𝔼𝑡[𝑢𝑐,𝑡+1]

A tax policy that makes time 𝑡 = 0 consumption be higher than time 𝑡 = 1 consumption evidently decreases the risk-free
rate one-period interest rate, 𝑅𝑡, at 𝑡 = 0.
Lowering the time 𝑡 = 0 risk-free interest rate makes time 𝑡 = 0 consumption goods cheaper relative to consumption
goods at later dates, thereby lowering the value 𝑢𝑐,0𝑏0 of initial government debt 𝑏0.
We see this in a figure below that plots the time path for the risk-free interest rate under both realizations of the time
𝑡 = 3 government expenditure shock.
The following plot illustrates how the government lowers the interest rate at time 0 by raising consumption

42.4. Examples 797

Advanced Quantitative Economics with Python

fix, ax = plt.subplots(figsize=(8, 5))
ax.set_title('Gross Interest Rate')
ax.plot(sim_seq_l[-1], '-ok', sim_seq_h[-1], '-or', alpha=0.7)
ax.grid()
plt.show()

42.4.2 Government Saving

At time 𝑡 = 0 the government evidently dissaves since 𝑏1 > 𝑏0.
• This is a consequence of it setting a lower tax rate at 𝑡 = 0, implying more consumption at 𝑡 = 0.

At time 𝑡 = 1, the government evidently saves since it has set the tax rate sufficiently high to allow it to set 𝑏2 < 𝑏1.
• Its motive for doing this is that it anticipates a likely war at 𝑡 = 3.

At time 𝑡 = 2 the government trades state-contingent Arrow securities to hedge against war at 𝑡 = 3.
• It purchases a security that pays off when 𝑔3 = 𝑔ℎ.
• It sells a security that pays off when 𝑔3 = 𝑔𝑙.
• These purchases are designed in such a way that regardless of whether or not there is a war at 𝑡 = 3, the government
will begin period 𝑡 = 4 with the same government debt.

• The time 𝑡 = 4 debt level can be serviced with revenues from the constant tax rate set at times 𝑡 ≥ 1.
At times 𝑡 ≥ 4 the government rolls over its debt, knowing that the tax rate is set at a level that raises enough revenue to
pay for government purchases and interest payments on its debt.

42.4.3 Time 0 Manipulation of Interest Rate

We have seen that when 𝑏0 > 0, the Ramsey plan sets the time 𝑡 = 0 tax rate partly with an eye toward lowering a
risk-free interest rate for one-period loans between times 𝑡 = 0 and 𝑡 = 1.
By lowering this interest rate, the plan makes time 𝑡 = 0 goods cheap relative to consumption goods at later times.
By doing this, it lowers the value of time 𝑡 = 0 debt that it has inherited and must finance.

42.4.4 Time 0 and Time-Inconsistency

In the preceding example, the Ramsey tax rate at time 0 differs from its value at time 1.
To explore what is going on here, let’s simplify things by removing the possibility of war at time 𝑡 = 3.
The Ramsey problem then includes no randomness because 𝑔𝑡 = 𝑔𝑙 for all 𝑡.
The figure below plots the Ramsey tax rates and gross interest rates at time 𝑡 = 0 and time 𝑡 ≥ 1 as functions of the initial
government debt (using the sequential allocation solution and a CRRA utility function defined above)

tax_seq = SequentialLS(CRRAutility(), g=np.array([0.15]), π=np.ones((1, 1)))

n = 100
tax_policy = np.empty((n, 2))
interest_rate = np.empty((n, 2))
gov_debt = np.linspace(-1.5, 1, n)

(continues on next page)

798 Chapter 42. Optimal Taxation with State-Contingent Debt

Advanced Quantitative Economics with Python

(continued from previous page)

for i in range(n):
tax_policy[i] = tax_seq.simulate(gov_debt[i], 0, 2)[3]
interest_rate[i] = tax_seq.simulate(gov_debt[i], 0, 3)[-1]

fig, axes = plt.subplots(2, 1, figsize=(10,8), sharex=True)
titles = ['Tax Rate', 'Gross Interest Rate']

for ax, title, plot in zip(axes, titles, [tax_policy, interest_rate]):
ax.plot(gov_debt, plot[:, 0], gov_debt, plot[:, 1], lw=2)
ax.set(title=title, xlim=(min(gov_debt), max(gov_debt)))
ax.grid()

axes[0].legend(('Time $t=0$', 'Time $t \geq 1$'))
axes[1].set_xlabel('Initial Government Debt')

fig.tight_layout()
plt.show()

The figure indicates that if the government enters with positive debt, it sets a tax rate at 𝑡 = 0 that is less than all later tax
rates.
By setting a lower tax rate at 𝑡 = 0, the government raises consumption, which reduces the value 𝑢𝑐,0𝑏0 of its initial debt.
It does this by increasing 𝑐0 and thereby lowering 𝑢𝑐,0.
Conversely, if 𝑏0 < 0, the Ramsey planner sets the tax rate at 𝑡 = 0 higher than in subsequent periods.
A side effect of lowering time 𝑡 = 0 consumption is that it lowers the one-period interest rate at time 𝑡 = 0 below that of
subsequent periods.
There are only two values of initial government debt at which the tax rate is constant for all 𝑡 ≥ 0.
The first is 𝑏0 = 0

• Here the government can’t use the 𝑡 = 0 tax rate to alter the value of the initial debt.
The second occurs when the government enters with sufficiently large assets that the Ramsey planner can achieve first
best and sets 𝜏𝑡 = 0 for all 𝑡.
It is only for these two values of initial government debt that the Ramsey plan is time-consistent.
Another way of saying this is that, except for these two values of initial government debt, a continuation of a Ramsey plan
is not a Ramsey plan.
To illustrate this, consider a Ramsey planner who starts with an initial government debt 𝑏1 associated with one of the
Ramsey plans computed above.
Call 𝜏𝑅

1 the time 𝑡 = 0 tax rate chosen by the Ramsey planner confronting this value for initial government debt govern-
ment.
The figure below shows both the tax rate at time 1 chosen by our original Ramsey planner and what a new Ramsey planner
would choose for its time 𝑡 = 0 tax rate

tax_seq = SequentialLS(CRRAutility(), g=np.array([0.15]), π=np.ones((1, 1)))

n = 100
tax_policy = np.empty((n, 2))
τ_reset = np.empty((n, 2))
gov_debt = np.linspace(-1.5, 1, n)

(continues on next page)

42.4. Examples 799

Advanced Quantitative Economics with Python

(continued from previous page)

for i in range(n):
tax_policy[i] = tax_seq.simulate(gov_debt[i], 0, 2)[3]
τ_reset[i] = tax_seq.simulate(gov_debt[i], 0, 1)[3]

fig, ax = plt.subplots(figsize=(10, 6))
ax.plot(gov_debt, tax_policy[:, 1], gov_debt, τ_reset, lw=2)
ax.set(xlabel='Initial Government Debt', title='Tax Rate',

xlim=(min(gov_debt), max(gov_debt)))
ax.legend((r'τ_1', r'τ_1^R'))
ax.grid()

fig.tight_layout()
plt.show()

The tax rates in the figure are equal for only two values of initial government debt.

42.4.5 Tax Smoothing and non-CRRA Preferences

The complete tax smoothing for 𝑡 ≥ 1 in the preceding example is a consequence of our having assumed CRRA prefer-
ences.
To see what is driving this outcome, we begin by noting that the Ramsey tax rate for 𝑡 ≥ 1 is a time-invariant function
𝜏(Φ, 𝑔) of the Lagrange multiplier on the implementability constraint and government expenditures.
For CRRA preferences, we can exploit the relations 𝑈𝑐𝑐𝑐 = −𝜎𝑈𝑐 and 𝑈𝑛𝑛𝑛 = 𝛾𝑈𝑛 to derive

(1 + (1 − 𝜎)Φ)𝑈𝑐
(1 + (1 − 𝛾)Φ)𝑈𝑛

= 1

from the first-order conditions.
This equation immediately implies that the tax rate is constant.
For other preferences, the tax rate may not be constant.
For example, let the period utility function be

𝑢(𝑐, 𝑛) = log(𝑐) + 0.69 log(1 − 𝑛)

We will create a new class LogUtility to represent this utility function

log_util_data = [
('β', float64),
('ψ', float64)

]

@jitclass(log_util_data)
class LogUtility:

def __init__(self,
β=0.9,
ψ=0.69):

self.β, self.ψ = β, ψ

Utility function

(continues on next page)

800 Chapter 42. Optimal Taxation with State-Contingent Debt

Advanced Quantitative Economics with Python

(continued from previous page)

def U(self, c, l):
return np.log(c) + self.ψ * np.log(l)

Derivatives of utility function
def Uc(self, c, l):

return 1 / c

def Ucc(self, c, l):
return -c**(-2)

def Ul(self, c, l):
return self.ψ / l

def Ull(self, c, l):
return -self.ψ / l**2

def Ucl(self, c, l):
return 0

def Ulc(self, c, l):
return 0

Also, suppose that 𝑔𝑡 follows a two-state IID process with equal probabilities attached to 𝑔𝑙 and 𝑔ℎ.
To compute the tax rate, we will use both the sequential and recursive approaches described above.
The figure below plots a sample path of the Ramsey tax rate

log_example = LogUtility()
Solve sequential problem
seq_log = SequentialLS(log_example)

Initialize grid for value function iteration and solve
x_grid = np.linspace(-3., 3., 200)

Solve recursive problem
rec_log = RecursiveLS(log_example, x_grid)

T_length = 20
sHist = np.array([0, 0, 0, 0, 0,

0, 0, 0, 1, 1,
0, 0, 0, 1, 1,
1, 1, 1, 1, 0])

Simulate
sim_seq = seq_log.simulate(0.5, 0, T_length, sHist)
sim_rec = rec_log.simulate(0.5, 0, T_length, sHist)

fig, axes = plt.subplots(3, 2, figsize=(14, 10))
titles = ['Consumption', 'Labor Supply', 'Government Debt',

'Tax Rate', 'Government Spending', 'Output']

for ax, title, sim_s, sim_b in zip(axes.flatten(), titles, sim_seq[:6], sim_rec[:6]):
ax.plot(sim_s, '-ob', sim_b, '-xk', alpha=0.7)
ax.set(title=title)
ax.grid()

(continues on next page)

42.4. Examples 801

Advanced Quantitative Economics with Python

(continued from previous page)

axes.flatten()[0].legend(('Sequential', 'Recursive'))
fig.tight_layout()
plt.show()

As should be expected, the recursive and sequential solutions produce almost identical allocations.
Unlike outcomes with CRRA preferences, the tax rate is not perfectly smoothed.
Instead, the government raises the tax rate when 𝑔𝑡 is high.

42.4.6 Further Comments

A related lecture describes an extension of the Lucas-Stokey model by Aiyagari, Marcet, Sargent, and Seppälä (2002)
[AMSSeppala02].
In the AMSS economy, only a risk-free bond is traded.
That lecture compares the recursive representation of the Lucas-Stokey model presented in this lecture with one for an
AMSS economy.
By comparing these recursive formulations, we shall glean a sense in which the dimension of the state is lower in the
Lucas Stokey model.
Accompanying that difference in dimension will be different dynamics of government debt.

802 Chapter 42. Optimal Taxation with State-Contingent Debt

CHAPTER

FORTYTHREE

OPTIMAL TAXATION WITHOUT STATE-CONTINGENT DEBT

Contents

• Optimal Taxation without State-Contingent Debt

– Overview

– Competitive Equilibrium with Distorting Taxes

– Recursive Version of AMSS Model

– Examples

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon
!pip install interpolation

43.1 Overview

Let’s start with following imports:

import numpy as np
import matplotlib.pyplot as plt
from interpolation.splines import UCGrid, nodes
from quantecon import MarkovChain

%matplotlib inline

/usr/share/miniconda3/envs/quantecon/lib/python3.11/site-packages/numba/core/
↪decorators.py:262: NumbaDeprecationWarning: numba.generated_jit is deprecated.␣
↪Please see the documentation at: https://numba.readthedocs.io/en/stable/
↪reference/deprecation.html#deprecation-of-generated-jit for more information and␣
↪advice on a suitable replacement.
warnings.warn(msg, NumbaDeprecationWarning)

In an earlier lecture, we described a model of optimal taxation with state-contingent debt due to Robert E. Lucas, Jr., and
Nancy Stokey [LS83].
Aiyagari, Marcet, Sargent, and Seppälä [AMSSeppala02] (hereafter, AMSS) studied optimal taxation in a model without
state-contingent debt.

803

Advanced Quantitative Economics with Python

In this lecture, we
• describe assumptions and equilibrium concepts
• solve the model
• implement the model numerically
• conduct some policy experiments
• compare outcomes with those in a corresponding complete-markets model

We begin with an introduction to the model.

43.2 Competitive Equilibrium with Distorting Taxes

Many but not all features of the economy are identical to those of the Lucas-Stokey economy.
Let’s start with things that are identical.
For 𝑡 ≥ 0, a history of the state is represented by 𝑠𝑡 = [𝑠𝑡, 𝑠𝑡−1, … , 𝑠0].
Government purchases 𝑔(𝑠) are an exact time-invariant function of 𝑠.
Let 𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡), and 𝑛𝑡(𝑠𝑡) denote consumption, leisure, and labor supply, respectively, at history 𝑠𝑡 at time 𝑡.
Each period a representative household is endowed with one unit of time that can be divided between leisure ℓ𝑡 and labor
𝑛𝑡:

𝑛𝑡(𝑠𝑡) + ℓ𝑡(𝑠𝑡) = 1 (43.1)

Output equals 𝑛𝑡(𝑠𝑡) and can be divided between consumption 𝑐𝑡(𝑠𝑡) and 𝑔(𝑠𝑡)

𝑐𝑡(𝑠𝑡) + 𝑔(𝑠𝑡) = 𝑛𝑡(𝑠𝑡) (43.2)

Output is not storable.
The technology pins down a pre-tax wage rate to unity for all 𝑡, 𝑠𝑡.
A representative household’s preferences over {𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡)}∞

𝑡=0 are ordered by
∞

∑
𝑡=0

∑
𝑠𝑡

𝛽𝑡𝜋𝑡(𝑠𝑡)𝑢[𝑐𝑡(𝑠𝑡), ℓ𝑡(𝑠𝑡)] (43.3)

where
• 𝜋𝑡(𝑠𝑡) is a joint probability distribution over the sequence 𝑠𝑡, and
• the utility function 𝑢 is increasing, strictly concave, and three times continuously differentiable in both arguments.

The government imposes a flat rate tax 𝜏𝑡(𝑠𝑡) on labor income at time 𝑡, history 𝑠𝑡.
Lucas and Stokey assumed that there are complete markets in one-period Arrow securities; also see smoothing models.
It is at this point that AMSS [AMSSeppala02] modify the Lucas and Stokey economy.
AMSS allow the government to issue only one-period risk-free debt each period.
Ruling out complete markets in this way is a step in the direction of making total tax collections behave more like that
prescribed in Robert Barro (1979) [Bar79] than they do in Lucas and Stokey (1983) [LS83].

804 Chapter 43. Optimal Taxation without State-Contingent Debt

Advanced Quantitative Economics with Python

43.2.1 Risk-free One-Period Debt Only

In period 𝑡 and history 𝑠𝑡, let
• 𝑏𝑡+1(𝑠𝑡) be the amount of the time 𝑡 + 1 consumption good that at time 𝑡, history 𝑠𝑡 the government promised to
pay

• 𝑅𝑡(𝑠𝑡) be the gross interest rate on risk-free one-period debt between periods 𝑡 and 𝑡 + 1
• 𝑇𝑡(𝑠𝑡) be a non-negative lump-sum transfer to the representative household1

That 𝑏𝑡+1(𝑠𝑡) is the same for all realizations of 𝑠𝑡+1 captures its risk-free character.
The market value at time 𝑡 of government debt maturing at time 𝑡 + 1 equals 𝑏𝑡+1(𝑠𝑡) divided by 𝑅𝑡(𝑠𝑡).
The government’s budget constraint in period 𝑡 at history 𝑠𝑡 is

𝑏𝑡(𝑠𝑡−1) = 𝜏𝑛
𝑡 (𝑠𝑡)𝑛𝑡(𝑠𝑡) − 𝑔(𝑠𝑡) − 𝑇𝑡(𝑠𝑡) + 𝑏𝑡+1(𝑠𝑡)

𝑅𝑡(𝑠𝑡)

≡ 𝑧𝑡(𝑠𝑡) + 𝑏𝑡+1(𝑠𝑡)
𝑅𝑡(𝑠𝑡) ,

(43.4)

where 𝑧𝑡(𝑠𝑡) is the net-of-interest government surplus.
To rule out Ponzi schemes, we assume that the government is subject to a natural debt limit (to be discussed in a
forthcoming lecture).
The consumption Euler equation for a representative household able to trade only one-period risk-free debt with one-
period gross interest rate 𝑅𝑡(𝑠𝑡) is

1
𝑅𝑡(𝑠𝑡) = ∑

𝑠𝑡+1|𝑠𝑡
𝛽𝜋𝑡+1(𝑠𝑡+1|𝑠𝑡)𝑢𝑐(𝑠𝑡+1)

𝑢𝑐(𝑠𝑡)

Substituting this expression into the government’s budget constraint (43.4) yields:

𝑏𝑡(𝑠𝑡−1) = 𝑧𝑡(𝑠𝑡) + 𝛽 ∑
𝑠𝑡+1|𝑠𝑡

𝜋𝑡+1(𝑠𝑡+1|𝑠𝑡)𝑢𝑐(𝑠𝑡+1)
𝑢𝑐(𝑠𝑡) 𝑏𝑡+1(𝑠𝑡) (43.5)

Components of 𝑧𝑡(𝑠𝑡) on the right side depend on 𝑠𝑡, but the left side is required to depend only on 𝑠𝑡−1 .
This is what it means for one-period government debt to be risk-free.
Therefore, the right side of equation (43.5) also has to depend only on 𝑠𝑡−1.
This requirement will give rise to measurability constraints on the Ramsey allocation to be discussed soon.
If we replace 𝑏𝑡+1(𝑠𝑡) on the right side of equation (43.5) by the right side of next period’s budget constraint (associated
with a particular realization 𝑠𝑡) we get

𝑏𝑡(𝑠𝑡−1) = 𝑧𝑡(𝑠𝑡) + ∑
𝑠𝑡+1|𝑠𝑡

𝛽𝜋𝑡+1(𝑠𝑡+1|𝑠𝑡)𝑢𝑐(𝑠𝑡+1)
𝑢𝑐(𝑠𝑡) [𝑧𝑡+1(𝑠𝑡+1) + 𝑏𝑡+2(𝑠𝑡+1)

𝑅𝑡+1(𝑠𝑡+1)]

After making similar repeated substitutions for all future occurrences of government indebtedness, and by invoking a
natural debt limit, we arrive at:

𝑏𝑡(𝑠𝑡−1) =
∞

∑
𝑗=0

∑
𝑠𝑡+𝑗|𝑠𝑡

𝛽𝑗𝜋𝑡+𝑗(𝑠𝑡+𝑗|𝑠𝑡)𝑢𝑐(𝑠𝑡+𝑗)
𝑢𝑐(𝑠𝑡) 𝑧𝑡+𝑗(𝑠𝑡+𝑗) (43.6)

1 In an allocation that solves the Ramsey problem and that levies distorting taxes on labor, why would the government ever want to hand revenues
back to the private sector? It would not in an economy with state-contingent debt, since any such allocation could be improved by lowering distortionary
taxes rather than handing out lump-sum transfers. But, without state-contingent debt there can be circumstances when a government would like to make
lump-sum transfers to the private sector.

43.2. Competitive Equilibrium with Distorting Taxes 805

Advanced Quantitative Economics with Python

Notice how the conditioning sets in equation (43.6) differ: they are 𝑠𝑡−1 on the left side and 𝑠𝑡 on the right side.
Now let’s

• substitute the resource constraint into the net-of-interest government surplus, and
• use the household’s first-order condition 1 − 𝜏𝑛

𝑡 (𝑠𝑡) = 𝑢ℓ(𝑠𝑡)/𝑢𝑐(𝑠𝑡) to eliminate the labor tax rate
so that we can express the net-of-interest government surplus 𝑧𝑡(𝑠𝑡) as

𝑧𝑡(𝑠𝑡) = [1 − 𝑢ℓ(𝑠𝑡)
𝑢𝑐(𝑠𝑡)] [𝑐𝑡(𝑠𝑡) + 𝑔(𝑠𝑡)] − 𝑔(𝑠𝑡) − 𝑇𝑡(𝑠𝑡) . (43.7)

If we substitute appropriate versions of the right side of (43.7) for 𝑧𝑡+𝑗(𝑠𝑡+𝑗) into equation (43.6), we obtain a sequence
of implementability constraints on a Ramsey allocation in an AMSS economy.
Expression (43.6) at time 𝑡 = 0 and initial state 𝑠0 was also an implementability constraint on a Ramsey allocation in a
Lucas-Stokey economy:

𝑏0(𝑠−1) = 𝔼0
∞

∑
𝑗=0

𝛽𝑗 𝑢𝑐(𝑠𝑗)
𝑢𝑐(𝑠0) 𝑧𝑗(𝑠𝑗) (43.8)

Indeed, it was the only implementability constraint there.
But now we also have a large number of additional implementability constraints

𝑏𝑡(𝑠𝑡−1) = 𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗 𝑢𝑐(𝑠𝑡+𝑗)
𝑢𝑐(𝑠𝑡) 𝑧𝑡+𝑗(𝑠𝑡+𝑗) (43.9)

Equation (43.9) must hold for each 𝑠𝑡 for each 𝑡 ≥ 1.

43.2.2 Comparison with Lucas-Stokey Economy

The expression on the right side of (43.9) in the Lucas-Stokey (1983) economy would equal the present value of a contin-
uation stream of government net-of-interest surpluses evaluated at what would be competitive equilibrium Arrow-Debreu
prices at date 𝑡.
In the Lucas-Stokey economy, that present value is measurable with respect to 𝑠𝑡.
In the AMSS economy, the restriction that government debt be risk-free imposes that that same present value must be
measurable with respect to 𝑠𝑡−1.
In a language used in the literature on incomplete markets models, it can be said that the AMSS model requires that at
each (𝑡, 𝑠𝑡) what would be the present value of continuation government net-of-interest surpluses in the Lucas-Stokey
model must belong to themarketable subspace of the AMSS model.

43.2.3 Ramsey Problem Without State-contingent Debt

After we have substituted the resource constraint into the utility function, we can express the Ramsey problem as being
to choose an allocation that solves

max
{𝑐𝑡(𝑠𝑡),𝑏𝑡+1(𝑠𝑡)}

𝔼0
∞

∑
𝑡=0

𝛽𝑡𝑢 (𝑐𝑡(𝑠𝑡), 1 − 𝑐𝑡(𝑠𝑡) − 𝑔(𝑠𝑡))

where the maximization is subject to

𝔼0
∞

∑
𝑗=0

𝛽𝑗 𝑢𝑐(𝑠𝑗)
𝑢𝑐(𝑠0) 𝑧𝑗(𝑠𝑗) ≥ 𝑏0(𝑠−1) (43.10)

806 Chapter 43. Optimal Taxation without State-Contingent Debt

Advanced Quantitative Economics with Python

and

𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗 𝑢𝑐(𝑠𝑡+𝑗)
𝑢𝑐(𝑠𝑡) 𝑧𝑡+𝑗(𝑠𝑡+𝑗) = 𝑏𝑡(𝑠𝑡−1) ∀ 𝑡, 𝑠𝑡 (43.11)

given 𝑏0(𝑠−1).

Lagrangian Formulation

Let 𝛾0(𝑠0) be a non-negative Lagrange multiplier on constraint (43.10).
As in the Lucas-Stokey economy, this multiplier is strictly positive when the government must resort to distortionary
taxation; otherwise it equals zero.
A consequence of the assumption that there are no markets in state-contingent securities and that a market exists only in a
risk-free security is that we have to attach a stochastic process {𝛾𝑡(𝑠𝑡)}∞

𝑡=1 of Lagrangemultipliers to the implementability
constraints (43.11).
Depending on how the constraints bind, these multipliers can be positive or negative:

𝛾𝑡(𝑠𝑡) ≥ (≤) 0 if the constraint binds in the following direction

𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗 𝑢𝑐(𝑠𝑡+𝑗)
𝑢𝑐(𝑠𝑡) 𝑧𝑡+𝑗(𝑠𝑡+𝑗) ≥ (≤) 𝑏𝑡(𝑠𝑡−1)

A negative multiplier 𝛾𝑡(𝑠𝑡) < 0 means that if we could relax constraint (43.11), we would like to increase the beginning-
of-period indebtedness for that particular realization of history 𝑠𝑡.
That would let us reduce the beginning-of-period indebtedness for some other history2.
These features flow from the fact that the government cannot use state-contingent debt and therefore cannot allocate its
indebtedness efficiently across future states.

43.2.4 Some Calculations

It is helpful to apply two transformations to the Lagrangian.
Multiply constraint (43.10) by 𝑢𝑐(𝑠0) and the constraints (43.11) by 𝛽𝑡𝑢𝑐(𝑠𝑡).
Then a Lagrangian for the Ramsey problem can be represented as

𝐽 = 𝔼0
∞

∑
𝑡=0

𝛽𝑡{𝑢 (𝑐𝑡(𝑠𝑡), 1 − 𝑐𝑡(𝑠𝑡) − 𝑔(𝑠𝑡))

+ 𝛾𝑡(𝑠𝑡)[𝔼𝑡
∞

∑
𝑗=0

𝛽𝑗𝑢𝑐(𝑠𝑡+𝑗) 𝑧𝑡+𝑗(𝑠𝑡+𝑗) − 𝑢𝑐(𝑠𝑡) 𝑏𝑡(𝑠𝑡−1)}

= 𝔼0
∞

∑
𝑡=0

𝛽𝑡{𝑢 (𝑐𝑡(𝑠𝑡), 1 − 𝑐𝑡(𝑠𝑡) − 𝑔(𝑠𝑡))

+ Ψ𝑡(𝑠𝑡) 𝑢𝑐(𝑠𝑡) 𝑧𝑡(𝑠𝑡) − 𝛾𝑡(𝑠𝑡) 𝑢𝑐(𝑠𝑡) 𝑏𝑡(𝑠𝑡−1)}

(43.12)

where

Ψ𝑡(𝑠𝑡) = Ψ𝑡−1(𝑠𝑡−1) + 𝛾𝑡(𝑠𝑡) and Ψ−1(𝑠−1) = 0 (43.13)
2 From the first-order conditions for the Ramsey problem, there exists another realization ̃𝑠𝑡 with the same history up until the previous period, i.e.,

̃𝑠𝑡−1 = 𝑠𝑡−1, but where the multiplier on constraint (43.11) takes a positive value, so 𝛾𝑡(̃𝑠𝑡) > 0.

43.2. Competitive Equilibrium with Distorting Taxes 807

Advanced Quantitative Economics with Python

In (43.12), the second equality uses the law of iterated expectations and Abel’s summation formula (also called summation
by parts, see this page).
First-order conditions with respect to 𝑐𝑡(𝑠𝑡) can be expressed as

𝑢𝑐(𝑠𝑡) − 𝑢ℓ(𝑠𝑡) + Ψ𝑡(𝑠𝑡) {[𝑢𝑐𝑐(𝑠𝑡) − 𝑢𝑐ℓ(𝑠𝑡)] 𝑧𝑡(𝑠𝑡) + 𝑢𝑐(𝑠𝑡) 𝑧𝑐(𝑠𝑡)}
− 𝛾𝑡(𝑠𝑡) [𝑢𝑐𝑐(𝑠𝑡) − 𝑢𝑐ℓ(𝑠𝑡)] 𝑏𝑡(𝑠𝑡−1) = 0 (43.14)

and with respect to 𝑏𝑡(𝑠𝑡) as

𝔼𝑡 [𝛾𝑡+1(𝑠𝑡+1) 𝑢𝑐(𝑠𝑡+1)] = 0 (43.15)

If we substitute 𝑧𝑡(𝑠𝑡) from (43.7) and its derivative 𝑧𝑐(𝑠𝑡) into the first-order condition (43.14), we find two differences
from the corresponding condition for the optimal allocation in a Lucas-Stokey economy with state-contingent government
debt.

1. The term involving 𝑏𝑡(𝑠𝑡−1) in the first-order condition (43.14) does not appear in the corresponding expression
for the Lucas-Stokey economy.

• This term reflects the constraint that beginning-of-period government indebtedness must be the same across
all realizations of next period’s state, a constraint that would not be present if government debt could be
state-contingent.

2. The Lagrange multiplierΨ𝑡(𝑠𝑡) in the first-order condition (43.14) may change over time in response to realizations
of the state, while the multiplier Φ in the Lucas-Stokey economy is time-invariant.

We need some code from an earlier lecture on optimal taxation with state-contingent debt sequential allocation imple-
mentation:

class SequentialLS:

'''
Class that takes a preference object, state transition matrix,
and state contingent government expenditure plan as inputs, and
solves the sequential allocation problem described above.
It returns optimal allocations about consumption and labor supply,
as well as the multiplier on the implementability constraint Φ.
'''

def __init__(self,
pref,
π=np.full((2, 2), 0.5),
g=np.array([0.1, 0.2])):

Initialize from pref object attributes
self.β, self.π, self.g = pref.β, π, g
self.mc = MarkovChain(self.π)
self.S = len(π) # Number of states
self.pref = pref

Find the first best allocation
self.find_first_best()

def FOC_first_best(self, c, g):
'''
First order conditions that characterize
the first best allocation.
'''

(continues on next page)

808 Chapter 43. Optimal Taxation without State-Contingent Debt

https://en.wikipedia.org/wiki/Abel%27s_summation_formula

Advanced Quantitative Economics with Python

(continued from previous page)

pref = self.pref
Uc, Ul = pref.Uc, pref.Ul

n = c + g
l = 1 - n

return Uc(c, l) - Ul(c, l)

def find_first_best(self):
'''
Find the first best allocation
'''
S, g = self.S, self.g

res = root(self.FOC_first_best, np.full(S, 0.5), args=(g,))

if (res.fun > 1e-10).any():
raise Exception('Could not find first best')

self.cFB = res.x
self.nFB = self.cFB + g

def FOC_time1(self, c, Φ, g):
'''
First order conditions that characterize
optimal time 1 allocation problems.
'''

pref = self.pref
Uc, Ucc, Ul, Ull, Ulc = pref.Uc, pref.Ucc, pref.Ul, pref.Ull, pref.Ulc

n = c + g
l = 1 - n

LHS = (1 + Φ) * Uc(c, l) + Φ * (c * Ucc(c, l) - n * Ulc(c, l))
RHS = (1 + Φ) * Ul(c, l) + Φ * (c * Ulc(c, l) - n * Ull(c, l))

diff = LHS - RHS

return diff

def time1_allocation(self, Φ):
'''
Computes optimal allocation for time t >= 1 for a given Φ
'''
pref = self.pref
S, g = self.S, self.g

use the first best allocation as intial guess
res = root(self.FOC_time1, self.cFB, args=(Φ, g))

if (res.fun > 1e-10).any():
raise Exception('Could not find LS allocation.')

c = res.x

(continues on next page)

43.2. Competitive Equilibrium with Distorting Taxes 809

Advanced Quantitative Economics with Python

(continued from previous page)

n = c + g
l = 1 - n

Compute x
I = pref.Uc(c, n) * c - pref.Ul(c, l) * n
x = np.linalg.solve(np.eye(S) - self.β * self.π, I)

return c, n, x

def FOC_time0(self, c0, Φ, g0, b0):
'''
First order conditions that characterize
time 0 allocation problem.
'''

pref = self.pref
Ucc, Ulc = pref.Ucc, pref.Ulc

n0 = c0 + g0
l0 = 1 - n0

diff = self.FOC_time1(c0, Φ, g0)
diff -= Φ * (Ucc(c0, l0) - Ulc(c0, l0)) * b0

return diff

def implementability(self, Φ, b0, s0, cn0_arr):
'''
Compute the differences between the RHS and LHS
of the implementability constraint given Φ,
initial debt, and initial state.
'''

pref, π, g, β = self.pref, self.π, self.g, self.β
Uc, Ul = pref.Uc, pref.Ul
g0 = self.g[s0]

c, n, x = self.time1_allocation(Φ)

res = root(self.FOC_time0, cn0_arr[0], args=(Φ, g0, b0))
c0 = res.x
n0 = c0 + g0
l0 = 1 - n0

cn0_arr[:] = c0.item(), n0.item()

LHS = Uc(c0, l0) * b0
RHS = Uc(c0, l0) * c0 - Ul(c0, l0) * n0 + β * π[s0] @ x

return RHS - LHS

def time0_allocation(self, b0, s0):
'''
Finds the optimal time 0 allocation given
initial government debt b0 and state s0
'''

(continues on next page)

810 Chapter 43. Optimal Taxation without State-Contingent Debt

Advanced Quantitative Economics with Python

(continued from previous page)

use the first best allocation as initial guess
cn0_arr = np.array([self.cFB[s0], self.nFB[s0]])

res = root(self.implementability, 0., args=(b0, s0, cn0_arr))

if (res.fun > 1e-10).any():
raise Exception('Could not find time 0 LS allocation.')

Φ = res.x[0]
c0, n0 = cn0_arr

return Φ, c0, n0

def τ(self, c, n):
'''
Computes τ given c, n
'''
pref = self.pref
Uc, Ul = pref.Uc, pref.Ul

return 1 - Ul(c, 1-n) / Uc(c, 1-n)

def simulate(self, b0, s0, T, sHist=None):
'''
Simulates planners policies for T periods
'''
pref, π, β = self.pref, self.π, self.β
Uc = pref.Uc

if sHist is None:
sHist = self.mc.simulate(T, s0)

cHist, nHist, Bhist, τHist, ΦHist = np.empty((5, T))
RHist = np.empty(T-1)

Time 0
Φ, cHist[0], nHist[0] = self.time0_allocation(b0, s0)
τHist[0] = self.τ(cHist[0], nHist[0])
Bhist[0] = b0
ΦHist[0] = Φ

Time 1 onward
for t in range(1, T):

c, n, x = self.time1_allocation(Φ)
τ = self.τ(c, n)
u_c = Uc(c, 1-n)
s = sHist[t]
Eu_c = π[sHist[t-1]] @ u_c
cHist[t], nHist[t], Bhist[t], τHist[t] = c[s], n[s], x[s] / u_c[s], τ[s]
RHist[t-1] = Uc(cHist[t-1], 1-nHist[t-1]) / (β * Eu_c)
ΦHist[t] = Φ

gHist = self.g[sHist]
yHist = nHist

return [cHist, nHist, Bhist, τHist, gHist, yHist, sHist, ΦHist, RHist]

43.2. Competitive Equilibrium with Distorting Taxes 811

Advanced Quantitative Economics with Python

To analyze the AMSS model, we find it useful to adopt a recursive formulation using techniques like those in our lectures
on dynamic Stackelberg models and optimal taxation with state-contingent debt.

43.3 Recursive Version of AMSS Model

We now describe a recursive formulation of the AMSS economy.
We have noted that from the point of view of the Ramsey planner, the restriction to one-period risk-free securities

• leaves intact the single implementability constraint on allocations (43.8) from the Lucas-Stokey economy, but
• adds measurability constraints (43.6) on functions of tails of allocations at each time and history

We now explore how these constraints alter Bellman equations for a time 0 Ramsey planner and for time 𝑡 ≥ 1, history
𝑠𝑡 continuation Ramsey planners.

43.3.1 Recasting State Variables

In the AMSS setting, the government faces a sequence of budget constraints

𝜏𝑡(𝑠𝑡)𝑛𝑡(𝑠𝑡) + 𝑇𝑡(𝑠𝑡) + 𝑏𝑡+1(𝑠𝑡)/𝑅𝑡(𝑠𝑡) = 𝑔𝑡 + 𝑏𝑡(𝑠𝑡−1)

where 𝑅𝑡(𝑠𝑡) is the gross risk-free rate of interest between 𝑡 and 𝑡 + 1 at history 𝑠𝑡 and 𝑇𝑡(𝑠𝑡) are non-negative transfers.
Throughout this lecture, we shall set transfers to zero (for some issues about the limiting behavior of debt, this is possibly
an important difference from AMSS [AMSSeppala02], who restricted transfers to be non-negative).
In this case, the household faces a sequence of budget constraints

𝑏𝑡(𝑠𝑡−1) + (1 − 𝜏𝑡(𝑠𝑡))𝑛𝑡(𝑠𝑡) = 𝑐𝑡(𝑠𝑡) + 𝑏𝑡+1(𝑠𝑡)/𝑅𝑡(𝑠𝑡) (43.16)

The household’s first-order conditions are 𝑢𝑐,𝑡 = 𝛽𝑅𝑡𝔼𝑡𝑢𝑐,𝑡+1 and (1 − 𝜏𝑡)𝑢𝑐,𝑡 = 𝑢𝑙,𝑡.
Using these to eliminate 𝑅𝑡 and 𝜏𝑡 from budget constraint (43.16) gives

𝑏𝑡(𝑠𝑡−1) + 𝑢𝑙,𝑡(𝑠𝑡)
𝑢𝑐,𝑡(𝑠𝑡)𝑛𝑡(𝑠𝑡) = 𝑐𝑡(𝑠𝑡) + 𝛽(𝔼𝑡𝑢𝑐,𝑡+1)𝑏𝑡+1(𝑠𝑡)

𝑢𝑐,𝑡(𝑠𝑡) (43.17)

or

𝑢𝑐,𝑡(𝑠𝑡)𝑏𝑡(𝑠𝑡−1) + 𝑢𝑙,𝑡(𝑠𝑡)𝑛𝑡(𝑠𝑡) = 𝑢𝑐,𝑡(𝑠𝑡)𝑐𝑡(𝑠𝑡) + 𝛽(𝔼𝑡𝑢𝑐,𝑡+1)𝑏𝑡+1(𝑠𝑡) (43.18)

Now define

𝑥𝑡 ≡ 𝛽𝑏𝑡+1(𝑠𝑡)𝔼𝑡𝑢𝑐,𝑡+1 = 𝑢𝑐,𝑡(𝑠𝑡)𝑏𝑡+1(𝑠𝑡)
𝑅𝑡(𝑠𝑡) (43.19)

and represent the household’s budget constraint at time 𝑡, history 𝑠𝑡 as
𝑢𝑐,𝑡𝑥𝑡−1

𝛽𝔼𝑡−1𝑢𝑐,𝑡
= 𝑢𝑐,𝑡𝑐𝑡 − 𝑢𝑙,𝑡𝑛𝑡 + 𝑥𝑡 (43.20)

for 𝑡 ≥ 1.

812 Chapter 43. Optimal Taxation without State-Contingent Debt

Advanced Quantitative Economics with Python

43.3.2 Measurability Constraints

Write equation (43.18) as

𝑏𝑡(𝑠𝑡−1) = 𝑐𝑡(𝑠𝑡) − 𝑢𝑙,𝑡(𝑠𝑡)
𝑢𝑐,𝑡(𝑠𝑡)𝑛𝑡(𝑠𝑡) + 𝛽(𝔼𝑡𝑢𝑐,𝑡+1)𝑏𝑡+1(𝑠𝑡)

𝑢𝑐,𝑡
(43.21)

The right side of equation (43.21) expresses the time 𝑡 value of government debt in terms of a linear combination of terms
whose individual components are measurable with respect to 𝑠𝑡.
The sum of terms on the right side of equation (43.21) must equal 𝑏𝑡(𝑠𝑡−1).
That implies that it has to be measurable with respect to 𝑠𝑡−1.
Equations (43.21) are the measurability constraints that the AMSS model adds to the single time 0 implementation con-
straint imposed in the Lucas and Stokey model.

43.3.3 Two Bellman Equations

Let Π(𝑠|𝑠−) be a Markov transition matrix whose entries tell probabilities of moving from state 𝑠− to state 𝑠 in one
period.
Let

• 𝑉 (𝑥−, 𝑠−) be the continuation value of a continuation Ramsey plan at 𝑥𝑡−1 = 𝑥−, 𝑠𝑡−1 = 𝑠− for 𝑡 ≥ 1
• 𝑊(𝑏, 𝑠) be the value of the Ramsey plan at time 0 at 𝑏0 = 𝑏 and 𝑠0 = 𝑠

We distinguish between two types of planners:
For 𝑡 ≥ 1, the value function for a continuation Ramsey planner satisfies the Bellman equation

𝑉 (𝑥−, 𝑠−) = max
{𝑛(𝑠),𝑥(𝑠)}

∑
𝑠

Π(𝑠|𝑠−) [𝑢(𝑛(𝑠) − 𝑔(𝑠), 1 − 𝑛(𝑠)) + 𝛽𝑉 (𝑥(𝑠), 𝑠)] (43.22)

subject to the following collection of implementability constraints, one for each 𝑠 ∈ 𝑆:

𝑢𝑐(𝑠)𝑥−
𝛽 ∑ ̃𝑠 Π(̃𝑠|𝑠−)𝑢𝑐(̃𝑠) = 𝑢𝑐(𝑠)(𝑛(𝑠) − 𝑔(𝑠)) − 𝑢𝑙(𝑠)𝑛(𝑠) + 𝑥(𝑠) (43.23)

A continuation Ramsey planner at 𝑡 ≥ 1 takes (𝑥𝑡−1, 𝑠𝑡−1) = (𝑥−, 𝑠−) as given and before 𝑠 is realized chooses
(𝑛𝑡(𝑠𝑡), 𝑥𝑡(𝑠𝑡)) = (𝑛(𝑠), 𝑥(𝑠)) for 𝑠 ∈ 𝑆.
The Ramsey planner takes (𝑏0, 𝑠0) as given and chooses (𝑛0, 𝑥0).
The value function 𝑊(𝑏0, 𝑠0) for the time 𝑡 = 0 Ramsey planner satisfies the Bellman equation

𝑊(𝑏0, 𝑠0) = max
𝑛0,𝑥0

𝑢(𝑛0 − 𝑔0, 1 − 𝑛0) + 𝛽𝑉 (𝑥0, 𝑠0) (43.24)

where maximization is subject to

𝑢𝑐,0𝑏0 = 𝑢𝑐,0(𝑛0 − 𝑔0) − 𝑢𝑙,0𝑛0 + 𝑥0 (43.25)

43.3. Recursive Version of AMSS Model 813

Advanced Quantitative Economics with Python

43.3.4 Martingale Supercedes State-Variable Degeneracy

Let 𝜇(𝑠|𝑠−)Π(𝑠|𝑠−) be a Lagrange multiplier on the constraint (43.23) for state 𝑠.
After forming an appropriate Lagrangian, we find that the continuation Ramsey planner’s first-order condition with respect
to 𝑥(𝑠) is

𝛽𝑉𝑥(𝑥(𝑠), 𝑠) = 𝜇(𝑠|𝑠−) (43.26)

Applying an envelope theorem to Bellman equation (43.22) gives

𝑉𝑥(𝑥−, 𝑠−) = ∑
𝑠

Π(𝑠|𝑠−)𝜇(𝑠|𝑠−) 𝑢𝑐(𝑠)
𝛽 ∑ ̃𝑠 Π(̃𝑠|𝑠−)𝑢𝑐(̃𝑠) (43.27)

Equations (43.26) and (43.27) imply that

𝑉𝑥(𝑥−, 𝑠−) = ∑
𝑠

(Π(𝑠|𝑠−) 𝑢𝑐(𝑠)
∑ ̃𝑠 Π(̃𝑠|𝑠−)𝑢𝑐(̃𝑠)) 𝑉𝑥(𝑥, 𝑠) (43.28)

Equation (43.28) states that 𝑉𝑥(𝑥, 𝑠) is a risk-adjusted martingale.
Saying that 𝑉𝑥(𝑥, 𝑠) is a risk-adjusted martingale means that 𝑉𝑥(𝑥, 𝑠) is a martingale with respect to the probability
distribution over 𝑠𝑡 sequences that are generated by the twisted transition probability matrix:

Π̌(𝑠|𝑠−) ≡ Π(𝑠|𝑠−) 𝑢𝑐(𝑠)
∑ ̃𝑠 Π(̃𝑠|𝑠−)𝑢𝑐(̃𝑠)

Exercise 43.3.1
Please verify that Π̌(𝑠|𝑠−) is a valid Markov transition density, i.e., that its elements are all non-negative and that for each
𝑠−, the sum over 𝑠 equals unity.

43.3.5 Absence of State Variable Degeneracy

Along a Ramsey plan, the state variable 𝑥𝑡 = 𝑥𝑡(𝑠𝑡, 𝑏0) becomes a function of the history 𝑠𝑡 and initial government debt
𝑏0.
In Lucas-Stokey model, we found that

• a counterpart to 𝑉𝑥(𝑥, 𝑠) is time-invariant and equal to the Lagrange multiplier on the Lucas-Stokey implementabil-
ity constraint

• time invariance of 𝑉𝑥(𝑥, 𝑠) is the source of a key feature of the Lucas-Stokey model, namely, state variable
degeneracy in which 𝑥𝑡 is an exact time-invariant function of 𝑠𝑡.

That 𝑉𝑥(𝑥, 𝑠) varies over time according to a twisted martingale means that there is no state-variable degeneracy in the
AMSS model.
In the AMSS model, both 𝑥 and 𝑠 are needed to describe the state.
This property of the AMSS model transmits a twisted martingale component to consumption, employment, and the tax
rate.

814 Chapter 43. Optimal Taxation without State-Contingent Debt

Advanced Quantitative Economics with Python

43.3.6 Digression on Non-negative Transfers

Throughout this lecture, we have imposed that transfers 𝑇𝑡 = 0.
AMSS [AMSSeppala02] instead imposed a nonnegativity constraint 𝑇𝑡 ≥ 0 on transfers.
They also considered a special case of quasi-linear preferences, 𝑢(𝑐, 𝑙) = 𝑐 + 𝐻(𝑙).
In this case, 𝑉𝑥(𝑥, 𝑠) ≤ 0 is a non-positive martingale.
By the martingale convergence theorem 𝑉𝑥(𝑥, 𝑠) converges almost surely.
Furthermore, when the Markov chain Π(𝑠|𝑠−) and the government expenditure function 𝑔(𝑠) are such that 𝑔𝑡 is perpet-
ually random, 𝑉𝑥(𝑥, 𝑠) almost surely converges to zero.
For quasi-linear preferences, the first-order condition for maximizing (43.22) subject to (43.23) with respect to 𝑛(𝑠)
becomes

(1 − 𝜇(𝑠|𝑠−))(1 − 𝑢𝑙(𝑠)) + 𝜇(𝑠|𝑠−)𝑛(𝑠)𝑢𝑙𝑙(𝑠) = 0

When 𝜇(𝑠|𝑠−) = 𝛽𝑉𝑥(𝑥(𝑠), 𝑥) converges to zero, in the limit 𝑢𝑙(𝑠) = 1 = 𝑢𝑐(𝑠), so that 𝜏(𝑥(𝑠), 𝑠) = 0.
Thus, in the limit, if 𝑔𝑡 is perpetually random, the government accumulates sufficient assets to finance all expenditures
from earnings on those assets, returning any excess revenues to the household as non-negative lump-sum transfers.

43.3.7 Code

The recursive formulation is implemented as follows

class AMSS:
WARNING: THE CODE IS EXTREMELY SENSITIVE TO CHOCIES OF PARAMETERS.
DO NOT CHANGE THE PARAMETERS AND EXPECT IT TO WORK

def __init__(self, pref, β, Π, g, x_grid, bounds_v):
self.β, self.Π, self.g = β, Π, g
self.x_grid = x_grid
self.n = x_grid[0][2]
self.S = len(Π)
self.bounds = bounds_v
self.pref = pref

self.T_v, self.T_w = bellman_operator_factory(Π, β, x_grid, g,
bounds_v)

self.V_solved = False
self.W_solved = False

def compute_V(self, V, σ_v_star, tol_vfi, maxitr, print_itr):

T_v = self.T_v

self.success = False

V_new = np.zeros_like(V)

Δ = 1.0
for itr in range(maxitr):

T_v(V, V_new, σ_v_star, self.pref)

(continues on next page)

43.3. Recursive Version of AMSS Model 815

Advanced Quantitative Economics with Python

(continued from previous page)

Δ = np.max(np.abs(V_new - V))

if Δ < tol_vfi:
self.V_solved = True
print('Successfully completed VFI after %i iterations'

% (itr+1))
break

if (itr + 1) % print_itr == 0:
print('Error at iteration %i : ' % (itr + 1), Δ)

V[:] = V_new[:]

self.V = V
self.σ_v_star = σ_v_star

return V, σ_v_star

def compute_W(self, b_0, W, σ_w_star):
T_w = self.T_w
V = self.V

T_w(W, σ_w_star, V, b_0, self.pref)

self.W = W
self.σ_w_star = σ_w_star
self.W_solved = True
print('Succesfully solved the time 0 problem.')

return W, σ_w_star

def solve(self, V, σ_v_star, b_0, W, σ_w_star, tol_vfi=1e-7,
maxitr=1000, print_itr=10):

print("===============")
print("Solve time 1 problem")
print("===============")
self.compute_V(V, σ_v_star, tol_vfi, maxitr, print_itr)
print("===============")
print("Solve time 0 problem")
print("===============")
self.compute_W(b_0, W, σ_w_star)

def simulate(self, s_hist, b_0):
if not (self.V_solved and self.W_solved):

msg = "V and W need to be successfully computed before simulation."
raise ValueError(msg)

pref = self.pref
x_grid, g, β, S = self.x_grid, self.g, self.β, self.S
σ_v_star, σ_w_star = self.σ_v_star, self.σ_w_star

T = len(s_hist)
s_0 = s_hist[0]

Pre-allocate

(continues on next page)

816 Chapter 43. Optimal Taxation without State-Contingent Debt

Advanced Quantitative Economics with Python

(continued from previous page)

n_hist = np.zeros(T)
x_hist = np.zeros(T)
c_hist = np.zeros(T)
τ_hist = np.zeros(T)
b_hist = np.zeros(T)
g_hist = np.zeros(T)

Compute t = 0
l_0, T_0 = σ_w_star[s_0]
c_0 = (1 - l_0) - g[s_0]
x_0 = (-pref.Uc(c_0, l_0) * (c_0 - T_0 - b_0) +

pref.Ul(c_0, l_0) * (1 - l_0))

n_hist[0] = (1 - l_0)
x_hist[0] = x_0
c_hist[0] = c_0
τ_hist[0] = 1 - pref.Ul(c_0, l_0) / pref.Uc(c_0, l_0)
b_hist[0] = b_0
g_hist[0] = g[s_0]

Compute t > 0
for t in range(T - 1):

x_ = x_hist[t]
s_ = s_hist[t]
l = np.zeros(S)
T = np.zeros(S)
for s in range(S):

x_arr = np.array([x_])
l[s] = eval_linear(x_grid, σ_v_star[s_, :, s], x_arr)
T[s] = eval_linear(x_grid, σ_v_star[s_, :, S+s], x_arr)

c = (1 - l) - g
u_c = pref.Uc(c, l)
Eu_c = Π[s_] @ u_c

x = u_c * x_ / (β * Eu_c) - u_c * (c - T) + pref.Ul(c, l) * (1 - l)

c_next = c[s_hist[t+1]]
l_next = l[s_hist[t+1]]

x_hist[t+1] = x[s_hist[t+1]]
n_hist[t+1] = 1 - l_next
c_hist[t+1] = c_next
τ_hist[t+1] = 1 - pref.Ul(c_next, l_next) / pref.Uc(c_next, l_next)
b_hist[t+1] = x_ / (β * Eu_c)
g_hist[t+1] = g[s_hist[t+1]]

return c_hist, n_hist, b_hist, τ_hist, g_hist, n_hist

def obj_factory(Π, β, x_grid, g):
S = len(Π)

@njit
def obj_V(σ, state, V, pref):

Unpack state

(continues on next page)

43.3. Recursive Version of AMSS Model 817

Advanced Quantitative Economics with Python

(continued from previous page)

s_, x_ = state

l = σ[:S]
T = σ[S:]

c = (1 - l) - g
u_c = pref.Uc(c, l)
Eu_c = Π[s_] @ u_c
x = u_c * x_ / (β * Eu_c) - u_c * (c - T) + pref.Ul(c, l) * (1 - l)

V_next = np.zeros(S)

for s in range(S):
V_next[s] = eval_linear(x_grid, V[s], np.array([x[s]]))

out = Π[s_] @ (pref.U(c, l) + β * V_next)

return out

@njit
def obj_W(σ, state, V, pref):

Unpack state
s_, b_0 = state
l, T = σ

c = (1 - l) - g[s_]
x = -pref.Uc(c, l) * (c - T - b_0) + pref.Ul(c, l) * (1 - l)

V_next = eval_linear(x_grid, V[s_], np.array([x]))

out = pref.U(c, l) + β * V_next

return out

return obj_V, obj_W

def bellman_operator_factory(Π, β, x_grid, g, bounds_v):
obj_V, obj_W = obj_factory(Π, β, x_grid, g)
n = x_grid[0][2]
S = len(Π)
x_nodes = nodes(x_grid)

@njit(parallel=True)
def T_v(V, V_new, σ_star, pref):

for s_ in prange(S):
for x_i in prange(n):

state = (s_, x_nodes[x_i])
x0 = σ_star[s_, x_i]
res = optimize.nelder_mead(obj_V, x0, bounds=bounds_v,

args=(state, V, pref))

if res.success:
V_new[s_, x_i] = res.fun
σ_star[s_, x_i] = res.x

else:

(continues on next page)

818 Chapter 43. Optimal Taxation without State-Contingent Debt

Advanced Quantitative Economics with Python

(continued from previous page)

print("Optimization routine failed.")

bounds_w = np.array([[-9.0, 1.0], [0., 10.]])

def T_w(W, σ_star, V, b_0, pref):
for s_ in prange(S):

state = (s_, b_0)
x0 = σ_star[s_]
res = optimize.nelder_mead(obj_W, x0, bounds=bounds_w,

args=(state, V, pref))

W[s_] = res.fun
σ_star[s_] = res.x

return T_v, T_w

43.4 Examples

We now turn to some examples.

43.4.1 Anticipated One-Period War

In our lecture on optimal taxation with state-contingent debt we studied how the government manages uncertainty in a
simple setting.
As in that lecture, we assume the one-period utility function

𝑢(𝑐, 𝑛) = 𝑐1−𝜎

1 − 𝜎 − 𝑛1+𝛾

1 + 𝛾

Note: For convenience in matching our computer code, we have expressed utility as a function of 𝑛 rather than leisure 𝑙.

We first consider a government expenditure process that we studied earlier in a lecture on optimal taxation with state-
contingent debt.
Government expenditures are known for sure in all periods except one.

• For 𝑡 < 3 or 𝑡 > 3 we assume that 𝑔𝑡 = 𝑔𝑙 = 0.1.
• At 𝑡 = 3 a war occurs with probability 0.5.

– If there is war, 𝑔3 = 𝑔ℎ = 0.2.
– If there is no war 𝑔3 = 𝑔𝑙 = 0.1.

A useful trick is to define components of the state vector as the following six (𝑡, 𝑔) pairs:

(0, 𝑔𝑙), (1, 𝑔𝑙), (2, 𝑔𝑙), (3, 𝑔𝑙), (3, 𝑔ℎ), (𝑡 ≥ 4, 𝑔𝑙)

We think of these 6 states as corresponding to 𝑠 = 1, 2, 3, 4, 5, 6.

43.4. Examples 819

Advanced Quantitative Economics with Python

The transition matrix is

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0.5 0.5 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The government expenditure at each state is

𝑔 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.1
0.1
0.1
0.1
0.2
0.1

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We assume the same utility parameters as in the Lucas-Stokey economy.
This utility function is implemented in the following class.

crra_util_data = [
('β', float64),
('σ', float64),
('γ', float64)

]

@jitclass(crra_util_data)
class CRRAutility:

def __init__(self,
β=0.9,
σ=2,
γ=2):

self.β, self.σ, self.γ = β, σ, γ

Utility function
def U(self, c, l):

Note: `l` should not be interpreted as labor, it is an auxiliary
variable used to conveniently match the code and the equations
in the lecture
σ = self.σ
if σ == 1.:

U = np.log(c)
else:

U = (c**(1 - σ) - 1) / (1 - σ)
return U - (1-l) ** (1 + self.γ) / (1 + self.γ)

Derivatives of utility function
def Uc(self, c, l):

return c ** (-self.σ)

def Ucc(self, c, l):
return -self.σ * c ** (-self.σ - 1)

def Ul(self, c, l):

(continues on next page)

820 Chapter 43. Optimal Taxation without State-Contingent Debt

Advanced Quantitative Economics with Python

(continued from previous page)

return (1-l) ** self.γ

def Ull(self, c, l):
return -self.γ * (1-l) ** (self.γ - 1)

def Ucl(self, c, l):
return 0

def Ulc(self, c, l):
return 0

NameError Traceback (most recent call last)
Cell In[5], line 2

1 crra_util_data = [
----> 2 ('β', float64),

3 ('σ', float64),
4 ('γ', float64)
5]
7 @jitclass(crra_util_data)
8 class CRRAutility:

10 def __init__(self,
11 β=0.9,
12 σ=2,
13 γ=2):

NameError: name 'float64' is not defined

The following figure plots Ramsey plans under complete and incomplete markets for both possible realizations of the state
at time 𝑡 = 3.
Ramsey outcomes and policies when the government has access to state-contingent debt are represented by black lines
and by red lines when there is only a risk-free bond.
Paths with circles are histories in which there is peace, while those with triangle denote war.

WARNING: DO NOT EXPECT THE CODE TO WORK IF YOU CHANGE PARAMETERS
σ = 2
γ = 2
β = 0.9
Π = np.array([[0, 1, 0, 0, 0, 0],

[0, 0, 1, 0, 0, 0],
[0, 0, 0, 0.5, 0.5, 0],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 1]])

g = np.array([0.1, 0.1, 0.1, 0.2, 0.1, 0.1])

x_min = -1.5555
x_max = 17.339
x_num = 300

x_grid = UCGrid((x_min, x_max, x_num))

crra_pref = CRRAutility(β=β, σ=σ, γ=γ)

(continues on next page)

43.4. Examples 821

Advanced Quantitative Economics with Python

(continued from previous page)

S = len(Π)
bounds_v = np.vstack([np.hstack([np.full(S, -10.), np.zeros(S)]),

np.hstack([np.ones(S) - g, np.full(S, 10.)])]).T

amss_model = AMSS(crra_pref, β, Π, g, x_grid, bounds_v)

WARNING: DO NOT EXPECT THE CODE TO WORK IF YOU CHANGE PARAMETERS
V = np.zeros((len(Π), x_num))
V[:] = -nodes(x_grid).T ** 2

σ_v_star = np.ones((S, x_num, S * 2))
σ_v_star[:, :, :S] = 0.0

W = np.empty(len(Π))
b_0 = 1.0
σ_w_star = np.ones((S, 2))
σ_w_star[:, 0] = -0.05

%%time

amss_model.solve(V, σ_v_star, b_0, W, σ_w_star)

Solve the LS model
ls_model = SequentialLS(crra_pref, g=g, π=Π)

WARNING: DO NOT EXPECT THE CODE TO WORK IF YOU CHANGE PARAMETERS
s_hist_h = np.array([0, 1, 2, 3, 5, 5, 5])
s_hist_l = np.array([0, 1, 2, 4, 5, 5, 5])

sim_h_amss = amss_model.simulate(s_hist_h, b_0)
sim_l_amss = amss_model.simulate(s_hist_l, b_0)

sim_h_ls = ls_model.simulate(b_0, 0, 7, s_hist_h)
sim_l_ls = ls_model.simulate(b_0, 0, 7, s_hist_l)

fig, axes = plt.subplots(3, 2, figsize=(14, 10))
titles = ['Consumption', 'Labor Supply', 'Government Debt',

'Tax Rate', 'Government Spending', 'Output']

for ax, title, ls_l, ls_h, amss_l, amss_h in zip(axes.flatten(), titles,
sim_l_ls, sim_h_ls,
sim_l_amss, sim_h_amss):

ax.plot(ls_l, '-ok', ls_h, '-^k', amss_l, '-or', amss_h, '-^r',
alpha=0.7)

ax.set(title=title)
ax.grid()

plt.tight_layout()
plt.show()

How a Ramsey planner responds to war depends on the structure of the asset market.
If it is able to trade state-contingent debt, then at time 𝑡 = 2

• the government purchases an Arrow security that pays off when 𝑔3 = 𝑔ℎ

822 Chapter 43. Optimal Taxation without State-Contingent Debt

Advanced Quantitative Economics with Python

• the government sells an Arrow security that pays off when 𝑔3 = 𝑔𝑙

• the Ramsey planner designs these purchases and sales designed so that, regardless of whether or not there is a war
at 𝑡 = 3, the government begins period 𝑡 = 4 with the same government debt

This pattern facilities smoothing tax rates across states.
The government without state-contingent debt cannot do this.
Instead, it must enter time 𝑡 = 3 with the same level of debt falling due whether there is peace or war at 𝑡 = 3.
The risk-free rate between time 2 and time 3 is unusually low because at time 2 consumption at time 3 is expected to be
unusually low.
A low risk-free rate of return on government debt between time 2 and time 3 allows the government to enter period 3
with lower government debt than it entered period 2.
To finance a war at time 3 it raises taxes and issues more debt to carry into perpetual peace that begins in period 4.
To service the additional debt burden, it raises taxes in all future periods.
The absence of state-contingent debt leads to an important difference in the optimal tax policy.
When the Ramsey planner has access to state-contingent debt, the optimal tax policy is history independent

• the tax rate is a function of the current level of government spending only, given the Lagrange multiplier on the
implementability constraint

Without state-contingent debt, the optimal tax rate is history dependent.
• A war at time 𝑡 = 3 causes a permanent increase in the tax rate.
• Peace at time 𝑡 = 3 causes a permanent reduction in the tax rate.

Perpetual War Alert

History dependence occurs more dramatically in a case in which the government perpetually faces the prospect of war.
This case was studied in the final example of the lecture on optimal taxation with state-contingent debt.
There, each period the government faces a constant probability, 0.5, of war.
In addition, this example features the following preferences

𝑢(𝑐, 𝑛) = log(𝑐) + 0.69 log(1 − 𝑛)

In accordance, we will re-define our utility function.

log_util_data = [
('β', float64),
('ψ', float64)

]

@jitclass(log_util_data)
class LogUtility:

def __init__(self,
β=0.9,
ψ=0.69):

self.β, self.ψ = β, ψ

(continues on next page)

43.4. Examples 823

Advanced Quantitative Economics with Python

(continued from previous page)

Utility function
def U(self, c, l):

return np.log(c) + self.ψ * np.log(l)

Derivatives of utility function
def Uc(self, c, l):

return 1 / c

def Ucc(self, c, l):
return -c**(-2)

def Ul(self, c, l):
return self.ψ / l

def Ull(self, c, l):
return -self.ψ / l**2

def Ucl(self, c, l):
return 0

def Ulc(self, c, l):
return 0

With these preferences, Ramsey tax rates will vary even in the Lucas-Stokey model with state-contingent debt.
The figure below plots optimal tax policies for both the economy with state-contingent debt (circles) and the economy
with only a risk-free bond (triangles).

WARNING: DO NOT EXPECT THE CODE TO WORK IF YOU CHANGE PARAMETERS
ψ = 0.69
Π = np.full((2, 2), 0.5)
β = 0.9
g = np.array([0.1, 0.2])

x_min = -3.4107
x_max = 3.709
x_num = 300

x_grid = UCGrid((x_min, x_max, x_num))
log_pref = LogUtility(β=β, ψ=ψ)

S = len(Π)
bounds_v = np.vstack([np.zeros(2 * S), np.hstack([1 - g, np.ones(S)])]).T

V = np.zeros((len(Π), x_num))
V[:] = -(nodes(x_grid).T + x_max) ** 2 / 14

σ_v_star = 1 - np.full((S, x_num, S * 2), 0.55)

W = np.empty(len(Π))
b_0 = 0.5
σ_w_star = 1 - np.full((S, 2), 0.55)

amss_model = AMSS(log_pref, β, Π, g, x_grid, bounds_v)

824 Chapter 43. Optimal Taxation without State-Contingent Debt

Advanced Quantitative Economics with Python

%%time

amss_model.solve(V, σ_v_star, b_0, W, σ_w_star, tol_vfi=3e-5, maxitr=3000,
print_itr=100)

ls_model = SequentialLS(log_pref, g=g, π=Π) # Solve sequential problem

WARNING: DO NOT EXPECT THE CODE TO WORK IF YOU CHANGE PARAMETERS
s_hist = np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1,

0, 0, 0, 1, 1, 1, 1, 1, 1, 0])

T = len(s_hist)

sim_amss = amss_model.simulate(s_hist, b_0)
sim_ls = ls_model.simulate(0.5, 0, T, s_hist)

titles = ['Consumption', 'Labor Supply', 'Government Debt',
'Tax Rate', 'Government Spending', 'Output']

fig, axes = plt.subplots(3, 2, figsize=(14, 10))

for ax, title, ls, amss in zip(axes.flatten(), titles, sim_ls, sim_amss):
ax.plot(ls, '-ok', amss, '-^b')
ax.set(title=title)
ax.grid()

axes[0, 0].legend(('Complete Markets', 'Incomplete Markets'))
plt.tight_layout()
plt.show()

When the government experiences a prolonged period of peace, it is able to reduce government debt and set persistently
lower tax rates.
However, the government finances a long war by borrowing and raising taxes.
This results in a drift away from policies with state-contingent debt that depends on the history of shocks.
This is even more evident in the following figure that plots the evolution of the two policies over 200 periods.
This outcome reflects the presence of a force for precautionary saving that the incomplete markets structure imparts to
the Ramsey plan.
In this subsequent lecture and this subsequent lecture, some ultimate consequences of that force are explored.

T = 200
s_0 = 0
mc = MarkovChain(Π)

s_hist_long = mc.simulate(T, init=s_0, random_state=5)

sim_amss = amss_model.simulate(s_hist_long, b_0)
sim_ls = ls_model.simulate(0.5, 0, T, s_hist_long)

titles = ['Consumption', 'Labor Supply', 'Government Debt',
'Tax Rate', 'Government Spending', 'Output']

(continues on next page)

43.4. Examples 825

Advanced Quantitative Economics with Python

(continued from previous page)

fig, axes = plt.subplots(3, 2, figsize=(14, 10))

for ax, title, ls, amss in zip(axes.flatten(), titles, sim_ls, \
sim_amss):

ax.plot(ls, '-k', amss, '-.b', alpha=0.5)
ax.set(title=title)
ax.grid()

axes[0, 0].legend(('Complete Markets','Incomplete Markets'))
plt.tight_layout()
plt.show()

826 Chapter 43. Optimal Taxation without State-Contingent Debt

CHAPTER

FORTYFOUR

FLUCTUATING INTEREST RATES DELIVER FISCAL INSURANCE

Contents

• Fluctuating Interest Rates Deliver Fiscal Insurance

– Overview

– Forces at Work

– Logical Flow of Lecture

– Example Economy

– Reverse Engineering Strategy

– Code for Reverse Engineering

– Short Simulation for Reverse-engineered: Initial Debt

– Long Simulation

– BEGS Approximations of Limiting Debt and Convergence Rate

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

44.1 Overview

This lecture extends our investigations of how optimal policies for levying a flat-rate tax on labor income and issuing
government debt depend on whether there are complete markets for debt.
A Ramsey allocation and Ramsey policy in the AMSS [AMSSeppala02] model described in optimal taxation without
state-contingent debt generally differs from a Ramsey allocation and Ramsey policy in the Lucas-Stokey [LS83] model
described in optimal taxation with state-contingent debt.
This is because the implementability restriction that a competitive equilibrium with a distorting tax imposes on allocations
in the Lucas-Stokey model is just one among a set of implementability conditions imposed in the AMSS model.
These additional constraints require that time 𝑡 components of a Ramsey allocation for the AMSS model bemeasurable
with respect to time 𝑡 − 1 information.
Themeasurability constraints imposed by theAMSSmodel are inherited from the restriction that only one-period risk-free
bonds can be traded.

827

Advanced Quantitative Economics with Python

Differences between the Ramsey allocations in the two models indicate that at least some of the implementability con-
straints of the AMSS model of optimal taxation without state-contingent debt are violated at the Ramsey allocation of a
corresponding [LS83] model with state-contingent debt.
Another way to say this is that differences between the Ramsey allocations of the two models indicate that some of the
measurability constraints imposed by the AMSS model are violated at the Ramsey allocation of the Lucas-Stokey
model.
Nonzero Lagrange multipliers on those constraints make the Ramsey allocation for the AMSS model differ from the
Ramsey allocation for the Lucas-Stokey model.
This lecture studies a special AMSS model in which

• The exogenous state variable 𝑠𝑡 is governed by a finite-state Markov chain.
• With an arbitrary budget-feasible initial level of government debt, the measurability constraints

– bind for many periods, but ….
– eventually, they stop binding evermore, so that …
– in the tail of the Ramsey plan, the Lagrange multipliers 𝛾𝑡(𝑠𝑡) on the AMSS implementability constraints
(43.8) are zero.

• After the implementability constraints (43.8) no longer bind in the tail of the AMSS Ramsey plan
– history dependence of the AMSS state variable 𝑥𝑡 vanishes and 𝑥𝑡 becomes a time-invariant function of the
Markov state 𝑠𝑡.

– the par value of government debt becomes constant over time so that 𝑏𝑡+1(𝑠𝑡) = �̄� for 𝑡 ≥ 𝑇 for a sufficiently
large 𝑇 .

– �̄� < 0, so that the tail of the Ramsey plan instructs the government always to make a constant par value of
risk-free one-period loans to the private sector.

– the one-period gross interest rate𝑅𝑡(𝑠𝑡) on risk-free debt converges to a time-invariant function of theMarkov
state 𝑠𝑡.

• For a particular 𝑏0 < 0 (i.e., a positive level of initial government loans to the private sector), the measurability
constraints never bind.

• In this special case
– the par value 𝑏𝑡+1(𝑠𝑡) = �̄� of government debt at time 𝑡 and Markov state 𝑠𝑡 is constant across time and
states, but ….

– themarket value �̄�
𝑅𝑡(𝑠𝑡) of government debt at time 𝑡 varies as a time-invariant function of the Markov state

𝑠𝑡.

– fluctuations in the interest rate make gross earnings on government debt �̄�
𝑅𝑡(𝑠𝑡) fully insure the gross-of-gross-

interest-payments government budget against fluctuations in government expenditures.
– the state variable 𝑥 in a recursive representation of a Ramsey plan is a time-invariant function of the Markov
state for 𝑡 ≥ 0.

• In this special case, the Ramsey allocation in the AMSS model agrees with that in a Lucas-Stokey [LS83] complete
markets model in which the same amount of state-contingent debt falls due in all states tomorrow

– it is a situation in which the Ramsey planner loses nothing from not being able to trade state-contingent debt
and being restricted to exchange only risk-free debt debt.

• This outcome emerges only when we initialize government debt at a particular 𝑏0 < 0.

828 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

In a nutshell, the reason for this striking outcome is that at a particular level of risk-free government assets, fluctuations
in the one-period risk-free interest rate provide the government with complete insurance against stochastically varying
government expenditures.
Let’s start with some imports:

import matplotlib.pyplot as plt
%matplotlib inline
from scipy.optimize import fsolve, fmin

44.2 Forces at Work

The forces driving asymptotic outcomes here are examples of dynamics present in a more general class of incomplete
markets models analyzed in [BEGS17] (BEGS).
BEGS provide conditions under which government debt under a Ramsey plan converges to an invariant distribution.
BEGS construct approximations to that asymptotically invariant distribution of government debt under a Ramsey plan.
BEGS also compute an approximation to a Ramsey plan’s rate of convergence to that limiting invariant distribution.
We shall use the BEGS approximating limiting distribution and their approximating rate of convergence to help interpret
outcomes here.
For a long time, the Ramsey plan puts a nontrivial martingale-like component into the par value of government debt as
part of the way that the Ramsey plan imperfectly smooths distortions from the labor tax rate across time and Markov
states.
But BEGS show that binding implementability constraints slowly push government debt in a direction designed to let the
government use fluctuations in equilibrium interest rates rather than fluctuations in par values of debt to insure against
shocks to government expenditures.

• This is a weak (but unrelenting) force that, starting from a positive initial debt level, for a long time is dominated
by the stochastic martingale-like component of debt dynamics that the Ramsey planner uses to facilitate imperfect
tax-smoothing across time and states.

• This weak force slowly drives the par value of government assets to a constant level at which the government can
completely insure against government expenditure shocks while shutting down the stochastic component of debt
dynamics.

• At that point, the tail of the par value of government debt becomes a trivial martingale: it is constant over time.

44.3 Logical Flow of Lecture

We present ideas in the following order
• We describe a two-state AMSS economy and generate a long simulation starting from a positive initial government
debt.

• We observe that in a long simulation starting from positive government debt, the par value of government debt
eventually converges to a constant �̄�.

• In fact, the par value of government debt converges to the same constant level �̄� for alternative realizations of the
Markov government expenditure process and for alternative settings of initial government debt 𝑏0.

• We reverse engineer a particular value of initial government debt 𝑏0 (it turns out to be negative) for which the
continuation debt moves to �̄� immediately.

44.2. Forces at Work 829

Advanced Quantitative Economics with Python

• We note that for this particular initial debt 𝑏0, the Ramsey allocations for the AMSS economy and the Lucas-Stokey
model are identical

– we verify that the LS Ramsey planner chooses to purchase identical claims to time 𝑡 + 1 consumption for all
Markov states tomorrow for each Markov state today.

• We compute the BEGS approximations to check how accurately they describe the dynamics of the long-simulation.

44.3.1 Equations from Lucas-Stokey (1983) Model

Although we are studying an AMSS [AMSSeppala02] economy, a Lucas-Stokey [LS83] economy plays an important role
in the reverse-engineering calculation to be described below.
For that reason, it is helpful to have key equations underlying a Ramsey plan for the Lucas-Stokey economy readily
available.
Recall first-order conditions for a Ramsey allocation for the Lucas-Stokey economy.
For 𝑡 ≥ 1, these take the form

(1 + Φ)𝑢𝑐(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐𝑐(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓ𝑐(𝑐, 1 − 𝑐 − 𝑔)]
= (1 + Φ)𝑢ℓ(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐ℓ(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓℓ(𝑐, 1 − 𝑐 − 𝑔)] (44.1)

There is one such equation for each value of the Markov state 𝑠𝑡.
Given an initial Markov state, the time 𝑡 = 0 quantities 𝑐0 and 𝑏0 satisfy

(1 + Φ)𝑢𝑐(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐𝑐(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓ𝑐(𝑐, 1 − 𝑐 − 𝑔)]
= (1 + Φ)𝑢ℓ(𝑐, 1 − 𝑐 − 𝑔) + Φ[𝑐𝑢𝑐ℓ(𝑐, 1 − 𝑐 − 𝑔) − (𝑐 + 𝑔)𝑢ℓℓ(𝑐, 1 − 𝑐 − 𝑔)] + Φ(𝑢𝑐𝑐 − 𝑢𝑐,ℓ)𝑏0

(44.2)

In addition, the time 𝑡 = 0 budget constraint is satisfied at 𝑐0 and initial government debt 𝑏0

𝑏0 + 𝑔0 = 𝜏0(𝑐0 + 𝑔0) + �̄�
𝑅0

(44.3)

where 𝑅0 is the gross interest rate for the Markov state 𝑠0 that is assumed to prevail at time 𝑡 = 0 and 𝜏0 is the time 𝑡 = 0
tax rate.
In equation (44.3), it is understood that

𝜏0 = 1 − 𝑢𝑙,0
𝑢𝑐,0

𝑅−1
0 = 𝛽

𝑆
∑
𝑠=1

Π(𝑠|𝑠0)𝑢𝑐(𝑠)
𝑢𝑐,0

It is useful to transform some of the above equations to forms that are more natural for analyzing the case of a CRRA
utility specification that we shall use in our example economies.

44.3.2 Specification with CRRA Utility

As in lectures optimal taxation without state-contingent debt and optimal taxation with state-contingent debt, we assume
that the representative agent has utility function

𝑢(𝑐, 𝑛) = 𝑐1−𝜎

1 − 𝜎 − 𝑛1+𝛾

1 + 𝛾
and set 𝜎 = 2, 𝛾 = 2, and the discount factor 𝛽 = 0.9.

830 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

We eliminate leisure from the model and continue to assume that

𝑐𝑡 + 𝑔𝑡 = 𝑛𝑡

The analysis of Lucas and Stokey prevails once we make the following replacements

𝑢ℓ(𝑐, ℓ) ∼ −𝑢𝑛(𝑐, 𝑛)
𝑢𝑐(𝑐, ℓ) ∼ 𝑢𝑐(𝑐, 𝑛)

𝑢ℓ,ℓ(𝑐, ℓ) ∼ 𝑢𝑛𝑛(𝑐, 𝑛)
𝑢𝑐,𝑐(𝑐, ℓ) ∼ 𝑢𝑐,𝑐(𝑐, 𝑛)
𝑢𝑐,ℓ(𝑐, ℓ) ∼ 0

With these understandings, equations (44.1) and (44.2) simplify in the case of the CRRA utility function.
They become

(1 + Φ)[𝑢𝑐(𝑐) + 𝑢𝑛(𝑐 + 𝑔)] + Φ[𝑐𝑢𝑐𝑐(𝑐) + (𝑐 + 𝑔)𝑢𝑛𝑛(𝑐 + 𝑔)] = 0 (44.4)

and

(1 + Φ)[𝑢𝑐(𝑐0) + 𝑢𝑛(𝑐0 + 𝑔0)] + Φ[𝑐0𝑢𝑐𝑐(𝑐0) + (𝑐0 + 𝑔0)𝑢𝑛𝑛(𝑐0 + 𝑔0)] − Φ𝑢𝑐𝑐(𝑐0)𝑏0 = 0 (44.5)

In equation (44.4), it is understood that 𝑐 and 𝑔 are each functions of the Markov state 𝑠.
The CRRA utility function is represented in the following class.

import numpy as np

class CRRAutility:

def __init__(self,
β=0.9,
σ=2,
γ=2,
π=np.full((2, 2), 0.5),
G=np.array([0.1, 0.2]),
Θ=np.ones(2),
transfers=False):

self.β, self.σ, self.γ = β, σ, γ
self.π, self.G, self.Θ, self.transfers = π, G, Θ, transfers

Utility function
def U(self, c, n):

σ = self.σ
if σ == 1.:

U = np.log(c)
else:

U = (c**(1 - σ) - 1) / (1 - σ)
return U - n**(1 + self.γ) / (1 + self.γ)

Derivatives of utility function
def Uc(self, c, n):

return c**(-self.σ)

def Ucc(self, c, n):

(continues on next page)

44.3. Logical Flow of Lecture 831

Advanced Quantitative Economics with Python

(continued from previous page)

return -self.σ * c**(-self.σ - 1)

def Un(self, c, n):
return -n**self.γ

def Unn(self, c, n):
return -self.γ * n**(self.γ - 1)

44.4 Example Economy

We set the following parameter values.
The Markov state 𝑠𝑡 takes two values, namely, 0, 1.
The initial Markov state is 0.
The Markov transition matrix is .5𝐼 where 𝐼 is a 2 × 2 identity matrix, so the 𝑠𝑡 process is IID.
Government expenditures 𝑔(𝑠) equal .1 in Markov state 0 and .2 in Markov state 1.
We set preference parameters as follows:

𝛽 = .9
𝜎 = 2
𝛾 = 2

Here are several classes that do most of the work for us.
The code is mostly taken or adapted from the earlier lectures optimal taxation without state-contingent debt and optimal
taxation with state-contingent debt.

import numpy as np
from scipy.optimize import root
from quantecon import MarkovChain

class SequentialAllocation:

'''
Class that takes CESutility or BGPutility object as input returns
planner's allocation as a function of the multiplier on the
implementability constraint μ.
'''

def __init__(self, model):

Initialize from model object attributes
self.β, self.π, self.G = model.β, model.π, model.G
self.mc, self.Θ = MarkovChain(self.π), model.Θ
self.S = len(model.π) # Number of states
self.model = model

Find the first best allocation
self.find_first_best()

(continues on next page)

832 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

(continued from previous page)

def find_first_best(self):
'''
Find the first best allocation
'''
model = self.model
S, Θ, G = self.S, self.Θ, self.G
Uc, Un = model.Uc, model.Un

def res(z):
c = z[:S]
n = z[S:]
return np.hstack([Θ * Uc(c, n) + Un(c, n), Θ * n - c - G])

res = root(res, np.full(2 * S, 0.5))

if not res.success:
raise Exception('Could not find first best')

self.cFB = res.x[:S]
self.nFB = res.x[S:]

Multiplier on the resource constraint
self.ΞFB = Uc(self.cFB, self.nFB)
self.zFB = np.hstack([self.cFB, self.nFB, self.ΞFB])

def time1_allocation(self, μ):
'''
Computes optimal allocation for time t >= 1 for a given μ
'''
model = self.model
S, Θ, G = self.S, self.Θ, self.G
Uc, Ucc, Un, Unn = model.Uc, model.Ucc, model.Un, model.Unn

def FOC(z):
c = z[:S]
n = z[S:2 * S]
Ξ = z[2 * S:]
FOC of c
return np.hstack([Uc(c, n) - μ * (Ucc(c, n) * c + Uc(c, n)) - Ξ,

Un(c, n) - μ * (Unn(c, n) * n + Un(c, n)) \
+ Θ * Ξ, # FOC of n
Θ * n - c - G])

Find the root of the first-order condition
res = root(FOC, self.zFB)
if not res.success:

raise Exception('Could not find LS allocation.')
z = res.x
c, n, Ξ = z[:S], z[S:2 * S], z[2 * S:]

Compute x
I = Uc(c, n) * c + Un(c, n) * n
x = np.linalg.solve(np.eye(S) - self.β * self.π, I)

return c, n, x, Ξ

(continues on next page)

44.4. Example Economy 833

Advanced Quantitative Economics with Python

(continued from previous page)

def time0_allocation(self, B_, s_0):
'''
Finds the optimal allocation given initial government debt B_ and
state s_0
'''
model, π, Θ, G, β = self.model, self.π, self.Θ, self.G, self.β
Uc, Ucc, Un, Unn = model.Uc, model.Ucc, model.Un, model.Unn

First order conditions of planner's problem
def FOC(z):

μ, c, n, Ξ = z
xprime = self.time1_allocation(μ)[2]
return np.hstack([Uc(c, n) * (c - B_) + Un(c, n) * n + β * π[s_0]

@ xprime,
Uc(c, n) - μ * (Ucc(c, n)

* (c - B_) + Uc(c, n)) - Ξ,
Un(c, n) - μ * (Unn(c, n) * n

+ Un(c, n)) + Θ[s_0] * Ξ,
(Θ * n - c - G)[s_0]])

Find root
res = root(FOC, np.array(

[0, self.cFB[s_0], self.nFB[s_0], self.ΞFB[s_0]]))
if not res.success:

raise Exception('Could not find time 0 LS allocation.')

return res.x

def time1_value(self, μ):
'''
Find the value associated with multiplier μ
'''
c, n, x, Ξ = self.time1_allocation(μ)
U = self.model.U(c, n)
V = np.linalg.solve(np.eye(self.S) - self.β * self.π, U)
return c, n, x, V

def Τ(self, c, n):
'''
Computes Τ given c, n
'''
model = self.model
Uc, Un = model.Uc(c, n), model.Un(c, n)

return 1 + Un / (self.Θ * Uc)

def simulate(self, B_, s_0, T, sHist=None):
'''
Simulates planners policies for T periods
'''
model, π, β = self.model, self.π, self.β
Uc = model.Uc

if sHist is None:
sHist = self.mc.simulate(T, s_0)

(continues on next page)

834 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

(continued from previous page)

cHist, nHist, Bhist, ΤHist, μHist = np.zeros((5, T))
RHist = np.zeros(T - 1)

Time 0
μ, cHist[0], nHist[0], _ = self.time0_allocation(B_, s_0)
ΤHist[0] = self.Τ(cHist[0], nHist[0])[s_0]
Bhist[0] = B_
μHist[0] = μ

Time 1 onward
for t in range(1, T):

c, n, x, Ξ = self.time1_allocation(μ)
Τ = self.Τ(c, n)
u_c = Uc(c, n)
s = sHist[t]
Eu_c = π[sHist[t - 1]] @ u_c
cHist[t], nHist[t], Bhist[t], ΤHist[t] = c[s], n[s], x[s] / u_c[s], \

Τ[s]
RHist[t - 1] = Uc(cHist[t - 1], nHist[t - 1]) / (β * Eu_c)
μHist[t] = μ

return [cHist, nHist, Bhist, ΤHist, sHist, μHist, RHist]

import numpy as np
from scipy.optimize import fmin_slsqp
from scipy.optimize import root
from quantecon import MarkovChain

class RecursiveAllocationAMSS:

def __init__(self, model, μgrid, tol_diff=1e-7, tol=1e-7):

self.β, self.π, self.G = model.β, model.π, model.G
self.mc, self.S = MarkovChain(self.π), len(model.π) # Number of states
self.Θ, self.model, self.μgrid = model.Θ, model, μgrid
self.tol_diff, self.tol = tol_diff, tol

Find the first best allocation
self.solve_time1_bellman()
self.T.time_0 = True # Bellman equation now solves time 0 problem

def solve_time1_bellman(self):
'''
Solve the time 1 Bellman equation for calibration model and
initial grid μgrid0
'''
model, μgrid0 = self.model, self.μgrid
π = model.π
S = len(model.π)

First get initial fit from Lucas Stokey solution.
Need to change things to be ex ante
pp = SequentialAllocation(model)
interp = interpolator_factory(2, None)

(continues on next page)

44.4. Example Economy 835

Advanced Quantitative Economics with Python

(continued from previous page)

def incomplete_allocation(μ_, s_):
c, n, x, V = pp.time1_value(μ_)
return c, n, π[s_] @ x, π[s_] @ V

cf, nf, xgrid, Vf, xprimef = [], [], [], [], []
for s_ in range(S):

c, n, x, V = zip(*map(lambda μ: incomplete_allocation(μ, s_), μgrid0))
c, n = np.vstack(c).T, np.vstack(n).T
x, V = np.hstack(x), np.hstack(V)
xprimes = np.vstack([x] * S)
cf.append(interp(x, c))
nf.append(interp(x, n))
Vf.append(interp(x, V))
xgrid.append(x)
xprimef.append(interp(x, xprimes))

cf, nf, xprimef = fun_vstack(cf), fun_vstack(nf), fun_vstack(xprimef)
Vf = fun_hstack(Vf)
policies = [cf, nf, xprimef]

Create xgrid
x = np.vstack(xgrid).T
xbar = [x.min(0).max(), x.max(0).min()]
xgrid = np.linspace(xbar[0], xbar[1], len(μgrid0))
self.xgrid = xgrid

Now iterate on Bellman equation
T = BellmanEquation(model, xgrid, policies, tol=self.tol)
diff = 1
while diff > self.tol_diff:

PF = T(Vf)

Vfnew, policies = self.fit_policy_function(PF)
diff = np.abs((Vf(xgrid) - Vfnew(xgrid)) / Vf(xgrid)).max()

print(diff)
Vf = Vfnew

Store value function policies and Bellman Equations
self.Vf = Vf
self.policies = policies
self.T = T

def fit_policy_function(self, PF):
'''
Fits the policy functions
'''
S, xgrid = len(self.π), self.xgrid
interp = interpolator_factory(3, 0)
cf, nf, xprimef, Tf, Vf = [], [], [], [], []
for s_ in range(S):

PFvec = np.vstack([PF(x, s_) for x in self.xgrid]).T
Vf.append(interp(xgrid, PFvec[0, :]))
cf.append(interp(xgrid, PFvec[1:1 + S]))
nf.append(interp(xgrid, PFvec[1 + S:1 + 2 * S]))
xprimef.append(interp(xgrid, PFvec[1 + 2 * S:1 + 3 * S]))
Tf.append(interp(xgrid, PFvec[1 + 3 * S:]))

(continues on next page)

836 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

(continued from previous page)

policies = fun_vstack(cf), fun_vstack(
nf), fun_vstack(xprimef), fun_vstack(Tf)

Vf = fun_hstack(Vf)
return Vf, policies

def Τ(self, c, n):
'''
Computes Τ given c and n
'''
model = self.model
Uc, Un = model.Uc(c, n), model.Un(c, n)

return 1 + Un / (self.Θ * Uc)

def time0_allocation(self, B_, s0):
'''
Finds the optimal allocation given initial government debt B_ and
state s_0
'''
PF = self.T(self.Vf)
z0 = PF(B_, s0)
c0, n0, xprime0, T0 = z0[1:]
return c0, n0, xprime0, T0

def simulate(self, B_, s_0, T, sHist=None):
'''
Simulates planners policies for T periods
'''
model, π = self.model, self.π
Uc = model.Uc
cf, nf, xprimef, Tf = self.policies

if sHist is None:
sHist = simulate_markov(π, s_0, T)

cHist, nHist, Bhist, xHist, ΤHist, THist, μHist = np.zeros((7, T))
Time 0
cHist[0], nHist[0], xHist[0], THist[0] = self.time0_allocation(B_, s_0)
ΤHist[0] = self.Τ(cHist[0], nHist[0])[s_0]
Bhist[0] = B_
μHist[0] = self.Vf[s_0](xHist[0])

Time 1 onward
for t in range(1, T):

s_, x, s = sHist[t - 1], xHist[t - 1], sHist[t]
c, n, xprime, T = cf[s_, :](x), nf[s_, :](

x), xprimef[s_, :](x), Tf[s_, :](x)

Τ = self.Τ(c, n)[s]
u_c = Uc(c, n)
Eu_c = π[s_, :] @ u_c

μHist[t] = self.Vf[s](xprime[s])

cHist[t], nHist[t], Bhist[t], ΤHist[t] = c[s], n[s], x / Eu_c, Τ
xHist[t], THist[t] = xprime[s], T[s]

(continues on next page)

44.4. Example Economy 837

Advanced Quantitative Economics with Python

(continued from previous page)

return [cHist, nHist, Bhist, ΤHist, THist, μHist, sHist, xHist]

class BellmanEquation:
'''
Bellman equation for the continuation of the Lucas-Stokey Problem
'''

def __init__(self, model, xgrid, policies0, tol, maxiter=1000):

self.β, self.π, self.G = model.β, model.π, model.G
self.S = len(model.π) # Number of states
self.Θ, self.model, self.tol = model.Θ, model, tol
self.maxiter = maxiter

self.xbar = [min(xgrid), max(xgrid)]
self.time_0 = False

self.z0 = {}
cf, nf, xprimef = policies0

for s_ in range(self.S):
for x in xgrid:

self.z0[x, s_] = np.hstack([cf[s_, :](x),
nf[s_, :](x),
xprimef[s_, :](x),
np.zeros(self.S)])

self.find_first_best()

def find_first_best(self):
'''
Find the first best allocation
'''
model = self.model
S, Θ, Uc, Un, G = self.S, self.Θ, model.Uc, model.Un, self.G

def res(z):
c = z[:S]
n = z[S:]
return np.hstack([Θ * Uc(c, n) + Un(c, n), Θ * n - c - G])

res = root(res, np.full(2 * S, 0.5))
if not res.success:

raise Exception('Could not find first best')

self.cFB = res.x[:S]
self.nFB = res.x[S:]
IFB = Uc(self.cFB, self.nFB) * self.cFB + \

Un(self.cFB, self.nFB) * self.nFB

self.xFB = np.linalg.solve(np.eye(S) - self.β * self.π, IFB)

self.zFB = {}
for s in range(S):

self.zFB[s] = np.hstack(

(continues on next page)

838 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

(continued from previous page)

[self.cFB[s], self.nFB[s], self.π[s] @ self.xFB, 0.])

def __call__(self, Vf):
'''
Given continuation value function next period return value function this
period return T(V) and optimal policies
'''
if not self.time_0:

def PF(x, s): return self.get_policies_time1(x, s, Vf)
else:

def PF(B_, s0): return self.get_policies_time0(B_, s0, Vf)
return PF

def get_policies_time1(self, x, s_, Vf):
'''
Finds the optimal policies
'''
model, β, Θ, G, S, π = self.model, self.β, self.Θ, self.G, self.S, self.π
U, Uc, Un = model.U, model.Uc, model.Un

def objf(z):
c, n, xprime = z[:S], z[S:2 * S], z[2 * S:3 * S]

Vprime = np.empty(S)
for s in range(S):

Vprime[s] = Vf[s](xprime[s])

return -π[s_] @ (U(c, n) + β * Vprime)

def objf_prime(x):

epsilon = 1e-7
x0 = np.asfarray(x)
f0 = np.atleast_1d(objf(x0))
jac = np.zeros([len(x0), len(f0)])
dx = np.zeros(len(x0))
for i in range(len(x0)):

dx[i] = epsilon
jac[i] = (objf(x0+dx) - f0)/epsilon
dx[i] = 0.0

return jac.transpose()

def cons(z):
c, n, xprime, T = z[:S], z[S:2 * S], z[2 * S:3 * S], z[3 * S:]
u_c = Uc(c, n)
Eu_c = π[s_] @ u_c
return np.hstack([

x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,
Θ * n - c - G])

if model.transfers:
bounds = [(0., 100)] * S + [(0., 100)] * S + \

[self.xbar] * S + [(0., 100.)] * S
else:

bounds = [(0., 100)] * S + [(0., 100)] * S + \

(continues on next page)

44.4. Example Economy 839

Advanced Quantitative Economics with Python

(continued from previous page)

[self.xbar] * S + [(0., 0.)] * S
out, fx, _, imode, smode = fmin_slsqp(objf, self.z0[x, s_],

f_eqcons=cons, bounds=bounds,
fprime=objf_prime, full_output=True,
iprint=0, acc=self.tol, iter=self.

↪maxiter)

if imode > 0:
raise Exception(smode)

self.z0[x, s_] = out
return np.hstack([-fx, out])

def get_policies_time0(self, B_, s0, Vf):
'''
Finds the optimal policies
'''
model, β, Θ, G = self.model, self.β, self.Θ, self.G
U, Uc, Un = model.U, model.Uc, model.Un

def objf(z):
c, n, xprime = z[:-1]

return -(U(c, n) + β * Vf[s0](xprime))

def cons(z):
c, n, xprime, T = z
return np.hstack([

-Uc(c, n) * (c - B_ - T) - Un(c, n) * n - β * xprime,
(Θ * n - c - G)[s0]])

if model.transfers:
bounds = [(0., 100), (0., 100), self.xbar, (0., 100.)]

else:
bounds = [(0., 100), (0., 100), self.xbar, (0., 0.)]

out, fx, _, imode, smode = fmin_slsqp(objf, self.zFB[s0], f_eqcons=cons,
bounds=bounds, full_output=True,
iprint=0)

if imode > 0:
raise Exception(smode)

return np.hstack([-fx, out])

import numpy as np
from scipy.interpolate import UnivariateSpline

class interpolate_wrapper:

def __init__(self, F):
self.F = F

def __getitem__(self, index):
return interpolate_wrapper(np.asarray(self.F[index]))

(continues on next page)

840 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

(continued from previous page)

def reshape(self, *args):
self.F = self.F.reshape(*args)
return self

def transpose(self):
self.F = self.F.transpose()

def __len__(self):
return len(self.F)

def __call__(self, xvec):
x = np.atleast_1d(xvec)
shape = self.F.shape
if len(x) == 1:

fhat = np.hstack([f(x) for f in self.F.flatten()])
return fhat.reshape(shape)

else:
fhat = np.vstack([f(x) for f in self.F.flatten()])
return fhat.reshape(np.hstack((shape, len(x))))

class interpolator_factory:

def __init__(self, k, s):
self.k, self.s = k, s

def __call__(self, xgrid, Fs):
shape, m = Fs.shape[:-1], Fs.shape[-1]
Fs = Fs.reshape((-1, m))
F = []
xgrid = np.sort(xgrid) # Sort xgrid
for Fhat in Fs:

F.append(UnivariateSpline(xgrid, Fhat, k=self.k, s=self.s))
return interpolate_wrapper(np.array(F).reshape(shape))

def fun_vstack(fun_list):

Fs = [IW.F for IW in fun_list]
return interpolate_wrapper(np.vstack(Fs))

def fun_hstack(fun_list):

Fs = [IW.F for IW in fun_list]
return interpolate_wrapper(np.hstack(Fs))

def simulate_markov(π, s_0, T):

sHist = np.empty(T, dtype=int)
sHist[0] = s_0
S = len(π)
for t in range(1, T):

sHist[t] = np.random.choice(np.arange(S), p=π[sHist[t - 1]])

(continues on next page)

44.4. Example Economy 841

Advanced Quantitative Economics with Python

(continued from previous page)

return sHist

44.5 Reverse Engineering Strategy

We can reverse engineer a value 𝑏0 of initial debt due that renders the AMSS measurability constraints not binding from
time 𝑡 = 0 onward.
We accomplish this by recognizing that if the AMSS measurability constraints never bind, then the AMSS allocation and
Ramsey plan is equivalent with that for a Lucas-Stokey economy in which for each period 𝑡 ≥ 0, the government promises
to pay the same state-contingent amount �̄� in each state tomorrow.
This insight tells us to find a 𝑏0 and other fundamentals for the Lucas-Stokey [LS83] model that make the Ramsey planner
want to borrow the same value �̄� next period for all states and all dates.
We accomplish this by using various equations for the Lucas-Stokey [LS83] model presented in optimal taxation with
state-contingent debt.
We use the following steps.
Step 1: Pick an initial Φ.
Step 2: Given that Φ, jointly solve two versions of equation (44.4) for 𝑐(𝑠), 𝑠 = 1, 2 associated with the two values for
𝑔(𝑠), 𝑠 = 1, 2.
Step 3: Solve the following equation for ⃗𝑥

⃗𝑥 = (𝐼 − 𝛽Π)−1[�⃗�𝑐(�⃗� − ⃗𝑔) − �⃗�𝑙�⃗�] (44.6)

Step 4: After solving for ⃗𝑥, we can find 𝑏(𝑠𝑡|𝑠𝑡−1) in Markov state 𝑠𝑡 = 𝑠 from 𝑏(𝑠) = 𝑥(𝑠)
𝑢𝑐(𝑠) or the matrix equation

⃗𝑏 = ⃗𝑥
�⃗�𝑐

(44.7)

Step 5: Compute 𝐽(Φ) = (𝑏(1) − 𝑏(2))2.
Step 6: Put steps 2 through 6 in a function minimizer and find a Φ that minimizes 𝐽(Φ).
Step 7: At the value of Φ and the value of �̄� that emerged from step 6, solve equations (44.5) and (44.3) jointly for 𝑐0, 𝑏0.

44.6 Code for Reverse Engineering

Here is code to do the calculations for us.

u = CRRAutility()

def min_Φ(Φ):

g1, g2 = u.G # Government spending in s=0 and s=1

Solve Φ(c)
def equations(unknowns, Φ):

c1, c2 = unknowns

(continues on next page)

842 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

(continued from previous page)

First argument of .Uc and second argument of .Un are redundant

Set up simultaneous equations
eq = lambda c, g: (1 + Φ) * (u.Uc(c, 1) - -u.Un(1, c + g)) + \

Φ * ((c + g) * u.Unn(1, c + g) + c * u.Ucc(c, 1))

Return equation evaluated at s=1 and s=2
return np.array([eq(c1, g1), eq(c2, g2)]).flatten()

global c1 # Update c1 globally
global c2 # Update c2 globally

c1, c2 = fsolve(equations, np.ones(2), args=(Φ))

uc = u.Uc(np.array([c1, c2]), 1) # uc(n - g)
ul(n) = -un(c + g)
ul = -u.Un(1, np.array([c1 + g1, c2 + g2])) * [c1 + g1, c2 + g2]
Solve for x
x = np.linalg.solve(np.eye((2)) - u.β * u.π, uc * [c1, c2] - ul)

global b # Update b globally
b = x / uc
loss = (b[0] - b[1])**2

return loss

Φ_star = fmin(min_Φ, .1, ftol=1e-14)

Optimization terminated successfully.
Current function value: 0.000000
Iterations: 24
Function evaluations: 48

To recover and print out �̄�

b_bar = b[0]
b_bar

-1.0757576567504166

To complete the reverse engineering exercise by jointly determining 𝑐0, 𝑏0, we set up a function that returns two simul-
taneous equations.

def solve_cb(unknowns, Φ, b_bar, s=1):

c0, b0 = unknowns

g0 = u.G[s-1]

R_0 = u.β * u.π[s] @ [u.Uc(c1, 1) / u.Uc(c0, 1), u.Uc(c2, 1) / u.Uc(c0, 1)]
R_0 = 1 / R_0

τ_0 = 1 + u.Un(1, c0 + g0) / u.Uc(c0, 1)

(continues on next page)

44.6. Code for Reverse Engineering 843

Advanced Quantitative Economics with Python

(continued from previous page)

eq1 = τ_0 * (c0 + g0) + b_bar / R_0 - b0 - g0
eq2 = (1 + Φ) * (u.Uc(c0, 1) + u.Un(1, c0 + g0)) \

+ Φ * (c0 * u.Ucc(c0, 1) + (c0 + g0) * u.Unn(1, c0 + g0)) \
- Φ * u.Ucc(c0, 1) * b0

return np.array([eq1, eq2.item()], dtype='float64')

To solve the equations for 𝑐0, 𝑏0, we use SciPy’s fsolve function

c0, b0 = fsolve(solve_cb, np.array([1., -1.], dtype='float64'),
args=(Φ_star, b[0], 1), xtol=1.0e-12)

c0, b0

(0.9344994030900681, -1.0386984075517638)

Thus, we have reverse engineered an initial 𝑏0 = −1.038698407551764 that ought to render the AMSS measurability
constraints slack.

44.7 Short Simulation for Reverse-engineered: Initial Debt

The following graph shows simulations of outcomes for both a Lucas-Stokey economy and for an AMSS economy starting
from initial government debt equal to 𝑏0 = −1.038698407551764.
These graphs report outcomes for both the Lucas-Stokey economy with complete markets and the AMSS economy with
one-period risk-free debt only.

μ_grid = np.linspace(-0.09, 0.1, 100)

log_example = CRRAutility()

log_example.transfers = True # Government can use transfers
log_sequential = SequentialAllocation(log_example) # Solve sequential problem
log_bellman = RecursiveAllocationAMSS(log_example, μ_grid,

tol_diff=1e-10, tol=1e-10)

T = 20
sHist = np.array([0, 0, 0, 0, 0, 0, 0, 0, 1, 1,

0, 0, 0, 1, 1, 1, 1, 1, 1, 0])

sim_seq = log_sequential.simulate(-1.03869841, 0, T, sHist)
sim_bel = log_bellman.simulate(-1.03869841, 0, T, sHist)

titles = ['Consumption', 'Labor Supply', 'Government Debt',
'Tax Rate', 'Government Spending', 'Output']

Government spending paths
sim_seq[4] = log_example.G[sHist]
sim_bel[4] = log_example.G[sHist]

Output paths
sim_seq[5] = log_example.Θ[sHist] * sim_seq[1]

(continues on next page)

844 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

(continued from previous page)

sim_bel[5] = log_example.Θ[sHist] * sim_bel[1]

fig, axes = plt.subplots(3, 2, figsize=(14, 10))

for ax, title, seq, bel in zip(axes.flatten(), titles, sim_seq, sim_bel):
ax.plot(seq, '-ok', bel, '-^b')
ax.set(title=title)
ax.grid()

axes[0, 0].legend(('Complete Markets', 'Incomplete Markets'))
plt.tight_layout()
plt.show()

/usr/share/miniconda3/envs/quantecon/lib/python3.11/site-packages/scipy/optimize/_
↪optimize.py:404: RuntimeWarning: Values in x were outside bounds during a␣
↪minimize step, clipping to bounds
warnings.warn("Values in x were outside bounds during a "

/tmp/ipykernel_5718/108196118.py:24: RuntimeWarning: divide by zero encountered in␣
↪reciprocal
U = (c**(1 - σ) - 1) / (1 - σ)

/tmp/ipykernel_5718/108196118.py:29: RuntimeWarning: divide by zero encountered in␣
↪power
return c**(-self.σ)

/tmp/ipykernel_5718/1277371586.py:249: RuntimeWarning: invalid value encountered␣
↪in divide
x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,

/tmp/ipykernel_5718/1277371586.py:249: RuntimeWarning: invalid value encountered␣
↪in multiply
x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,

0.04094445433232542

0.001673211146137493

0.001484674847917127

0.001313772136887205

0.0011814037130420663

0.001055965336102068

0.0009446661649946108

0.0008463807319492324

0.0007560453788611131

44.7. Short Simulation for Reverse-engineered: Initial Debt 845

Advanced Quantitative Economics with Python

0.0006756001033938903

0.000604152845540819

0.0005396004518747859

0.00048207169166290613

0.00043082732064067867

0.00038481851351225495

0.000343835217593145

0.0003072436935049677

0.0002745009146233244

0.00024531773293589513

0.00021923324298642947

0.00019593539310787213

0.00017514303481690137

0.0001565593985003591

0.00013996737081815812

0.00012514457789841946

0.00011190070823325749

0.0001000702000922041

8.949728534363834e-05

8.00497532414663e-05

7.160585250570457e-05

846 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

6.405840591557493e-05

5.731160522780524e-05

5.1279701373366633e-05

4.588651722582404e-05

4.106390497232627e-05

3.6750969979187823e-05

3.289357328148953e-05

2.9443322731171715e-05

2.6356778254647064e-05

2.3595477005441402e-05

2.1124867549068547e-05

1.8914292342161616e-05

1.6935989661294087e-05

1.5165570482803087e-05

1.3581075188566359e-05

1.2162766163347089e-05

1.0893227516817513e-05

9.756678182519297e-06

8.739234428152772e-06

7.828320614508025e-06

7.012602839408298e-06

44.7. Short Simulation for Reverse-engineered: Initial Debt 847

Advanced Quantitative Economics with Python

6.2821988113865695e-06

5.628118884533389e-06

5.0424276120745635e-06

4.517800318375349e-06

4.048011435284343e-06

3.6271819852132397e-06

3.250228025571809e-06

2.91255521672949e-06

2.6100632205124585e-06

2.339096372677708e-06

2.096300057053759e-06

1.8787856014677842e-06

1.6838896002658147e-06
1.5092763000475938e-06

1.352790440377663e-06

1.2125870135921682e-06

1.0869367592654264e-06

9.74329344948381e-07

8.734258726613521e-07
7.82979401245993e-07

7.019280421759928e-07
6.292786681149374e-07

5.641636376342722e-07
5.058008139530142e-07

848 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

4.5348427330256424e-07

4.0659062310367744e-07
3.6455314441729855e-07

3.2687002299145745e-07
2.930882045255147e-07

2.6280345786809706e-07

2.356529429295176e-07
2.1131168850248635e-07

1.8948851788438695e-07

1.6992245629426705e-07
1.5237965358488245e-07

1.3665054480740185e-07
1.2254729288266142e-07

1.0990157880047098e-07
9.85625196806722e-08

8.839490296454315e-08
7.927751099544721e-08

7.110169892267009e-08
6.377012234144897e-08

5.719543299951795e-08
5.129944108294742e-08

4.6011930465755267e-08
4.127024907212617e-08

3.7017901411273995e-08
3.320421136675924e-08

2.9783836454122435e-08
2.6716185879207155e-08

2.3964828404060055e-08
2.1497111441656643e-08

44.7. Short Simulation for Reverse-engineered: Initial Debt 849

Advanced Quantitative Economics with Python

1.928376711102591e-08
1.7298534286134342e-08

1.5517887041510468e-08
1.3920711115842077e-08

1.2488086772484325e-08
1.120303914946054e-08

1.0050349805051883e-08
9.016372957223345e-09

8.088867717275256e-09
7.256860052028448e-09

6.5105080491085e-09

5.8409842196277625e-09
5.240371187393206e-09

4.701571286205833e-09
4.2182149401635156e-09

3.784594252430241e-09
3.3955835551064364e-09

3.0465910785331343e-09
2.7334965385949916e-09

2.4526029798499404e-09
2.2005967896788517e-09

1.9745023230252437e-09
1.7716540861495694e-09

1.5896779606666392e-09
1.4263644656786832e-09

1.279915801041798e-09
1.1484611488603225e-09

1.0305702313922867e-09
9.247647878021015e-10

8.298468061604299e-10
7.446744286173443e-10

850 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

6.682506157688693e-10
5.996765544062293e-10

5.381420956749845e-10
4.829271458904042e-10

4.3337871811544764e-10
3.8891892933983235e-10

3.4902066124392655e-10
3.1321799130111273e-10

2.8109002457092086e-10
2.5225950288597284e-10

2.263868938948011e-10
2.0316830484184638e-10

1.8233409175417047e-10
1.6363582056463494e-10

1.4685617665861112e-10
1.3179940303096093e-10

1.1828486777347211e-10
1.0615888599012755e-10

9.527490070407684e-11

44.7. Short Simulation for Reverse-engineered: Initial Debt 851

Advanced Quantitative Economics with Python

The Ramsey allocations and Ramsey outcomes are identical for the Lucas-Stokey and AMSS economies.
This outcome confirms the success of our reverse-engineering exercises.
Notice how for 𝑡 ≥ 1, the tax rate is a constant - so is the par value of government debt.
However, output and labor supply are both nontrivial time-invariant functions of the Markov state.

44.8 Long Simulation

The following graph shows the par value of government debt and the flat-rate tax on labor income for a long simulation
for our sample economy.
For the same realization of a government expenditure path, the graph reports outcomes for two economies

• the gray lines are for the Lucas-Stokey economy with complete markets
• the blue lines are for the AMSS economy with risk-free one-period debt only

For both economies, initial government debt due at time 0 is 𝑏0 = .5.
For the Lucas-Stokey complete markets economy, the government debt plotted is 𝑏𝑡+1(𝑠𝑡+1).

• Notice that this is a time-invariant function of the Markov state from the beginning.
For the AMSS incomplete markets economy, the government debt plotted is 𝑏𝑡+1(𝑠𝑡).

• Notice that this is a martingale-like random process that eventually seems to converge to a constant �̄� ≈ −1.07.
• Notice that the limiting value �̄� < 0 so that asymptotically the government makes a constant level of risk-free loans
to the public.

852 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

• In the simulation displayed as well as other simulations we have run, the par value of government debt converges
to about 1.07 after between 1400 to 2000 periods.

For the AMSS incomplete markets economy, the marginal tax rate on labor income 𝜏𝑡 converges to a constant
• labor supply and output each converge to time-invariant functions of the Markov state

T = 2000 # Set T to 200 periods

sim_seq_long = log_sequential.simulate(0.5, 0, T)
sHist_long = sim_seq_long[-3]
sim_bel_long = log_bellman.simulate(0.5, 0, T, sHist_long)

titles = ['Government Debt', 'Tax Rate']

fig, axes = plt.subplots(2, 1, figsize=(14, 10))

for ax, title, id in zip(axes.flatten(), titles, [2, 3]):
ax.plot(sim_seq_long[id], '-k', sim_bel_long[id], '-.b', alpha=0.5)
ax.set(title=title)
ax.grid()

axes[0].legend(('Complete Markets', 'Incomplete Markets'))
plt.tight_layout()
plt.show()

44.8. Long Simulation 853

Advanced Quantitative Economics with Python

44.8.1 Remarks about Long Simulation

As remarked above, after 𝑏𝑡+1(𝑠𝑡) has converged to a constant, the measurability constraints in the AMSS model cease
to bind

• the associated Lagrange multipliers on those implementability constraints converge to zero
This leads us to seek an initial value of government debt 𝑏0 that renders the measurability constraints slack from time
𝑡 = 0 onward

• a tell-tale sign of this situation is that the Ramsey planner in a corresponding Lucas-Stokey economy would instruct
the government to issue a constant level of government debt 𝑏𝑡+1(𝑠𝑡+1) across the two Markov states

We now describe how to find such an initial level of government debt.

44.9 BEGS Approximations of Limiting Debt and Convergence Rate

It is useful to link the outcome of our reverse engineering exercise to limiting approximations constructed by BEGS
[BEGS17].
BEGS [BEGS17] used a slightly different notation to represent a generalization of the AMSS model.
We’ll introduce a version of their notation so that readers can quickly relate notation that appears in their key formulas to
the notation that we have used.
BEGS work with objects 𝐵𝑡, ℬ𝑡, ℛ𝑡, 𝒳𝑡 that are related to our notation by

ℛ𝑡 = 𝑢𝑐,𝑡
𝑢𝑐,𝑡−1

𝑅𝑡−1 = 𝑢𝑐,𝑡
𝛽𝐸𝑡−1𝑢𝑐,𝑡

𝐵𝑡 = 𝑏𝑡+1(𝑠𝑡)
𝑅𝑡(𝑠𝑡)

𝑏𝑡(𝑠𝑡−1) = ℛ𝑡−1𝐵𝑡−1
ℬ𝑡 = 𝑢𝑐,𝑡𝐵𝑡 = (𝛽𝐸𝑡𝑢𝑐,𝑡+1)𝑏𝑡+1(𝑠𝑡)
𝒳𝑡 = 𝑢𝑐,𝑡[𝑔𝑡 − 𝜏𝑡𝑛𝑡]

In terms of their notation, equation (44) of [BEGS17] expresses the time 𝑡 state 𝑠 government budget constraint as

ℬ(𝑠) = ℛ𝜏(𝑠, 𝑠−)ℬ− + 𝒳𝜏(𝑠)(𝑠) (44.8)

where the dependence on 𝜏 is to remind us that these objects depend on the tax rate and 𝑠− is last period’s Markov state.
BEGS interpret random variations in the right side of (44.8) as a measure of fiscal risk composed of

• interest-rate-driven fluctuations in time 𝑡 effective payments due on the government portfolio, namely,
ℛ𝜏(𝑠, 𝑠−)ℬ−, and

• fluctuations in the effective government deficit 𝒳𝑡

854 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

44.9.1 Asymptotic Mean

BEGS give conditions under which the ergodic mean of ℬ𝑡 is

ℬ∗ = −cov∞(ℛ, 𝒳)
var∞(ℛ) (44.9)

where the superscript ∞ denotes a moment taken with respect to an ergodic distribution.
Formula (44.9) presents ℬ∗ as a regression coefficient of 𝒳𝑡 on ℛ𝑡 in the ergodic distribution.
This regression coefficient emerges as the minimizer for a variance-minimization problem:

ℬ∗ = argminℬvar(ℛℬ + 𝒳) (44.10)

The minimand in criterion (44.10) is the measure of fiscal risk associated with a given tax-debt policy that appears on the
right side of equation (44.8).
Expressing formula (44.9) in terms of our notation tells us that �̄� should approximately equal

̂𝑏 = ℬ∗

𝛽𝐸𝑡𝑢𝑐,𝑡+1
(44.11)

44.9.2 Rate of Convergence

BEGS also derive the following approximation to the rate of convergence to ℬ∗ from an arbitrary initial condition.

𝐸𝑡(ℬ𝑡+1 − ℬ∗)
(ℬ𝑡 − ℬ∗) ≈ 1

1 + 𝛽2var(ℛ) (44.12)

(See the equation above equation (47) in [BEGS17])

44.9.3 Formulas and Code Details

For our example, we describe some code that we use to compute the steady state mean and the rate of convergence to it.
The values of 𝜋(𝑠) are 0.5, 0.5.
We can then construct 𝒳(𝑠), ℛ(𝑠), 𝑢𝑐(𝑠) for our two states using the definitions above.
We can then construct 𝛽𝐸𝑡−1𝑢𝑐 = 𝛽 ∑𝑠 𝑢𝑐(𝑠)𝜋(𝑠), cov(ℛ(𝑠), 𝒳(𝑠)) and var(ℛ(𝑠)) to be plugged into formula (44.11).
We also want to compute var(𝒳).
To compute the variances and covariance, we use the following standard formulas.
Temporarily let 𝑥(𝑠), 𝑠 = 1, 2 be an arbitrary random variables.
Then we define

𝜇𝑥 = ∑
𝑠

𝑥(𝑠)𝜋(𝑠)

var(𝑥) = (∑
𝑠

∑
𝑠

𝑥(𝑠)2𝜋(𝑠)) − 𝜇2
𝑥

cov(𝑥, 𝑦) = (∑
𝑠

𝑥(𝑠)𝑦(𝑠)𝜋(𝑠)) − 𝜇𝑥𝜇𝑦

After we compute these moments, we compute the BEGS approximation to the asymptotic mean ̂𝑏 in formula (44.11).

44.9. BEGS Approximations of Limiting Debt and Convergence Rate 855

Advanced Quantitative Economics with Python

After that, we move on to compute ℬ∗ in formula (44.9).
We’ll also evaluate the BEGS criterion (44.8) at the limiting value ℬ∗

𝐽(ℬ∗) = var(ℛ) (ℬ∗)2 + 2ℬ∗cov(ℛ, 𝒳) + var(𝒳) (44.13)

Here are some functions that we’ll use to compute key objects that we want

def mean(x):
'''Returns mean for x given initial state'''
x = np.array(x)
return x @ u.π[s]

def variance(x):
x = np.array(x)
return x**2 @ u.π[s] - mean(x)**2

def covariance(x, y):
x, y = np.array(x), np.array(y)
return x * y @ u.π[s] - mean(x) * mean(y)

Now let’s form the two random variables ℛ, 𝒳 appearing in the BEGS approximating formulas

u = CRRAutility()

s = 0
c = [0.940580824225584, 0.8943592757759343] # Vector for c
g = u.G # Vector for g
n = c + g # Total population
τ = lambda s: 1 + u.Un(1, n[s]) / u.Uc(c[s], 1)

R_s = lambda s: u.Uc(c[s], n[s]) / (u.β * (u.Uc(c[0], n[0]) * u.π[0, 0] \
+ u.Uc(c[1], n[1]) * u.π[1, 0]))

X_s = lambda s: u.Uc(c[s], n[s]) * (g[s] - τ(s) * n[s])

R = [R_s(0), R_s(1)]
X = [X_s(0), X_s(1)]

print(f"R, X = {R}, {X}")

R, X = [1.055169547122964, 1.1670526750992583], [0.06357685646224803, 0.
↪19251010100512958]

Now let’s compute the ingredient of the approximating limit and the approximating rate of convergence

bstar = -covariance(R, X) / variance(R)
div = u.β * (u.Uc(c[0], n[0]) * u.π[s, 0] + u.Uc(c[1], n[1]) * u.π[s, 1])
bhat = bstar / div
bhat

-1.0757585378303758

Print out ̂𝑏 and �̄�

bhat, b_bar

856 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

Advanced Quantitative Economics with Python

(-1.0757585378303758, -1.0757576567504166)

So we have

bhat - b_bar

-8.810799592140484e-07

These outcomes show that ̂𝑏 does a remarkably good job of approximating �̄�.
Next, let’s compute the BEGS fiscal criterion that ̂𝑏 is minimizing

Jmin = variance(R) * bstar**2 + 2 * bstar * covariance(R, X) + variance(X)
Jmin

-9.020562075079397e-17

This is machine zero, a verification that ̂𝑏 succeeds in minimizing the nonnegative fiscal cost criterion 𝐽(ℬ∗) defined in
BEGS and in equation (44.13) above.
Let’s push our luck and compute the mean reversion speed in the formula above equation (47) in [BEGS17].

den2 = 1 + (u.β**2) * variance(R)
speedrever = 1/den2
print(f'Mean reversion speed = {speedrever}')

Mean reversion speed = 0.9974715478249827

Now let’s compute the implied meantime to get to within 0.01 of the limit

ttime = np.log(.01) / np.log(speedrever)
print(f"Time to get within .01 of limit = {ttime}")

Time to get within .01 of limit = 1819.0360880098472

The slow rate of convergence and the implied time of getting within one percent of the limiting value do a good job of
approximating our long simulation above.
In a subsequent lecture we shall study an extension of the model in which the force highlighted in this lecture causes
government debt to converge to a nontrivial distribution instead of the single debt level discovered here.

44.9. BEGS Approximations of Limiting Debt and Convergence Rate 857

Advanced Quantitative Economics with Python

858 Chapter 44. Fluctuating Interest Rates Deliver Fiscal Insurance

CHAPTER

FORTYFIVE

FISCAL RISK AND GOVERNMENT DEBT

Contents

• Fiscal Risk and Government Debt

– Overview

– The Economy

– Long Simulation

– Asymptotic Mean and Rate of Convergence

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install --upgrade quantecon

45.1 Overview

This lecture studies government debt in an AMSS economy [AMSSeppala02] of the type described in Optimal Taxation
without State-Contingent Debt.
We study the behavior of government debt as time 𝑡 → +∞.
We use these techniques

• simulations
• a regression coefficient from the tail of a long simulation that allows us to verify that the asymptotic mean of
government debt solves a fiscal-risk minimization problem

• an approximation to the mean of an ergodic distribution of government debt
• an approximation to the rate of convergence to an ergodic distribution of government debt

We apply tools that are applicable to more general incomplete markets economies that are presented on pages 648 - 650
in section III.D of [BEGS17] (BEGS).
We study an AMSS economy [AMSSeppala02] with three Markov states driving government expenditures.

• In a previous lecture, we showed that with only two Markov states, it is possible that endogenous interest rate
fluctuations eventually can support complete markets allocations and Ramsey outcomes.

• The presence of three states prevents the full spanning that eventually prevails in the two-state example featured in
Fiscal Insurance via Fluctuating Interest Rates.

859

Advanced Quantitative Economics with Python

The lack of full spanning means that the ergodic distribution of the par value of government debt is nontrivial, in contrast
to the situation in Fiscal Insurance via Fluctuating Interest Rates in which the ergodic distribution of the par value of
government debt is concentrated on one point.
Nevertheless, [BEGS17] (BEGS) establish that, for general settings that include ours, the Ramsey planner steers govern-
ment assets to a level that comes as close as possible to providing full spanning in a precise a sense defined by BEGS
that we describe below.
We use code constructed in Fluctuating Interest Rates Deliver Fiscal Insurance.
Warning: Key equations in [BEGS17] section III.D carry typos that we correct below.
Let’s start with some imports:

import matplotlib.pyplot as plt
%matplotlib inline
from scipy.optimize import minimize

45.2 The Economy

As in Optimal Taxation without State-Contingent Debt and Optimal Taxation with State-Contingent Debt, we assume that
the representative agent has utility function

𝑢(𝑐, 𝑛) = 𝑐1−𝜎

1 − 𝜎 − 𝑛1+𝛾

1 + 𝛾
We work directly with labor supply instead of leisure.
We assume that

𝑐𝑡 + 𝑔𝑡 = 𝑛𝑡

The Markov state 𝑠𝑡 takes three values, namely, 0, 1, 2.
The initial Markov state is 0.
The Markov transition matrix is (1/3)𝐼 where 𝐼 is a 3 × 3 identity matrix, so the 𝑠𝑡 process is IID.
Government expenditures 𝑔(𝑠) equal .1 in Markov state 0, .2 in Markov state 1, and .3 in Markov state 2.
We set preference parameters

𝛽 = .9
𝜎 = 2
𝛾 = 2

The following Python code sets up the economy

import numpy as np

class CRRAutility:

def __init__(self,
β=0.9,
σ=2,
γ=2,

(continues on next page)

860 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

(continued from previous page)

π=np.full((2, 2), 0.5),
G=np.array([0.1, 0.2]),
Θ=np.ones(2),
transfers=False):

self.β, self.σ, self.γ = β, σ, γ
self.π, self.G, self.Θ, self.transfers = π, G, Θ, transfers

Utility function
def U(self, c, n):

σ = self.σ
if σ == 1.:

U = np.log(c)
else:

U = (c**(1 - σ) - 1) / (1 - σ)
return U - n**(1 + self.γ) / (1 + self.γ)

Derivatives of utility function
def Uc(self, c, n):

return c**(-self.σ)

def Ucc(self, c, n):
return -self.σ * c**(-self.σ - 1)

def Un(self, c, n):
return -n**self.γ

def Unn(self, c, n):
return -self.γ * n**(self.γ - 1)

45.2.1 First and Second Moments

We’ll want first and second moments of some key random variables below.
The following code computes these moments; the code is recycled from Fluctuating Interest Rates Deliver Fiscal Insurance.

def mean(x, s):
'''Returns mean for x given initial state'''
x = np.array(x)
return x @ u.π[s]

def variance(x, s):
x = np.array(x)
return x**2 @ u.π[s] - mean(x, s)**2

def covariance(x, y, s):
x, y = np.array(x), np.array(y)
return x * y @ u.π[s] - mean(x, s) * mean(y, s)

45.2. The Economy 861

Advanced Quantitative Economics with Python

45.3 Long Simulation

To generate a long simulation we use the following code.
We begin by showing the code that we used in earlier lectures on the AMSS model.
Here it is

import numpy as np
from scipy.optimize import root
from quantecon import MarkovChain

class SequentialAllocation:

'''
Class that takes CESutility or BGPutility object as input returns
planner's allocation as a function of the multiplier on the
implementability constraint μ.
'''

def __init__(self, model):

Initialize from model object attributes
self.β, self.π, self.G = model.β, model.π, model.G
self.mc, self.Θ = MarkovChain(self.π), model.Θ
self.S = len(model.π) # Number of states
self.model = model

Find the first best allocation
self.find_first_best()

def find_first_best(self):
'''
Find the first best allocation
'''
model = self.model
S, Θ, G = self.S, self.Θ, self.G
Uc, Un = model.Uc, model.Un

def res(z):
c = z[:S]
n = z[S:]
return np.hstack([Θ * Uc(c, n) + Un(c, n), Θ * n - c - G])

res = root(res, np.full(2 * S, 0.5))

if not res.success:
raise Exception('Could not find first best')

self.cFB = res.x[:S]
self.nFB = res.x[S:]

Multiplier on the resource constraint
self.ΞFB = Uc(self.cFB, self.nFB)
self.zFB = np.hstack([self.cFB, self.nFB, self.ΞFB])

(continues on next page)

862 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

(continued from previous page)

def time1_allocation(self, μ):
'''
Computes optimal allocation for time t >= 1 for a given μ
'''
model = self.model
S, Θ, G = self.S, self.Θ, self.G
Uc, Ucc, Un, Unn = model.Uc, model.Ucc, model.Un, model.Unn

def FOC(z):
c = z[:S]
n = z[S:2 * S]
Ξ = z[2 * S:]
FOC of c
return np.hstack([Uc(c, n) - μ * (Ucc(c, n) * c + Uc(c, n)) - Ξ,

Un(c, n) - μ * (Unn(c, n) * n + Un(c, n)) \
+ Θ * Ξ, # FOC of n
Θ * n - c - G])

Find the root of the first-order condition
res = root(FOC, self.zFB)
if not res.success:

raise Exception('Could not find LS allocation.')
z = res.x
c, n, Ξ = z[:S], z[S:2 * S], z[2 * S:]

Compute x
I = Uc(c, n) * c + Un(c, n) * n
x = np.linalg.solve(np.eye(S) - self.β * self.π, I)

return c, n, x, Ξ

def time0_allocation(self, B_, s_0):
'''
Finds the optimal allocation given initial government debt B_ and
state s_0
'''
model, π, Θ, G, β = self.model, self.π, self.Θ, self.G, self.β
Uc, Ucc, Un, Unn = model.Uc, model.Ucc, model.Un, model.Unn

First order conditions of planner's problem
def FOC(z):

μ, c, n, Ξ = z
xprime = self.time1_allocation(μ)[2]
return np.hstack([Uc(c, n) * (c - B_) + Un(c, n) * n + β * π[s_0]

@ xprime,
Uc(c, n) - μ * (Ucc(c, n)

* (c - B_) + Uc(c, n)) - Ξ,
Un(c, n) - μ * (Unn(c, n) * n

+ Un(c, n)) + Θ[s_0] * Ξ,
(Θ * n - c - G)[s_0]])

Find root
res = root(FOC, np.array(

[0, self.cFB[s_0], self.nFB[s_0], self.ΞFB[s_0]]))
if not res.success:

raise Exception('Could not find time 0 LS allocation.')

(continues on next page)

45.3. Long Simulation 863

Advanced Quantitative Economics with Python

(continued from previous page)

return res.x

def time1_value(self, μ):
'''
Find the value associated with multiplier μ
'''
c, n, x, Ξ = self.time1_allocation(μ)
U = self.model.U(c, n)
V = np.linalg.solve(np.eye(self.S) - self.β * self.π, U)
return c, n, x, V

def Τ(self, c, n):
'''
Computes Τ given c, n
'''
model = self.model
Uc, Un = model.Uc(c, n), model.Un(c, n)

return 1 + Un / (self.Θ * Uc)

def simulate(self, B_, s_0, T, sHist=None):
'''
Simulates planners policies for T periods
'''
model, π, β = self.model, self.π, self.β
Uc = model.Uc

if sHist is None:
sHist = self.mc.simulate(T, s_0)

cHist, nHist, Bhist, ΤHist, μHist = np.zeros((5, T))
RHist = np.zeros(T - 1)

Time 0
μ, cHist[0], nHist[0], _ = self.time0_allocation(B_, s_0)
ΤHist[0] = self.Τ(cHist[0], nHist[0])[s_0]
Bhist[0] = B_
μHist[0] = μ

Time 1 onward
for t in range(1, T):

c, n, x, Ξ = self.time1_allocation(μ)
Τ = self.Τ(c, n)
u_c = Uc(c, n)
s = sHist[t]
Eu_c = π[sHist[t - 1]] @ u_c
cHist[t], nHist[t], Bhist[t], ΤHist[t] = c[s], n[s], x[s] / u_c[s], \

Τ[s]
RHist[t - 1] = Uc(cHist[t - 1], nHist[t - 1]) / (β * Eu_c)
μHist[t] = μ

return [cHist, nHist, Bhist, ΤHist, sHist, μHist, RHist]

import numpy as np

(continues on next page)

864 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

(continued from previous page)

from scipy.optimize import fmin_slsqp
from scipy.optimize import root
from quantecon import MarkovChain

class RecursiveAllocationAMSS:

def __init__(self, model, μgrid, tol_diff=1e-7, tol=1e-7):

self.β, self.π, self.G = model.β, model.π, model.G
self.mc, self.S = MarkovChain(self.π), len(model.π) # Number of states
self.Θ, self.model, self.μgrid = model.Θ, model, μgrid
self.tol_diff, self.tol = tol_diff, tol

Find the first best allocation
self.solve_time1_bellman()
self.T.time_0 = True # Bellman equation now solves time 0 problem

def solve_time1_bellman(self):
'''
Solve the time 1 Bellman equation for calibration model and
initial grid μgrid0
'''
model, μgrid0 = self.model, self.μgrid
π = model.π
S = len(model.π)

First get initial fit from Lucas Stokey solution.
Need to change things to be ex ante
pp = SequentialAllocation(model)
interp = interpolator_factory(2, None)

def incomplete_allocation(μ_, s_):
c, n, x, V = pp.time1_value(μ_)
return c, n, π[s_] @ x, π[s_] @ V

cf, nf, xgrid, Vf, xprimef = [], [], [], [], []
for s_ in range(S):

c, n, x, V = zip(*map(lambda μ: incomplete_allocation(μ, s_), μgrid0))
c, n = np.vstack(c).T, np.vstack(n).T
x, V = np.hstack(x), np.hstack(V)
xprimes = np.vstack([x] * S)
cf.append(interp(x, c))
nf.append(interp(x, n))
Vf.append(interp(x, V))
xgrid.append(x)
xprimef.append(interp(x, xprimes))

cf, nf, xprimef = fun_vstack(cf), fun_vstack(nf), fun_vstack(xprimef)
Vf = fun_hstack(Vf)
policies = [cf, nf, xprimef]

Create xgrid
x = np.vstack(xgrid).T
xbar = [x.min(0).max(), x.max(0).min()]
xgrid = np.linspace(xbar[0], xbar[1], len(μgrid0))
self.xgrid = xgrid

(continues on next page)

45.3. Long Simulation 865

Advanced Quantitative Economics with Python

(continued from previous page)

Now iterate on Bellman equation
T = BellmanEquation(model, xgrid, policies, tol=self.tol)
diff = 1
while diff > self.tol_diff:

PF = T(Vf)

Vfnew, policies = self.fit_policy_function(PF)
diff = np.abs((Vf(xgrid) - Vfnew(xgrid)) / Vf(xgrid)).max()

print(diff)
Vf = Vfnew

Store value function policies and Bellman Equations
self.Vf = Vf
self.policies = policies
self.T = T

def fit_policy_function(self, PF):
'''
Fits the policy functions
'''
S, xgrid = len(self.π), self.xgrid
interp = interpolator_factory(3, 0)
cf, nf, xprimef, Tf, Vf = [], [], [], [], []
for s_ in range(S):

PFvec = np.vstack([PF(x, s_) for x in self.xgrid]).T
Vf.append(interp(xgrid, PFvec[0, :]))
cf.append(interp(xgrid, PFvec[1:1 + S]))
nf.append(interp(xgrid, PFvec[1 + S:1 + 2 * S]))
xprimef.append(interp(xgrid, PFvec[1 + 2 * S:1 + 3 * S]))
Tf.append(interp(xgrid, PFvec[1 + 3 * S:]))

policies = fun_vstack(cf), fun_vstack(
nf), fun_vstack(xprimef), fun_vstack(Tf)

Vf = fun_hstack(Vf)
return Vf, policies

def Τ(self, c, n):
'''
Computes Τ given c and n
'''
model = self.model
Uc, Un = model.Uc(c, n), model.Un(c, n)

return 1 + Un / (self.Θ * Uc)

def time0_allocation(self, B_, s0):
'''
Finds the optimal allocation given initial government debt B_ and
state s_0
'''
PF = self.T(self.Vf)
z0 = PF(B_, s0)
c0, n0, xprime0, T0 = z0[1:]
return c0, n0, xprime0, T0

def simulate(self, B_, s_0, T, sHist=None):

(continues on next page)

866 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

(continued from previous page)

'''
Simulates planners policies for T periods
'''
model, π = self.model, self.π
Uc = model.Uc
cf, nf, xprimef, Tf = self.policies

if sHist is None:
sHist = simulate_markov(π, s_0, T)

cHist, nHist, Bhist, xHist, ΤHist, THist, μHist = np.zeros((7, T))
Time 0
cHist[0], nHist[0], xHist[0], THist[0] = self.time0_allocation(B_, s_0)
ΤHist[0] = self.Τ(cHist[0], nHist[0])[s_0]
Bhist[0] = B_
μHist[0] = self.Vf[s_0](xHist[0])

Time 1 onward
for t in range(1, T):

s_, x, s = sHist[t - 1], xHist[t - 1], sHist[t]
c, n, xprime, T = cf[s_, :](x), nf[s_, :](

x), xprimef[s_, :](x), Tf[s_, :](x)

Τ = self.Τ(c, n)[s]
u_c = Uc(c, n)
Eu_c = π[s_, :] @ u_c

μHist[t] = self.Vf[s](xprime[s])

cHist[t], nHist[t], Bhist[t], ΤHist[t] = c[s], n[s], x / Eu_c, Τ
xHist[t], THist[t] = xprime[s], T[s]

return [cHist, nHist, Bhist, ΤHist, THist, μHist, sHist, xHist]

class BellmanEquation:
'''
Bellman equation for the continuation of the Lucas-Stokey Problem
'''

def __init__(self, model, xgrid, policies0, tol, maxiter=1000):

self.β, self.π, self.G = model.β, model.π, model.G
self.S = len(model.π) # Number of states
self.Θ, self.model, self.tol = model.Θ, model, tol
self.maxiter = maxiter

self.xbar = [min(xgrid), max(xgrid)]
self.time_0 = False

self.z0 = {}
cf, nf, xprimef = policies0

for s_ in range(self.S):
for x in xgrid:

self.z0[x, s_] = np.hstack([cf[s_, :](x),
nf[s_, :](x),

(continues on next page)

45.3. Long Simulation 867

Advanced Quantitative Economics with Python

(continued from previous page)

xprimef[s_, :](x),
np.zeros(self.S)])

self.find_first_best()

def find_first_best(self):
'''
Find the first best allocation
'''
model = self.model
S, Θ, Uc, Un, G = self.S, self.Θ, model.Uc, model.Un, self.G

def res(z):
c = z[:S]
n = z[S:]
return np.hstack([Θ * Uc(c, n) + Un(c, n), Θ * n - c - G])

res = root(res, np.full(2 * S, 0.5))
if not res.success:

raise Exception('Could not find first best')

self.cFB = res.x[:S]
self.nFB = res.x[S:]
IFB = Uc(self.cFB, self.nFB) * self.cFB + \

Un(self.cFB, self.nFB) * self.nFB

self.xFB = np.linalg.solve(np.eye(S) - self.β * self.π, IFB)

self.zFB = {}
for s in range(S):

self.zFB[s] = np.hstack(
[self.cFB[s], self.nFB[s], self.π[s] @ self.xFB, 0.])

def __call__(self, Vf):
'''
Given continuation value function next period return value function this
period return T(V) and optimal policies
'''
if not self.time_0:

def PF(x, s): return self.get_policies_time1(x, s, Vf)
else:

def PF(B_, s0): return self.get_policies_time0(B_, s0, Vf)
return PF

def get_policies_time1(self, x, s_, Vf):
'''
Finds the optimal policies
'''
model, β, Θ, G, S, π = self.model, self.β, self.Θ, self.G, self.S, self.π
U, Uc, Un = model.U, model.Uc, model.Un

def objf(z):
c, n, xprime = z[:S], z[S:2 * S], z[2 * S:3 * S]

Vprime = np.empty(S)
for s in range(S):

(continues on next page)

868 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

(continued from previous page)

Vprime[s] = Vf[s](xprime[s])

return -π[s_] @ (U(c, n) + β * Vprime)

def objf_prime(x):

epsilon = 1e-7
x0 = np.asfarray(x)
f0 = np.atleast_1d(objf(x0))
jac = np.zeros([len(x0), len(f0)])
dx = np.zeros(len(x0))
for i in range(len(x0)):

dx[i] = epsilon
jac[i] = (objf(x0+dx) - f0)/epsilon
dx[i] = 0.0

return jac.transpose()

def cons(z):
c, n, xprime, T = z[:S], z[S:2 * S], z[2 * S:3 * S], z[3 * S:]
u_c = Uc(c, n)
Eu_c = π[s_] @ u_c
return np.hstack([

x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,
Θ * n - c - G])

if model.transfers:
bounds = [(0., 100)] * S + [(0., 100)] * S + \

[self.xbar] * S + [(0., 100.)] * S
else:

bounds = [(0., 100)] * S + [(0., 100)] * S + \
[self.xbar] * S + [(0., 0.)] * S

out, fx, _, imode, smode = fmin_slsqp(objf, self.z0[x, s_],
f_eqcons=cons, bounds=bounds,
fprime=objf_prime, full_output=True,
iprint=0, acc=self.tol, iter=self.

↪maxiter)

if imode > 0:
raise Exception(smode)

self.z0[x, s_] = out
return np.hstack([-fx, out])

def get_policies_time0(self, B_, s0, Vf):
'''
Finds the optimal policies
'''
model, β, Θ, G = self.model, self.β, self.Θ, self.G
U, Uc, Un = model.U, model.Uc, model.Un

def objf(z):
c, n, xprime = z[:-1]

return -(U(c, n) + β * Vf[s0](xprime))

(continues on next page)

45.3. Long Simulation 869

Advanced Quantitative Economics with Python

(continued from previous page)

def cons(z):
c, n, xprime, T = z
return np.hstack([

-Uc(c, n) * (c - B_ - T) - Un(c, n) * n - β * xprime,
(Θ * n - c - G)[s0]])

if model.transfers:
bounds = [(0., 100), (0., 100), self.xbar, (0., 100.)]

else:
bounds = [(0., 100), (0., 100), self.xbar, (0., 0.)]

out, fx, _, imode, smode = fmin_slsqp(objf, self.zFB[s0], f_eqcons=cons,
bounds=bounds, full_output=True,
iprint=0)

if imode > 0:
raise Exception(smode)

return np.hstack([-fx, out])

import numpy as np
from scipy.interpolate import UnivariateSpline

class interpolate_wrapper:

def __init__(self, F):
self.F = F

def __getitem__(self, index):
return interpolate_wrapper(np.asarray(self.F[index]))

def reshape(self, *args):
self.F = self.F.reshape(*args)
return self

def transpose(self):
self.F = self.F.transpose()

def __len__(self):
return len(self.F)

def __call__(self, xvec):
x = np.atleast_1d(xvec)
shape = self.F.shape
if len(x) == 1:

fhat = np.hstack([f(x) for f in self.F.flatten()])
return fhat.reshape(shape)

else:
fhat = np.vstack([f(x) for f in self.F.flatten()])
return fhat.reshape(np.hstack((shape, len(x))))

class interpolator_factory:

def __init__(self, k, s):

(continues on next page)

870 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

(continued from previous page)

self.k, self.s = k, s

def __call__(self, xgrid, Fs):
shape, m = Fs.shape[:-1], Fs.shape[-1]
Fs = Fs.reshape((-1, m))
F = []
xgrid = np.sort(xgrid) # Sort xgrid
for Fhat in Fs:

F.append(UnivariateSpline(xgrid, Fhat, k=self.k, s=self.s))
return interpolate_wrapper(np.array(F).reshape(shape))

def fun_vstack(fun_list):

Fs = [IW.F for IW in fun_list]
return interpolate_wrapper(np.vstack(Fs))

def fun_hstack(fun_list):

Fs = [IW.F for IW in fun_list]
return interpolate_wrapper(np.hstack(Fs))

def simulate_markov(π, s_0, T):

sHist = np.empty(T, dtype=int)
sHist[0] = s_0
S = len(π)
for t in range(1, T):

sHist[t] = np.random.choice(np.arange(S), p=π[sHist[t - 1]])

return sHist

Next, we show the code that we use to generate a very long simulation starting from initial government debt equal to −.5.
Here is a graph of a long simulation of 102000 periods.

μ_grid = np.linspace(-0.09, 0.1, 100)

log_example = CRRAutility(π=np.full((3, 3), 1 / 3),
G=np.array([0.1, 0.2, .3]),
Θ=np.ones(3))

log_example.transfers = True # Government can use transfers
log_sequential = SequentialAllocation(log_example) # Solve sequential problem
log_bellman = RecursiveAllocationAMSS(log_example, μ_grid,

tol=1e-12, tol_diff=1e-10)

T = 102000 # Set T to 102000 periods

sim_seq_long = log_sequential.simulate(0.5, 0, T)
sHist_long = sim_seq_long[-3]
sim_bel_long = log_bellman.simulate(0.5, 0, T, sHist_long)

(continues on next page)

45.3. Long Simulation 871

Advanced Quantitative Economics with Python

(continued from previous page)

titles = ['Government Debt', 'Tax Rate']

fig, axes = plt.subplots(2, 1, figsize=(10, 8))

for ax, title, id in zip(axes.flatten(), titles, [2, 3]):
ax.plot(sim_seq_long[id], '-k', sim_bel_long[id], '-.b', alpha=0.5)
ax.set(title=title)
ax.grid()

axes[0].legend(('Complete Markets', 'Incomplete Markets'))
plt.tight_layout()
plt.show()

/usr/share/miniconda3/envs/quantecon/lib/python3.11/site-packages/scipy/optimize/_
↪optimize.py:404: RuntimeWarning: Values in x were outside bounds during a␣
↪minimize step, clipping to bounds
warnings.warn("Values in x were outside bounds during a "

/tmp/ipykernel_5823/108196118.py:24: RuntimeWarning: divide by zero encountered in␣
↪reciprocal
U = (c**(1 - σ) - 1) / (1 - σ)

/tmp/ipykernel_5823/108196118.py:29: RuntimeWarning: divide by zero encountered in␣
↪power
return c**(-self.σ)

/tmp/ipykernel_5823/1277371586.py:249: RuntimeWarning: invalid value encountered␣
↪in divide
x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,

/tmp/ipykernel_5823/1277371586.py:249: RuntimeWarning: invalid value encountered␣
↪in multiply
x * u_c / Eu_c - u_c * (c - T) - Un(c, n) * n - β * xprime,

0.038266353387659546

0.0015144378246632448

0.0013387575049931865

0.0011833202400662248

0.0010600307116134505

0.0009506620324908642

0.0008518776517238551

0.0007625857031042564

872 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

0.0006819563061669217

0.0006094002927240671

0.0005443007356805235

0.00048599500343956094

0.0004338395935928358

0.00038722730865154364

0.00034559541217657187

0.00030842870645340995

0.00027525901875688697

0.0002456631291987257

0.00021925988533911457

0.0001957069581927878

0.00017469751641633328

0.00015595697131045533

0.00013923987965580473

0.0001243270476244632

0.00011102285954170156

9.915283206080047e-05

8.856139177373994e-05

7.910986485356134e-05

7.067466534026614e-05

45.3. Long Simulation 873

Advanced Quantitative Economics with Python

6.314566737649043e-05

5.6424746008715835e-05

5.04244714230645e-05

4.5066942129829506e-05

4.028274354582181e-05

3.601001917066026e-05

3.219364287744318e-05

2.878448158073308e-05

2.5738738366349524e-05

2.3017369974638877e-05

2.0585562530972924e-05

1.8412273759209572e-05

1.6470096733078585e-05

1.4734148603737835e-05

1.3182214255360329e-05

1.1794654716176686e-05

1.0553942898779478e-05

9.444436197515114e-06

8.452171093491432e-06

7.564681603048501e-06

6.770836606096674e-06

874 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

6.060699172057158e-06

5.4253876343226e-06

4.856977544060761e-06

4.348382732427091e-06

3.893276456302588e-06

3.4860028420224977e-06

3.1215110784890745e-06

2.7952840260155024e-06

2.503284254157189e-06

2.241904747465382e-06

2.0079209145832687e-06

1.7984472260187192e-06

1.610904141295967e-06

1.4429883256895489e-06

1.2926354365994746e-06

1.1580011940576491e-06

1.0374362190402233e-06

9.294651286343194e-07

8.327660623755013e-07

7.461585686381671e-07

6.68586648784756e-07

45.3. Long Simulation 875

Advanced Quantitative Economics with Python

5.991017296865946e-07

5.368606502407216e-07

4.811037017633464e-07

4.3115434615062044e-07

3.8640500348483447e-07

3.4631274740294855e-07

3.1039146715661056e-07

2.782060642970499e-07

2.493665449692665e-07

2.235241683944158e-07

2.0036660045892633e-07

1.796140357496926e-07

1.610161234596195e-07

1.4434845857135709e-07

1.29410194199688e-07

1.1602140686642469e-07

1.04020962175412e-07

9.326451087350253e-08

8.362279520562034e-08

7.49799979528415e-08

6.723237810210067e-08

876 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

6.028699653820159e-08

5.4060588066801066e-08

4.847855517381241e-08

4.347405660607874e-08

3.898720608840536e-08

3.496434157686767e-08

3.135737680533792e-08

2.8123222131646282e-08

2.5223262308472423e-08

2.2622892571432625e-08

2.0291098813063476e-08

1.820008555543109e-08

1.6324938418135388e-08

1.4643330672610771e-08

1.3135245110419445e-08

1.178274355586975e-08

1.0569743803546048e-08

9.48183058751907e-09

8.506079544395937e-09

7.630907318911004e-09

6.845926774203295e-09

45.3. Long Simulation 877

Advanced Quantitative Economics with Python

6.141826797773109e-09

5.510259068441386e-09

4.943738281315066e-09

4.435554859709816e-09

3.979736766026741e-09

3.5708317622814044e-09

3.2040044801866767e-09

2.874916539533131e-09

2.579680212253616e-09

2.3148068175021918e-09

2.077170148801081e-09

1.8639635474165993e-09

1.6726726276855955e-09

1.5010414936033808e-09

1.3470449992327086e-09

1.2088698423920761e-09

1.0848882197883804e-09

9.736395405805598e-10

8.738135346705384e-10

7.842367703299733e-10

7.03855297579472e-10

878 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

6.317225605423774e-10

5.669925787732949e-10

5.089032105148693e-10

4.5677367318159076e-10

4.0999013116379334e-10

3.680044560697966e-10

3.3032415368561477e-10

2.96506010211222e-10

2.6615516244191936e-10

2.389139399385772e-10

2.144649644252697e-10

1.9252092177853976e-10

1.7282471699749249e-10

1.551454449875162e-10

1.3927730577138407e-10

1.2503449048385917e-10

1.1224916676355658e-10

1.0077318342152794e-10

9.047094182757221e-11

45.3. Long Simulation 879

Advanced Quantitative Economics with Python

The long simulation apparently indicates eventual convergence to an ergodic distribution.
It takes about 1000 periods to reach the ergodic distribution – an outcome that is forecast by approximations to rates of
convergence that appear in BEGS [BEGS17] and that we discuss in Fluctuating Interest Rates Deliver Fiscal Insurance.
Let’s discard the first 2000 observations of the simulation and construct the histogram of the par value of government
debt.
We obtain the following graph for the histogram of the last 100,000 observations on the par value of government debt.
The black vertical line denotes the sample mean for the last 100,000 observations included in the histogram; the green
vertical line denotes the value of ℬ∗

𝐸𝑢𝑐
, associated with a sample from our approximation to the ergodic distribution where

ℬ∗ is a regression coefficient to be described below; the red vertical line denotes an approximation by [BEGS17] to
the mean of the ergodic distribution that can be computed before the ergodic distribution has been approximated, as
described below.
Before moving on to discuss the histogram and the vertical lines approximating the ergodic mean of government debt in
more detail, the following graphs show government debt and taxes early in the simulation, for periods 1-100 and 101 to
200 respectively.

titles = ['Government Debt', 'Tax Rate']

fig, axes = plt.subplots(4, 1, figsize=(10, 15))

for i, id in enumerate([2, 3]):

(continues on next page)

880 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

45.3. Long Simulation 881

Advanced Quantitative Economics with Python

882 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

(continued from previous page)

axes[i].plot(sim_seq_long[id][:99], '-k', sim_bel_long[id][:99],
'-.b', alpha=0.5)

axes[i+2].plot(range(100, 199), sim_seq_long[id][100:199], '-k',
range(100, 199), sim_bel_long[id][100:199], '-.b',
alpha=0.5)

axes[i].set(title=titles[i])
axes[i+2].set(title=titles[i])
axes[i].grid()
axes[i+2].grid()

axes[0].legend(('Complete Markets', 'Incomplete Markets'))
plt.tight_layout()
plt.show()

45.3. Long Simulation 883

Advanced Quantitative Economics with Python

884 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

45.3. Long Simulation 885

Advanced Quantitative Economics with Python

For the short samples early in our simulated sample of 102,000 observations, fluctuations in government debt and the
tax rate conceal the weak but inexorable force that the Ramsey planner puts into both series driving them toward ergodic
marginal distributions that are far from these early observations

• early observations are more influenced by the initial value of the par value of government debt than by the ergodic
mean of the par value of government debt

• much later observations are more influenced by the ergodic mean and are independent of the par value of initial
government debt

45.4 Asymptotic Mean and Rate of Convergence

We apply the results of BEGS [BEGS17] to interpret
• the mean of the ergodic distribution of government debt
• the rate of convergence to the ergodic distribution from an arbitrary initial government debt

We begin by computing objects required by the theory of section III.i of BEGS [BEGS17].
As in Fiscal Insurance via Fluctuating Interest Rates, we recall that BEGS [BEGS17] used a particular notation to represent
what we can regard as their generalization of an AMSS model.
We introduce some of the [BEGS17] notation so that readers can quickly relate notation that appears in key BEGS
formulas to the notation that we have used in previous lectures here and here.
BEGS work with objects 𝐵𝑡, ℬ𝑡, ℛ𝑡, 𝒳𝑡 that are related to notation that we used in earlier lectures by

ℛ𝑡 = 𝑢𝑐,𝑡
𝑢𝑐,𝑡−1

𝑅𝑡−1 = 𝑢𝑐,𝑡
𝛽𝐸𝑡−1𝑢𝑐,𝑡

𝐵𝑡 = 𝑏𝑡+1(𝑠𝑡)
𝑅𝑡(𝑠𝑡)

𝑏𝑡(𝑠𝑡−1) = ℛ𝑡−1𝐵𝑡−1
ℬ𝑡 = 𝑢𝑐,𝑡𝐵𝑡 = (𝛽𝐸𝑡𝑢𝑐,𝑡+1)𝑏𝑡+1(𝑠𝑡)
𝒳𝑡 = 𝑢𝑐,𝑡[𝑔𝑡 − 𝜏𝑡𝑛𝑡]

BEGS [BEGS17] call 𝒳𝑡 the effective government deficit and ℬ𝑡 the effective government debt.
Equation (44) of [BEGS17] expresses the time 𝑡 state 𝑠 government budget constraint as

ℬ(𝑠) = ℛ𝜏(𝑠, 𝑠−)ℬ− + 𝒳𝜏(𝑠) (45.1)

where the dependence on 𝜏 is meant to remind us that these objects depend on the tax rate; 𝑠− is last period’s Markov
state.
BEGS interpret random variations in the right side of (45.1) as fiscal risks generated by

• interest-rate-driven fluctuations in time 𝑡 effective payments due on the government portfolio, namely,
ℛ𝜏(𝑠, 𝑠−)ℬ−, and

• fluctuations in the effective government deficit 𝒳𝑡

886 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

45.4.1 Asymptotic Mean

BEGS give conditions under which the ergodic mean of ℬ𝑡 is approximated by

ℬ∗ = −cov∞(ℛt, 𝒳t)
var∞(ℛt)

(45.2)

where the superscript ∞ denotes a moment taken with respect to an ergodic distribution.
Formula (45.2) represents ℬ∗ as a regression coefficient of 𝒳𝑡 on ℛ𝑡 in the ergodic distribution.
Regression coefficient ℬ∗ solves a variance-minimization problem:

ℬ∗ = argminℬvar∞(ℛℬ + 𝒳) (45.3)

The minimand in criterion (45.3) measures fiscal risk associated with a given tax-debt policy that appears on the right
side of equation (45.1).
Expressing formula (45.2) in terms of our notation tells us that the ergodic mean of the par value 𝑏 of government debt
in the AMSS model should be approximately

̂𝑏 = ℬ∗

𝛽𝐸(𝐸𝑡𝑢𝑐,𝑡+1) = ℬ∗

𝛽𝐸(𝑢𝑐,𝑡+1) (45.4)

where mathematical expectations are taken with respect to the ergodic distribution.

45.4.2 Rate of Convergence

BEGS also derive the following approximation to the rate of convergence to ℬ∗ from an arbitrary initial condition.

𝐸𝑡(ℬ𝑡+1 − ℬ∗)
(ℬ𝑡 − ℬ∗) ≈ 1

1 + 𝛽2var∞(ℛ) (45.5)

(See the equation above equation (47) in BEGS [BEGS17])

45.4.3 More Advanced Topic

The remainder of this lecture is about technical material based on formulas from BEGS [BEGS17].
The topic involves interpreting and extending formula (45.3) for the ergodic mean ℬ∗.

45.4.4 Chicken and Egg

Notice how attributes of the ergodic distribution for ℬ𝑡 appear on the right side of formula (45.3) for approximating the
ergodic mean via ℬ∗.
Therefor, formula (45.3) is not useful for estimating the mean of the ergodic in advance of actually approximating the
ergodic distribution.

• we need to know the ergodic distribution to compute the right side of formula (45.3)
So the primary use of equation (45.3) is how it confirms that the ergodic distribution solves a fiscal-risk minimization
problem.
As an example, notice how we used the formula for the mean of ℬ in the ergodic distribution of the special AMSS
economy in Fiscal Insurance via Fluctuating Interest Rates

45.4. Asymptotic Mean and Rate of Convergence 887

Advanced Quantitative Economics with Python

• first we computed the ergodic distribution using a reverse-engineering construction
• then we verified that ℬ∗ agrees with the mean of that distribution

45.4.5 Approximating the Ergodic Mean

BEGS also [BEGS17] propose an approximation to ℬ∗ that can be computed without first approximating the ergodic
distribution.
To construct the BEGS approximation toℬ∗, we just follow steps set forth on pages 648 - 650 of section III.D of [BEGS17]

• notation in BEGS might be confusing at first sight, so it is important to stare and digest before computing
• there are also some sign errors in the [BEGS17] text that we’ll want to correct here

Here is a step-by-step description of the BEGS [BEGS17] approximation procedure.

45.4.6 Step by Step

Step 1: For a given 𝜏 we compute a vector of values 𝑐𝜏(𝑠), 𝑠 = 1, 2, … , 𝑆 that satisfy

(1 − 𝜏)𝑐𝜏(𝑠)−𝜎 − (𝑐𝜏(𝑠) + 𝑔(𝑠))𝛾 = 0

This is a nonlinear equation to be solved for 𝑐𝜏(𝑠), 𝑠 = 1, … , 𝑆.
𝑆 = 3 in our case, but we’ll write code for a general integer 𝑆.
Typo alert: Please note that there is a sign error in equation (42) of BEGS [BEGS17] – it should be aminus rather than
a plus in the middle.

• We have made the appropriate correction in the above equation.
Step 2: Knowing 𝑐𝜏(𝑠), 𝑠 = 1, … , 𝑆 for a given 𝜏 , we want to compute the random variables

ℛ𝜏(𝑠) = 𝑐𝜏(𝑠)−𝜎

𝛽 ∑𝑆
𝑠′=1 𝑐𝜏(𝑠′)−𝜎𝜋(𝑠′)

and

𝒳𝜏(𝑠) = (𝑐𝜏(𝑠) + 𝑔(𝑠))1+𝛾 − 𝑐𝜏(𝑠)1−𝜎

each for 𝑠 = 1, … , 𝑆.
BEGS call ℛ𝜏(𝑠) the effective return on risk-free debt and they call 𝒳𝜏(𝑠) the effective government deficit.
Step 3: With the preceding objects in hand, for a given ℬ, we seek a 𝜏 that satisfies

ℬ = − 𝛽
1 − 𝛽 𝐸𝒳𝜏 ≡ − 𝛽

1 − 𝛽 ∑
𝑠

𝒳𝜏(𝑠)𝜋(𝑠)

This equation says that at a constant discount factor 𝛽, equivalent government debtℬ equals the present value of the mean
effective government surplus.
Another typo alert: there is a sign error in equation (46) of BEGS [BEGS17] –the left side should be multiplied by −1.

• We have made this correction in the above equation.

888 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

For a given ℬ, let a 𝜏 that solves the above equation be called 𝜏(ℬ).
We’ll use a Python root solver to find a 𝜏 that solves this equation for a given ℬ.
We’ll use this function to induce a function 𝜏(ℬ).
Step 4: With a Python program that computes 𝜏(ℬ) in hand, next we write a Python function to compute the random
variable.

𝐽(ℬ)(𝑠) = ℛ𝜏(ℬ)(𝑠)ℬ + 𝒳𝜏(ℬ)(𝑠), 𝑠 = 1, … , 𝑆

Step 5: Now that we have a way to compute the random variable 𝐽(ℬ)(𝑠), 𝑠 = 1, … , 𝑆, via a composition of Python
functions, we can use the population variance function that we defined in the code above to construct a function var(𝐽(ℬ)).
We put var(𝐽(ℬ)) into a Python function minimizer and compute

ℬ∗ = argminℬvar(𝐽(ℬ))

Step 6: Next we take the minimizer ℬ∗ and the Python functions for computing means and variances and compute

rate = 1
1 + 𝛽2var(ℛ𝜏(ℬ∗))

Ultimate outputs of this string of calculations are two scalars

(ℬ∗, rate)

Step 7: Compute the divisor

𝑑𝑖𝑣 = 𝛽𝐸𝑢𝑐,𝑡+1

and then compute the mean of the par value of government debt in the AMSS model

�̂� = ℬ∗

𝑑𝑖𝑣
In the two-Markov-state AMSS economy in Fiscal Insurance via Fluctuating Interest Rates, 𝐸𝑡𝑢𝑐,𝑡+1 = 𝐸𝑢𝑐,𝑡+1 in the
ergodic distribution.
We have confirmed that this formula very accurately describes a constant par value of government debt that

• supports full fiscal insurance via fluctuating interest parameters, and
• is the limit of government debt as 𝑡 → +∞

In the three-Markov-state economy of this lecture, the par value of government debt fluctuates in a history-dependent
way even asymptotically.
In this economy, ̂𝑏 given by the above formula approximates the mean of the ergodic distribution of the par value of
government debt
so while the approximation circumvents the chicken and egg problem that surrounds

the much better approximation associated with the green vertical line, it does so by enlarging the approximation
error

• ̂𝑏 is represented by the red vertical line plotted in the histogram of the last 100,000 observations of our simulation
of the par value of government debt plotted above

• the approximation is fairly accurate but not perfect

45.4. Asymptotic Mean and Rate of Convergence 889

Advanced Quantitative Economics with Python

45.4.7 Execution

Now let’s move on to compute things step by step.

Step 1

u = CRRAutility(π=np.full((3, 3), 1 / 3),
G=np.array([0.1, 0.2, .3]),
Θ=np.ones(3))

τ = 0.05 # Initial guess of τ (to displays calcs along the way)
S = len(u.G) # Number of states

def solve_c(c, τ, u):
return (1 - τ) * c**(-u.σ) - (c + u.G)**u.γ

.x returns the result from root
c = root(solve_c, np.ones(S), args=(τ, u)).x
c

array([0.93852387, 0.89231015, 0.84858872])

root(solve_c, np.ones(S), args=(τ, u))

message: The solution converged.
success: True
status: 1

fun: [5.618e-10 -4.769e-10 1.175e-11]
x: [9.385e-01 8.923e-01 8.486e-01]

nfev: 11
fjac: [[-9.999e-01 -4.954e-03 -1.261e-02]

[-5.156e-03 9.999e-01 1.610e-02]
[-1.253e-02 -1.616e-02 9.998e-01]]

r: [4.269e+00 8.685e-02 -6.301e-02 -4.713e+00 -7.433e-02
-5.508e+00]

qtf: [1.556e-08 1.283e-08 7.899e-11]

890 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

Step 2

n = c + u.G # Compute labor supply

45.4.8 Note about Code

Remember that in our code 𝜋 is a 3 × 3 transition matrix.
But because we are studying an IID case, 𝜋 has identical rows and we need only to compute objects for one row of 𝜋.
This explains why at some places below we set 𝑠 = 0 just to pick off the first row of 𝜋.

45.4.9 Running the code

Let’s take the code out for a spin.
First, let’s compute ℛ and 𝒳 according to our formulas

def compute_R_X(τ, u, s):
c = root(solve_c, np.ones(S), args=(τ, u)).x # Solve for vector of c's
div = u.β * (u.Uc(c[0], n[0]) * u.π[s, 0] \

+ u.Uc(c[1], n[1]) * u.π[s, 1] \
+ u.Uc(c[2], n[2]) * u.π[s, 2])

R = c**(-u.σ) / (div)
X = (c + u.G)**(1 + u.γ) - c**(1 - u.σ)
return R, X

c**(-u.σ) @ u.π

array([1.25997521, 1.25997521, 1.25997521])

u.π

array([[0.33333333, 0.33333333, 0.33333333],
[0.33333333, 0.33333333, 0.33333333],
[0.33333333, 0.33333333, 0.33333333]])

We only want unconditional expectations because we are in an IID case.
So we’ll set 𝑠 = 0 and just pick off expectations associated with the first row of 𝜋

s = 0

R, X = compute_R_X(τ, u, s)

Let’s look at the random variables ℛ, 𝒳

R

array([1.00116313, 1.10755123, 1.22461897])

45.4. Asymptotic Mean and Rate of Convergence 891

Advanced Quantitative Economics with Python

mean(R, s)

1.1111111111111112

X

array([0.05457803, 0.18259396, 0.33685546])

mean(X, s)

0.19134248445303795

X @ u.π

array([0.19134248, 0.19134248, 0.19134248])

Step 3

def solve_τ(τ, B, u, s):
R, X = compute_R_X(τ, u, s)
return ((u.β - 1) / u.β) * B - X @ u.π[s]

Note that 𝐵 is a scalar.
Let’s try out our method computing 𝜏

s = 0
B = 1.0

τ = root(solve_τ, .1, args=(B, u, s)).x[0] # Very sensitive to initial value
τ

0.2740159773695818

In the above cell, B is fixed at 1 and 𝜏 is to be computed as a function of B.
Note that 0.2 is the initial value for 𝜏 in the root-finding algorithm.

Step 4

def min_J(B, u, s):
Very sensitive to initial value of τ
τ = root(solve_τ, .5, args=(B, u, s)).x[0]
R, X = compute_R_X(τ, u, s)
return variance(R * B + X, s)

892 Chapter 45. Fiscal Risk and Government Debt

Advanced Quantitative Economics with Python

min_J(B, u, s)

0.035564405653720765

Step 6

B_star = minimize(min_J, .5, args=(u, s)).x[0]
B_star

-1.199483167941158

n = c + u.G # Compute labor supply

div = u.β * (u.Uc(c[0], n[0]) * u.π[s, 0] \
+ u.Uc(c[1], n[1]) * u.π[s, 1] \
+ u.Uc(c[2], n[2]) * u.π[s, 2])

B_hat = B_star/div
B_hat

-1.0577661126390971

τ_star = root(solve_τ, 0.05, args=(B_star, u, s)).x[0]
τ_star

0.09572916798461703

R_star, X_star = compute_R_X(τ_star, u, s)
R_star, X_star

(array([0.9998398 , 1.10746593, 1.2260276]),
array([0.0020272 , 0.12464752, 0.27315299]))

rate = 1 / (1 + u.β**2 * variance(R_star, s))
rate

0.9931353432732218

root(solve_c, np.ones(S), args=(τ_star, u)).x

array([0.9264382 , 0.88027117, 0.83662635])

45.4. Asymptotic Mean and Rate of Convergence 893

Advanced Quantitative Economics with Python

894 Chapter 45. Fiscal Risk and Government Debt

CHAPTER

FORTYSIX

COMPETITIVE EQUILIBRIA OF A MODEL OF CHANG

Contents

• Competitive Equilibria of a Model of Chang

– Overview

– Setting

– Competitive Equilibrium

– Inventory of Objects in Play

– Analysis

– Calculating all Promise-Value Pairs in CE

– Solving a Continuation Ramsey Planner’s Bellman Equation

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install polytope

46.1 Overview

This lecture describes how Chang [Cha98] analyzed competitive equilibria and a best competitive equilibrium called a
Ramsey plan.
He did this by

• characterizing a competitive equilibrium recursively in a way also employed in the dynamic Stackelberg problems
and Calvo model lectures to pose Stackelberg problems in linear economies, and then

• appropriately adapting an argument of Abreu, Pearce, and Stachetti [APS90] to describe key features of the set of
competitive equilibria

Roberto Chang [Cha98] chose a model of Calvo [Cal78] as a simple structure that conveys ideas that apply more broadly.
A textbook version of Chang’s model appears in chapter 25 of [LS18].
This lecture and Credible Government Policies in Chang Model can be viewed as more sophisticated and complete treat-
ments of the topics discussed in Ramsey plans, time inconsistency, sustainable plans.
Both this lecture and Credible Government Policies in Chang Model make extensive use of an idea to which we apply the
nickname dynamic programming squared.

895

Advanced Quantitative Economics with Python

In dynamic programming squared problems there are typically two interrelated Bellman equations
• A Bellman equation for a set of agents or followers with value or value function 𝑣𝑎.
• A Bellman equation for a principal or Ramsey planner or Stackelberg leader with value or value function 𝑣𝑝 in
which 𝑣𝑎 appears as an argument.

We encountered problems with this structure in dynamic Stackelberg problems, optimal taxation with state-contingent debt,
and other lectures.
We’ll start with some standard imports:

import numpy as np
import polytope
import matplotlib.pyplot as plt
%matplotlib inline

`polytope` failed to import `cvxopt.glpk`.

will use `scipy.optimize.linprog`

46.1.1 The Setting

First, we introduce some notation.
For a sequence of scalars ⃗𝑧 ≡ {𝑧𝑡}∞

𝑡=0, let ⃗𝑧𝑡 = (𝑧0, … , 𝑧𝑡), ⃗𝑧𝑡 = (𝑧𝑡, 𝑧𝑡+1, …).
An infinitely lived representative agent and an infinitely lived government exist at dates 𝑡 = 0, 1, ….
The objects in play are

• an initial quantity 𝑀−1 of nominal money holdings

• a sequence of inverse money growth rates ℎ⃗ and an associated sequence of nominal money holdings �⃗�
• a sequence of values of money ⃗𝑞
• a sequence of real money holdings �⃗�
• a sequence of total tax collections ⃗𝑥
• a sequence of per capita rates of consumption ⃗𝑐
• a sequence of per capita incomes ⃗𝑦

A benevolent government chooses sequences (�⃗�, ℎ⃗, ⃗𝑥) subject to a sequence of budget constraints and other constraints
imposed by competitive equilibrium.
Given tax collection and price of money sequences, a representative household chooses sequences (⃗𝑐, �⃗�) of consumption
and real balances.
In competitive equilibrium, the price of money sequence ⃗𝑞 clears markets, thereby reconciling decisions of the government
and the representative household.
Chang adopts a version of a model that [Cal78] designed to exhibit time-inconsistency of a Ramsey policy in a simple
and transparent setting.
By influencing the representative household’s expectations, government actions at time 𝑡 affect components of household
utilities for periods 𝑠 before 𝑡.
When setting a path for monetary expansion rates, the government takes into account how the household’s anticipations
of the government’s future actions affect the household’s current decisions.

896 Chapter 46. Competitive Equilibria of a Model of Chang

Advanced Quantitative Economics with Python

The ultimate source of time inconsistency is that a time 0 Ramsey planner takes these effects into account in designing a
plan of government actions for 𝑡 ≥ 0.

46.2 Setting

46.2.1 The Household’s Problem

A representative household faces a nonnegative value of money sequence ⃗𝑞 and sequences ⃗𝑦, ⃗𝑥 of income and total tax
collections, respectively.
The household chooses nonnegative sequences ⃗𝑐, �⃗� of consumption and nominal balances, respectively, to maximize

∞
∑
𝑡=0

𝛽𝑡 [𝑢(𝑐𝑡) + 𝑣(𝑞𝑡𝑀𝑡)] (46.1)

subject to

𝑞𝑡𝑀𝑡 ≤ 𝑦𝑡 + 𝑞𝑡𝑀𝑡−1 − 𝑐𝑡 − 𝑥𝑡 (46.2)

and

𝑞𝑡𝑀𝑡 ≤ �̄� (46.3)

Here 𝑞𝑡 is the reciprocal of the price level at 𝑡, which we can also call the value of money.
Chang [Cha98] assumes that

• 𝑢 ∶ ℝ+ → ℝ is twice continuously differentiable, strictly concave, and strictly increasing;
• 𝑣 ∶ ℝ+ → ℝ is twice continuously differentiable and strictly concave;
• 𝑢′(𝑐)𝑐→0 = lim𝑚→0 𝑣′(𝑚) = +∞;
• there is a finite level 𝑚 = 𝑚𝑓 such that 𝑣′(𝑚𝑓) = 0

The household carries real balances out of a period equal to 𝑚𝑡 = 𝑞𝑡𝑀𝑡.
Inequality (46.2) is the household’s time 𝑡 budget constraint.
It tells how real balances 𝑞𝑡𝑀𝑡 carried out of period 𝑡 depend on income, consumption, taxes, and real balances 𝑞𝑡𝑀𝑡−1
carried into the period.
Equation (46.3) imposes an exogenous upper bound �̄� on the household’s choice of real balances, where �̄� ≥ 𝑚𝑓 .

46.2.2 Government

The government chooses a sequence of inverse money growth rates with time 𝑡 component ℎ𝑡 ≡ 𝑀𝑡−1
𝑀𝑡

∈ Π ≡ [𝜋, 𝜋],
where 0 < 𝜋 < 1 < 1

𝛽 ≤ 𝜋.
The government faces a sequence of budget constraints with time 𝑡 component

−𝑥𝑡 = 𝑞𝑡(𝑀𝑡 − 𝑀𝑡−1)

which by using the definitions of 𝑚𝑡 and ℎ𝑡 can also be expressed as

−𝑥𝑡 = 𝑚𝑡(1 − ℎ𝑡) (46.4)

46.2. Setting 897

Advanced Quantitative Economics with Python

The restrictions 𝑚𝑡 ∈ [0, �̄�] and ℎ𝑡 ∈ Π evidently imply that 𝑥𝑡 ∈ 𝑋 ≡ [(𝜋 − 1)�̄�, (𝜋 − 1)�̄�].
We define the set 𝐸 ≡ [0, �̄�] × Π × 𝑋, so that we require that (𝑚, ℎ, 𝑥) ∈ 𝐸.
To represent the idea that taxes are distorting, Chang makes the following assumption about outcomes for per capita
output:

𝑦𝑡 = 𝑓(𝑥𝑡), (46.5)

where 𝑓 ∶ ℝ → ℝ satisfies 𝑓(𝑥) > 0, is twice continuously differentiable, 𝑓″(𝑥) < 0, and 𝑓(𝑥) = 𝑓(−𝑥) for all 𝑥 ∈ ℝ,
so that subsidies and taxes are equally distorting.
Calvo’s and Chang’s purpose is not to model the causes of tax distortions in any detail but simply to summarize the outcome
of those distortions via the function 𝑓(𝑥).
A key part of the specification is that tax distortions are increasing in the absolute value of tax revenues.
Ramsey plan: A Ramsey plan is a competitive equilibrium that maximizes (46.1).
Within-period timing of decisions is as follows:

• first, the government chooses ℎ𝑡 and 𝑥𝑡;
• then given ⃗𝑞 and its expectations about future values of 𝑥 and 𝑦’s, the household chooses 𝑀𝑡 and therefore 𝑚𝑡
because 𝑚𝑡 = 𝑞𝑡𝑀𝑡;

• then output 𝑦𝑡 = 𝑓(𝑥𝑡) is realized;
• finally 𝑐𝑡 = 𝑦𝑡

This within-period timing confronts the government with choices framed by how the private sector wants to respond when
the government takes time 𝑡 actions that differ from what the private sector had expected.
This consideration will be important in lecture credible government policies when we study credible government policies.
The model is designed to focus on the intertemporal trade-offs between the welfare benefits of deflation and the welfare
costs associated with the high tax collections required to retire money at a rate that delivers deflation.
A benevolent time 0 government can promote utility generating increases in real balances only by imposing sufficiently
large distorting tax collections.
To promote the welfare increasing effects of high real balances, the government wants to induce gradual deflation.

46.2.3 Household’s Problem

Given 𝑀−1 and {𝑞𝑡}∞
𝑡=0, the household’s problem is

ℒ = max
⃗𝑐,�⃗�

min
�⃗�,�⃗�

∞
∑
𝑡=0

𝛽𝑡{𝑢(𝑐𝑡) + 𝑣(𝑀𝑡𝑞𝑡) + 𝜆𝑡[𝑦𝑡 − 𝑐𝑡 − 𝑥𝑡 + 𝑞𝑡𝑀𝑡−1 − 𝑞𝑡𝑀𝑡]

+ 𝜇𝑡[�̄� − 𝑞𝑡𝑀𝑡]}
First-order conditions with respect to 𝑐𝑡 and 𝑀𝑡, respectively, are

𝑢′(𝑐𝑡) = 𝜆𝑡
𝑞𝑡[𝑢′(𝑐𝑡) − 𝑣′(𝑀𝑡𝑞𝑡)] ≤ 𝛽𝑢′(𝑐𝑡+1)𝑞𝑡+1, = if 𝑀𝑡𝑞𝑡 < �̄�

The last equation expresses Karush-Kuhn-Tucker complementary slackness conditions (see here).
These insist that the inequality is an equality at an interior solution for 𝑀𝑡.

Using ℎ𝑡 = 𝑀𝑡−1
𝑀𝑡

and 𝑞𝑡 = 𝑚𝑡
𝑀𝑡

in these first-order conditions and rearranging implies

𝑚𝑡[𝑢′(𝑐𝑡) − 𝑣′(𝑚𝑡)] ≤ 𝛽𝑢′(𝑓(𝑥𝑡+1))𝑚𝑡+1ℎ𝑡+1, = if 𝑚𝑡 < �̄� (46.6)

898 Chapter 46. Competitive Equilibria of a Model of Chang

https://en.wikipedia.org/wiki/Karush%E2%80%93Kuhn%E2%80%93Tucker_conditions

Advanced Quantitative Economics with Python

Define the following key variable

𝜃𝑡+1 ≡ 𝑢′(𝑓(𝑥𝑡+1))𝑚𝑡+1ℎ𝑡+1 (46.7)

This is real money balances at time 𝑡 + 1 measured in units of marginal utility, which Chang refers to as ‘the marginal
utility of real balances’.
From the standpoint of the household at time 𝑡, equation (46.7) shows that 𝜃𝑡+1 intermediates the influences of
(⃗𝑥𝑡+1, �⃗�𝑡+1) on the household’s choice of real balances 𝑚𝑡.
By “intermediates” we mean that the future paths (⃗𝑥𝑡+1, �⃗�𝑡+1) influence 𝑚𝑡 entirely through their effects on the scalar
𝜃𝑡+1.
The observation that the one dimensional promised marginal utility of real balances 𝜃𝑡+1 functions in this way is an
important step in constructing a class of competitive equilibria that have a recursive representation.
A closely related observation pervaded the analysis of Stackelberg plans in lecture dynamic Stackelberg problems.

46.3 Competitive Equilibrium

Definition:
• A government policy is a pair of sequences (ℎ⃗, ⃗𝑥) where ℎ𝑡 ∈ Π ∀𝑡 ≥ 0.
• A price system is a nonnegative value of money sequence ⃗𝑞.
• An allocation is a triple of nonnegative sequences (⃗𝑐, �⃗�, ⃗𝑦).

It is required that time 𝑡 components (𝑚𝑡, 𝑥𝑡, ℎ𝑡) ∈ 𝐸.
Definition:
Given 𝑀−1, a government policy (ℎ⃗, ⃗𝑥), price system ⃗𝑞, and allocation (⃗𝑐, �⃗�, ⃗𝑦) are said to be a competitive equilibrium
if

• 𝑚𝑡 = 𝑞𝑡𝑀𝑡 and 𝑦𝑡 = 𝑓(𝑥𝑡).
• The government budget constraint is satisfied.
• Given ⃗𝑞, ⃗𝑥, ⃗𝑦, (⃗𝑐, �⃗�) solves the household’s problem.

46.4 Inventory of Objects in Play

Chang constructs the following objects
1. A set Ω of initial marginal utilities of money 𝜃0

• Let Ω denote the set of initial promised marginal utilities of money 𝜃0 associated with competitive equilibria.
• Chang exploits the fact that a competitive equilibrium consists of a first period outcome (ℎ0, 𝑚0, 𝑥0) and a
continuation competitive equilibrium with marginal utility of money 𝜃1 ∈ Ω.

2. Competitive equilibria that have a recursive representation
• A competitive equilibriumwith a recursive representation consists of an initial 𝜃0 and a four-tuple of functions

(ℎ, 𝑚, 𝑥, Ψ) mapping 𝜃 into this period’s (ℎ, 𝑚, 𝑥) and next period’s 𝜃, respectively.

46.3. Competitive Equilibrium 899

Advanced Quantitative Economics with Python

• A competitive equilibrium can be represented recursively by iterating on

ℎ𝑡 = ℎ(𝜃𝑡)
𝑚𝑡 = 𝑚(𝜃𝑡)
𝑥𝑡 = 𝑥(𝜃𝑡)

𝜃𝑡+1 = Ψ(𝜃𝑡)

(46.8)

starting from 𝜃0

The range and domain of Ψ(⋅) are both Ω
3. A recursive representation of a Ramsey plan

• A recursive representation of a Ramsey plan is a recursive competitive equilibrium 𝜃0, (ℎ, 𝑚, 𝑥, Ψ) that,
among all recursive competitive equilibria, maximizes ∑∞

𝑡=0 𝛽𝑡 [𝑢(𝑐𝑡) + 𝑣(𝑞𝑡𝑀𝑡)].
• The Ramsey planner chooses 𝜃0, (ℎ, 𝑚, 𝑥, Ψ) from among the set of recursive competitive equilibria at time

0.
• Iterations on the function Ψ determine subsequent 𝜃𝑡’s that summarize the aspects of the continuation com-
petitive equilibria that influence the household’s decisions.

• At time 0, the Ramsey planner commits to this implied sequence {𝜃𝑡}∞
𝑡=0 and therefore to an associated

sequence of continuation competitive equilibria.
4. A characterization of time-inconsistency of a Ramsey plan

• Imagine that after a ‘revolution’ at time 𝑡 ≥ 1, a new Ramsey planner is given the opportunity to ignore history
and solve a brand new Ramsey plan.

• This new planner would want to reset the 𝜃𝑡 associated with the original Ramsey plan to 𝜃0.
• The incentive to reinitialize 𝜃𝑡 associated with this revolution experiment indicates the time-inconsistency of
the Ramsey plan.

• By resetting 𝜃 to 𝜃0, the new planner avoids the costs at time 𝑡 that the original Ramsey planner must pay
to reap the beneficial effects that the original Ramsey plan for 𝑠 ≥ 𝑡 had achieved via its influence on the
household’s decisions for 𝑠 = 0, … , 𝑡 − 1.

46.5 Analysis

A competitive equilibrium is a triple of sequences (�⃗�, ⃗𝑥, ℎ⃗) ∈ 𝐸∞ that satisfies (46.2), (46.3), and (46.6).
Chang works with a set of competitive equilibria defined as follows.
Definition: 𝐶𝐸 = {(�⃗�, ⃗𝑥, ℎ⃗) ∈ 𝐸∞ such that (46.2), (46.3), and (46.6) are satisfied }.
𝐶𝐸 is not empty because there exists a competitive equilibrium with ℎ𝑡 = 1 for all 𝑡 ≥ 1, namely, an equilibrium with
a constant money supply and constant price level.
Chang establishes that 𝐶𝐸 is also compact.
Chang makes the following key observation that combines ideas of Abreu, Pearce, and Stacchetti [APS90] with insights
of Kydland and Prescott [KP80].
Proposition: The continuation of a competitive equilibrium is a competitive equilibrium.
That is, (�⃗�, ⃗𝑥, ℎ⃗) ∈ 𝐶𝐸 implies that (�⃗�𝑡, ⃗𝑥𝑡, ℎ⃗𝑡) ∈ 𝐶𝐸 ∀ 𝑡 ≥ 1.
(Lecture dynamic Stackelberg problems also used a version of this insight)

900 Chapter 46. Competitive Equilibria of a Model of Chang

Advanced Quantitative Economics with Python

We can now state that a Ramsey problem is to

max
(�⃗�,�⃗�,ℎ⃗)∈𝐸∞

∞
∑
𝑡=0

𝛽𝑡 [𝑢(𝑐𝑡) + 𝑣(𝑚𝑡)]

subject to restrictions (46.2), (46.3), and (46.6).
Evidently, associated with any competitive equilibrium (𝑚0, 𝑥0) is an implied value of 𝜃0 = 𝑢′(𝑓(𝑥0))(𝑚0 + 𝑥0).
To bring out a recursive structure inherent in the Ramsey problem, Chang defines the set

Ω = {𝜃 ∈ ℝ such that 𝜃 = 𝑢′(𝑓(𝑥0))(𝑚0 + 𝑥0) for some (�⃗�, ⃗𝑥, ℎ⃗) ∈ 𝐶𝐸}

Equation (46.6) inherits from the household’s Euler equation for money holdings the property that the value of 𝑚0 con-
sistent with the representative household’s choices depends on (ℎ⃗1, �⃗�1).
This dependence is captured in the definition above by making Ω be the set of first period values of 𝜃0 satisfying 𝜃0 =
𝑢′(𝑓(𝑥0))(𝑚0 + 𝑥0) for first period component (𝑚0, ℎ0) of competitive equilibrium sequences (�⃗�, ⃗𝑥, ℎ⃗).
Chang establishes that Ω is a nonempty and compact subset of ℝ+.
Next Chang advances:
Definition: Γ(𝜃) = {(�⃗�, ⃗𝑥, ℎ⃗) ∈ 𝐶𝐸|𝜃 = 𝑢′(𝑓(𝑥0))(𝑚0 + 𝑥0)}.
Thus, Γ(𝜃) is the set of competitive equilibrium sequences (�⃗�, ⃗𝑥, ℎ⃗) whose first period components (𝑚0, ℎ0) deliver the
prescribed value 𝜃 for first period marginal utility.
If we knew the sets Ω, Γ(𝜃), we could use the following two-step procedure to find at least the value of the Ramsey
outcome to the representative household

1. Find the indirect value function 𝑤(𝜃) defined as

𝑤(𝜃) = max
(�⃗�,�⃗�,ℎ⃗)∈Γ(𝜃)

∞
∑
𝑡=0

𝛽𝑡 [𝑢(𝑓(𝑥𝑡)) + 𝑣(𝑚𝑡)]

2. Compute the value of the Ramsey outcome by solving max𝜃∈Ω 𝑤(𝜃).
Thus, Chang states the following
Proposition:
𝑤(𝜃) satisfies the Bellman equation

𝑤(𝜃) = max
𝑥,𝑚,ℎ,𝜃′

{𝑢(𝑓(𝑥)) + 𝑣(𝑚) + 𝛽𝑤(𝜃′)} (46.9)

where maximization is subject to

(𝑚, 𝑥, ℎ) ∈ 𝐸 and 𝜃′ ∈ Ω (46.10)

and

𝜃 = 𝑢′(𝑓(𝑥))(𝑚 + 𝑥) (46.11)

and

−𝑥 = 𝑚(1 − ℎ) (46.12)

and

𝑚 ⋅ [𝑢′(𝑓(𝑥)) − 𝑣′(𝑚)] ≤ 𝛽𝜃′, = if 𝑚 < �̄� (46.13)

46.5. Analysis 901

Advanced Quantitative Economics with Python

Before we use this proposition to recover a recursive representation of the Ramsey plan, note that the proposition relies
on knowing the set Ω.
To find Ω, Chang uses the insights of Kydland and Prescott [KP80] together with a method based on the Abreu, Pearce,
and Stacchetti [APS90] iteration to convergence on an operator 𝐵 that maps continuation values into values.
We want an operator that maps a continuation 𝜃 into a current 𝜃.
Chang lets 𝑄 be a nonempty, bounded subset of ℝ.
Elements of the set 𝑄 are taken to be candidate values for continuation marginal utilities.
Chang defines an operator

𝐵(𝑄) = 𝜃 ∈ ℝ such that there is (𝑚, 𝑥, ℎ, 𝜃′) ∈ 𝐸 × 𝑄

such that (46.11), (46.12), and (46.13) hold.
Thus, 𝐵(𝑄) is the set of first period 𝜃’s attainable with (𝑚, 𝑥, ℎ) ∈ 𝐸 and some 𝜃′ ∈ 𝑄.
Proposition:

1. 𝑄 ⊂ 𝐵(𝑄) implies 𝐵(𝑄) ⊂ Ω (‘self-generation’).
2. Ω = 𝐵(Ω) (‘factorization’).

The proposition characterizes Ω as the largest fixed point of 𝐵.
It is easy to establish that 𝐵(𝑄) is a monotone operator.
This property allows Chang to compute Ω as the limit of iterations on 𝐵 provided that iterations begin from a sufficiently
large initial set.

46.5.1 Some Useful Notation

Let ℎ⃗𝑡 = (ℎ0, ℎ1, … , ℎ𝑡) denote a history of inverse money creation rates with time 𝑡 component ℎ𝑡 ∈ Π.
A government strategy 𝜎 = {𝜎𝑡}∞

𝑡=0 is a 𝜎0 ∈ Π and for 𝑡 ≥ 1 a sequence of functions 𝜎𝑡 ∶ Π𝑡−1 → Π.
Chang restricts the government’s choice of strategies to the following space:

𝐶𝐸𝜋 = {ℎ⃗ ∈ Π∞ ∶ there is some (�⃗�, ⃗𝑥) such that (�⃗�, ⃗𝑥, ℎ⃗) ∈ 𝐶𝐸}

In words, 𝐶𝐸𝜋 is the set of money growth sequences consistent with the existence of competitive equilibria.
Chang observes that 𝐶𝐸𝜋 is nonempty and compact.

Definition: 𝜎 is said to be admissible if for all 𝑡 ≥ 1 and after any history ℎ⃗𝑡−1, the continuation ℎ⃗𝑡 implied by 𝜎 belongs
to 𝐶𝐸𝜋.
Admissibility of 𝜎 means that anticipated policy choices associated with 𝜎 are consistent with the existence of competitive
equilibria after each possible subsequent history.
After any history ℎ⃗𝑡−1, admissibility restricts the government’s choice in period 𝑡 to the set

𝐶𝐸0
𝜋 = {ℎ ∈ Π ∶ there is ℎ⃗ ∈ 𝐶𝐸𝜋 with ℎ = ℎ0}

In words, 𝐶𝐸0
𝜋 is the set of all first period money growth rates ℎ = ℎ0, each of which is consistent with the existence of

a sequence of money growth rates ℎ⃗ starting from ℎ0 in the initial period and for which a competitive equilibrium exists.
Remark: 𝐶𝐸0

𝜋 = {ℎ ∈ Π ∶ there is (𝑚, 𝜃′) ∈ [0, �̄�] × Ω such that 𝑚𝑢′[𝑓((ℎ − 1)𝑚) − 𝑣′(𝑚)] ≤
𝛽𝜃′ with equality if 𝑚 < �̄�}.

902 Chapter 46. Competitive Equilibria of a Model of Chang

Advanced Quantitative Economics with Python

Definition: An allocation rule is a sequence of functions ⃗𝛼 = {𝛼𝑡}∞
𝑡=0 such that 𝛼𝑡 ∶ Π𝑡 → [0, �̄�] × 𝑋.

Thus, the time 𝑡 component of 𝛼𝑡(ℎ𝑡) is a pair of functions (𝑚𝑡(ℎ𝑡), 𝑥𝑡(ℎ𝑡)).
Definition: Given an admissible government strategy 𝜎, an allocation rule 𝛼 is called competitive if given any history
ℎ⃗𝑡−1 and ℎ𝑡 ∈ 𝐶𝐸0

𝜋, the continuations of 𝜎 and 𝛼 after (ℎ⃗𝑡−1, ℎ𝑡) induce a competitive equilibrium sequence.

46.5.2 Another Operator

At this point it is convenient to introduce another operator that can be used to compute a Ramsey plan.
For computing a Ramsey plan, this operator is wasteful because it works with a state vector that is bigger than necessary.
We introduce this operator because it helps to prepare the way for Chang’s operator called �̃�(𝑍) that we shall describe
in lecture credible government policies.
It is also useful because a fixed point of the operator to be defined here provides a good guess for an initial set from which
to initiate iterations on Chang’s set-to-set operator �̃�(𝑍) to be described in lecture credible government policies.
Let 𝑆 be the set of all pairs (𝑤, 𝜃) of competitive equilibrium values and associated initial marginal utilities.
Let 𝑊 be a bounded set of values in ℝ.
Let 𝑍 be a nonempty subset of 𝑊 × Ω.
Think of using pairs (𝑤′, 𝜃′) drawn from 𝑍 as candidate continuation value, 𝜃 pairs.
Define the operator

𝐷(𝑍) = {(𝑤, 𝜃) ∶ there is ℎ ∈ 𝐶𝐸0
𝜋

and a four-tuple (𝑚(ℎ), 𝑥(ℎ), 𝑤′(ℎ), 𝜃′(ℎ)) ∈ [0, �̄�] × 𝑋 × 𝑍
such that

𝑤 = 𝑢(𝑓(𝑥(ℎ))) + 𝑣(𝑚(ℎ)) + 𝛽𝑤′(ℎ) (46.14)

𝜃 = 𝑢′(𝑓(𝑥(ℎ)))(𝑚(ℎ) + 𝑥(ℎ)) (46.15)

𝑥(ℎ) = 𝑚(ℎ)(ℎ − 1) (46.16)

𝑚(ℎ)(𝑢′(𝑓(𝑥(ℎ))) − 𝑣′(𝑚(ℎ))) ≤ 𝛽𝜃′(ℎ) (46.17)

with equality if 𝑚(ℎ) < �̄�}
It is possible to establish.
Proposition:

1. If 𝑍 ⊂ 𝐷(𝑍), then 𝐷(𝑍) ⊂ 𝑆 (‘self-generation’).
2. 𝑆 = 𝐷(𝑆) (‘factorization’).

Proposition:
1. Monotonicity of 𝐷: 𝑍 ⊂ 𝑍′ implies 𝐷(𝑍) ⊂ 𝐷(𝑍′).
2. 𝑍 compact implies that 𝐷(𝑍) is compact.

46.5. Analysis 903

Advanced Quantitative Economics with Python

It can be shown that 𝑆 is compact and that therefore there exists a (𝑤, 𝜃) pair within this set that attains the highest
possible value 𝑤.
This (𝑤, 𝜃) pair i associated with a Ramsey plan.
Further, we can compute 𝑆 by iterating to convergence on 𝐷 provided that one begins with a sufficiently large initial set
𝑆0.
As a very useful by-product, the algorithm that finds the largest fixed point 𝑆 = 𝐷(𝑆) also produces the Ramsey plan, its
value 𝑤, and the associated competitive equilibrium.

46.6 Calculating all Promise-Value Pairs in CE

Above we have defined the 𝐷(𝑍) operator as:

𝐷(𝑍) = {(𝑤, 𝜃) ∶ ∃ℎ ∈ 𝐶𝐸0
𝜋 and (𝑚(ℎ), 𝑥(ℎ), 𝑤′(ℎ), 𝜃′(ℎ)) ∈ [0, �̄�] × 𝑋 × 𝑍

such that

𝑤 = 𝑢(𝑓(𝑥(ℎ))) + 𝑣(𝑚(ℎ)) + 𝛽𝑤′(ℎ)

𝜃 = 𝑢′(𝑓(𝑥(ℎ)))(𝑚(ℎ) + 𝑥(ℎ))

𝑥(ℎ) = 𝑚(ℎ)(ℎ − 1)

𝑚(ℎ)(𝑢′(𝑓(𝑥(ℎ))) − 𝑣′(𝑚(ℎ))) ≤ 𝛽𝜃′(ℎ) (with equality if 𝑚(ℎ) < �̄�)}
We noted that the set 𝑆 can be found by iterating to convergence on 𝐷, provided that we start with a sufficiently large
initial set 𝑆0.
Our implementation builds on ideas in this notebook.
To find 𝑆 we use a numerical algorithm called the outer hyperplane approximation algorithm.
It was invented by Judd, Yeltekin, Conklin [JYC03].
This algorithm constructs the smallest convex set that contains the fixed point of the 𝐷(𝑆) operator.
Given that we are finding the smallest convex set that contains 𝑆, we can represent it on a computer as the intersection of
a finite number of half-spaces.
Let 𝐻 be a set of subgradients, and 𝐶 be a set of hyperplane levels.
We approximate 𝑆 by:

̃𝑆 = {(𝑤, 𝜃)|𝐻 ⋅ (𝑤, 𝜃) ≤ 𝐶}

A key feature of this algorithm is that we discretize the action space, i.e., we create a grid of possible values for 𝑚 and ℎ
(note that 𝑥 is implied by 𝑚 and ℎ). This discretization simplifies computation of ̃𝑆 by allowing us to find it by solving a
sequence of linear programs.
The outer hyperplane approximation algorithm proceeds as follows:

1. Initialize subgradients, 𝐻 , and hyperplane levels, 𝐶0.
2. Given a set of subgradients, 𝐻 , and hyperplane levels, 𝐶𝑡, for each subgradient ℎ𝑖 ∈ 𝐻 :

• Solve a linear program (described below) for each action in the action space.
• Find the maximum and update the corresponding hyperplane level, 𝐶𝑖,𝑡+1.

3. If |𝐶𝑡+1 − 𝐶𝑡| > 𝜖, return to 2.

904 Chapter 46. Competitive Equilibria of a Model of Chang

https://nbviewer.jupyter.org/github/QuantEcon/QuantEcon.notebooks/blob/master/recursive_repeated_games.ipynb

Advanced Quantitative Economics with Python

Step 1 simply creates a large initial set 𝑆0.
Given some set 𝑆𝑡, Step 2 then constructs the set 𝑆𝑡+1 = 𝐷(𝑆𝑡). The linear program in Step 2 is designed to construct
a set 𝑆𝑡+1 that is as large as possible while satisfying the constraints of the 𝐷(𝑆) operator.
To do this, for each subgradient ℎ𝑖, and for each point in the action space (𝑚𝑗, ℎ𝑗), we solve the following problem:

max
[𝑤′,𝜃′]

ℎ𝑖 ⋅ (𝑤, 𝜃)

subject to

𝐻 ⋅ (𝑤′, 𝜃′) ≤ 𝐶𝑡

𝑤 = 𝑢(𝑓(𝑥𝑗)) + 𝑣(𝑚𝑗) + 𝛽𝑤′

𝜃 = 𝑢′(𝑓(𝑥𝑗))(𝑚𝑗 + 𝑥𝑗)

𝑥𝑗 = 𝑚𝑗(ℎ𝑗 − 1)

𝑚𝑗(𝑢′(𝑓(𝑥𝑗)) − 𝑣′(𝑚𝑗)) ≤ 𝛽𝜃′ (= if 𝑚𝑗 < �̄�)
This problem maximizes the hyperplane level for a given set of actions.
The second part of Step 2 then finds the maximum possible hyperplane level across the action space.
The algorithm constructs a sequence of progressively smaller sets 𝑆𝑡+1 ⊂ 𝑆𝑡 ⊂ 𝑆𝑡−1 ⋯ ⊂ 𝑆0.
Step 3 ends the algorithm when the difference between these sets is small enough.
We have created a Python class that solves the model assuming the following functional forms:

𝑢(𝑐) = 𝑙𝑜𝑔(𝑐)

𝑣(𝑚) = 1
500(𝑚�̄� − 0.5𝑚2)0.5

𝑓(𝑥) = 180 − (0.4𝑥)2

The remaining parameters {𝛽, �̄�, ℎ, ℎ̄} are then variables to be specified for an instance of the Chang class.
Below we use the class to solve the model and plot the resulting equilibrium set, once with 𝛽 = 0.3 and once with 𝛽 = 0.8.
(Here we have set the number of subgradients to 10 in order to speed up the code for now - we can increase accuracy by
increasing the number of subgradients)

"""
Provides a class called ChangModel to solve different
parameterizations of the Chang (1998) model.
"""

import numpy as np
import quantecon as qe
import time

from scipy.spatial import ConvexHull
from scipy.optimize import linprog, minimize, minimize_scalar
from scipy.interpolate import UnivariateSpline
import numpy.polynomial.chebyshev as cheb

class ChangModel:

(continues on next page)

46.6. Calculating all Promise-Value Pairs in CE 905

Advanced Quantitative Economics with Python

(continued from previous page)

"""
Class to solve for the competitive and sustainable sets in the Chang (1998)
model, for different parameterizations.
"""

def __init__(self, β, mbar, h_min, h_max, n_h, n_m, N_g):
Record parameters
self.β, self.mbar, self.h_min, self.h_max = β, mbar, h_min, h_max
self.n_h, self.n_m, self.N_g = n_h, n_m, N_g

Create other parameters
self.m_min = 1e-9
self.m_max = self.mbar
self.N_a = self.n_h*self.n_m

Utility and production functions
uc = lambda c: np.log(c)
uc_p = lambda c: 1/c
v = lambda m: 1/500 * (mbar * m - 0.5 * m**2)**0.5
v_p = lambda m: 0.5/500 * (mbar * m - 0.5 * m**2)**(-0.5) * (mbar - m)
u = lambda h, m: uc(f(h, m)) + v(m)

def f(h, m):
x = m * (h - 1)
f = 180 - (0.4 * x)**2
return f

def θ(h, m):
x = m * (h - 1)
θ = uc_p(f(h, m)) * (m + x)
return θ

Create set of possible action combinations, A
A1 = np.linspace(h_min, h_max, n_h).reshape(n_h, 1)
A2 = np.linspace(self.m_min, self.m_max, n_m).reshape(n_m, 1)
self.A = np.concatenate((np.kron(np.ones((n_m, 1)), A1),

np.kron(A2, np.ones((n_h, 1)))), axis=1)

Pre-compute utility and output vectors
self.euler_vec = -np.multiply(self.A[:, 1], \

uc_p(f(self.A[:, 0], self.A[:, 1])) - v_p(self.A[:, 1]))
self.u_vec = u(self.A[:, 0], self.A[:, 1])
self.Θ_vec = θ(self.A[:, 0], self.A[:, 1])
self.f_vec = f(self.A[:, 0], self.A[:, 1])
self.bell_vec = np.multiply(uc_p(f(self.A[:, 0],

self.A[:, 1])),
np.multiply(self.A[:, 1],
(self.A[:, 0] - 1))) \

+ np.multiply(self.A[:, 1],
v_p(self.A[:, 1]))

Find extrema of (w, θ) space for initial guess of equilibrium sets
p_vec = np.zeros(self.N_a)
w_vec = np.zeros(self.N_a)
for i in range(self.N_a):

p_vec[i] = self.Θ_vec[i]

(continues on next page)

906 Chapter 46. Competitive Equilibria of a Model of Chang

Advanced Quantitative Economics with Python

(continued from previous page)

w_vec[i] = self.u_vec[i]/(1 - β)

w_space = np.array([min(w_vec[~np.isinf(w_vec)]),
max(w_vec[~np.isinf(w_vec)])])

p_space = np.array([0, max(p_vec[~np.isinf(w_vec)])])
self.p_space = p_space

Set up hyperplane levels and gradients for iterations
def SG_H_V(N, w_space, p_space):

"""
This function initializes the subgradients, hyperplane levels,
and extreme points of the value set by choosing an appropriate
origin and radius. It is based on a similar function in QuantEcon's
Games.jl
"""

First, create a unit circle. Want points placed on [0, 2π]
inc = 2 * np.pi / N
degrees = np.arange(0, 2 * np.pi, inc)

Points on circle
H = np.zeros((N, 2))
for i in range(N):

x = degrees[i]
H[i, 0] = np.cos(x)
H[i, 1] = np.sin(x)

Then calculate origin and radius
o = np.array([np.mean(w_space), np.mean(p_space)])
r1 = max((max(w_space) - o[0])**2, (o[0] - min(w_space))**2)
r2 = max((max(p_space) - o[1])**2, (o[1] - min(p_space))**2)
r = np.sqrt(r1 + r2)

Now calculate vertices
Z = np.zeros((2, N))
for i in range(N):

Z[0, i] = o[0] + r*H.T[0, i]
Z[1, i] = o[1] + r*H.T[1, i]

Corresponding hyperplane levels
C = np.zeros(N)
for i in range(N):

C[i] = np.dot(Z[:, i], H[i, :])

return C, H, Z

C, self.H, Z = SG_H_V(N_g, w_space, p_space)
C = C.reshape(N_g, 1)
self.c0_c, self.c0_s, self.c1_c, self.c1_s = np.copy(C), np.copy(C), \

np.copy(C), np.copy(C)
self.z0_s, self.z0_c, self.z1_s, self.z1_c = np.copy(Z), np.copy(Z), \

np.copy(Z), np.copy(Z)

self.w_bnds_s, self.w_bnds_c = (w_space[0], w_space[1]), \
(w_space[0], w_space[1])

self.p_bnds_s, self.p_bnds_c = (p_space[0], p_space[1]), \

(continues on next page)

46.6. Calculating all Promise-Value Pairs in CE 907

Advanced Quantitative Economics with Python

(continued from previous page)

(p_space[0], p_space[1])

Create dictionaries to save equilibrium set for each iteration
self.c_dic_s, self.c_dic_c = {}, {}
self.c_dic_s[0], self.c_dic_c[0] = self.c0_s, self.c0_c

def solve_worst_spe(self):
"""
Method to solve for BR(Z). See p.449 of Chang (1998)
"""

p_vec = np.full(self.N_a, np.nan)
c = [1, 0]

Pre-compute constraints
aineq_mbar = np.vstack((self.H, np.array([0, -self.β])))
bineq_mbar = np.vstack((self.c0_s, 0))

aineq = self.H
bineq = self.c0_s
aeq = [[0, -self.β]]

for j in range(self.N_a):
Only try if consumption is possible
if self.f_vec[j] > 0:

If m = mbar, use inequality constraint
if self.A[j, 1] == self.mbar:

bineq_mbar[-1] = self.euler_vec[j]
res = linprog(c, A_ub=aineq_mbar, b_ub=bineq_mbar,

bounds=(self.w_bnds_s, self.p_bnds_s))
else:

beq = self.euler_vec[j]
res = linprog(c, A_ub=aineq, b_ub=bineq, A_eq=aeq, b_eq=beq,

bounds=(self.w_bnds_s, self.p_bnds_s))
if res.status == 0:

p_vec[j] = self.u_vec[j] + self.β * res.x[0]

Max over h and min over other variables (see Chang (1998) p.449)
self.br_z = np.nanmax(np.nanmin(p_vec.reshape(self.n_m, self.n_h), 0))

def solve_subgradient(self):
"""
Method to solve for E(Z). See p.449 of Chang (1998)
"""

Pre-compute constraints
aineq_C_mbar = np.vstack((self.H, np.array([0, -self.β])))
bineq_C_mbar = np.vstack((self.c0_c, 0))

aineq_C = self.H
bineq_C = self.c0_c
aeq_C = [[0, -self.β]]

aineq_S_mbar = np.vstack((np.vstack((self.H, np.array([0, -self.β]))),
np.array([-self.β, 0])))

bineq_S_mbar = np.vstack((self.c0_s, np.zeros((2, 1))))

(continues on next page)

908 Chapter 46. Competitive Equilibria of a Model of Chang

Advanced Quantitative Economics with Python

(continued from previous page)

aineq_S = np.vstack((self.H, np.array([-self.β, 0])))
bineq_S = np.vstack((self.c0_s, 0))
aeq_S = [[0, -self.β]]

Update maximal hyperplane level
for i in range(self.N_g):

c_a1a2_c, t_a1a2_c = np.full(self.N_a, -np.inf), \
np.zeros((self.N_a, 2))

c_a1a2_s, t_a1a2_s = np.full(self.N_a, -np.inf), \
np.zeros((self.N_a, 2))

c = [-self.H[i, 0], -self.H[i, 1]]

for j in range(self.N_a):
Only try if consumption is possible
if self.f_vec[j] > 0:

COMPETITIVE EQUILIBRIA
If m = mbar, use inequality constraint
if self.A[j, 1] == self.mbar:

bineq_C_mbar[-1] = self.euler_vec[j]
res = linprog(c, A_ub=aineq_C_mbar, b_ub=bineq_C_mbar,

bounds=(self.w_bnds_c, self.p_bnds_c))
If m < mbar, use equality constraint
else:

beq_C = self.euler_vec[j]
res = linprog(c, A_ub=aineq_C, b_ub=bineq_C, A_eq = aeq_C,

b_eq = beq_C, bounds=(self.w_bnds_c, \
self.p_bnds_c))

if res.status == 0:
c_a1a2_c[j] = self.H[i, 0] * (self.u_vec[j] \

+ self.β * res.x[0]) + self.H[i, 1] * self.Θ_vec[j]
t_a1a2_c[j] = res.x

SUSTAINABLE EQUILIBRIA
If m = mbar, use inequality constraint
if self.A[j, 1] == self.mbar:

bineq_S_mbar[-2] = self.euler_vec[j]
bineq_S_mbar[-1] = self.u_vec[j] - self.br_z
res = linprog(c, A_ub=aineq_S_mbar, b_ub=bineq_S_mbar,

bounds=(self.w_bnds_s, self.p_bnds_s))
If m < mbar, use equality constraint
else:

bineq_S[-1] = self.u_vec[j] - self.br_z
beq_S = self.euler_vec[j]
res = linprog(c, A_ub=aineq_S, b_ub=bineq_S, A_eq = aeq_S,

b_eq = beq_S, bounds=(self.w_bnds_s, \
self.p_bnds_s))

if res.status == 0:
c_a1a2_s[j] = self.H[i, 0] * (self.u_vec[j] \

+ self.β*res.x[0]) + self.H[i, 1] * self.Θ_vec[j]
t_a1a2_s[j] = res.x

idx_c = np.where(c_a1a2_c == max(c_a1a2_c))[0][0]
self.z1_c[:, i] = np.array([self.u_vec[idx_c]

(continues on next page)

46.6. Calculating all Promise-Value Pairs in CE 909

Advanced Quantitative Economics with Python

(continued from previous page)

+ self.β * t_a1a2_c[idx_c, 0],
self.Θ_vec[idx_c]])

idx_s = np.where(c_a1a2_s == max(c_a1a2_s))[0][0]
self.z1_s[:, i] = np.array([self.u_vec[idx_s]

+ self.β * t_a1a2_s[idx_s, 0],
self.Θ_vec[idx_s]])

for i in range(self.N_g):
self.c1_c[i] = np.dot(self.z1_c[:, i], self.H[i, :])
self.c1_s[i] = np.dot(self.z1_s[:, i], self.H[i, :])

def solve_sustainable(self, tol=1e-5, max_iter=250):
"""
Method to solve for the competitive and sustainable equilibrium sets.
"""

t = time.time()
diff = tol + 1
iters = 0

print('### --------------- ###')
print('Solving Chang Model Using Outer Hyperplane Approximation')
print('### --------------- ### \n')

print('Maximum difference when updating hyperplane levels:')

while diff > tol and iters < max_iter:
iters = iters + 1
self.solve_worst_spe()
self.solve_subgradient()
diff = max(np.maximum(abs(self.c0_c - self.c1_c),

abs(self.c0_s - self.c1_s)))
print(diff)

Update hyperplane levels
self.c0_c, self.c0_s = np.copy(self.c1_c), np.copy(self.c1_s)

Update bounds for w and θ
wmin_c, wmax_c = np.min(self.z1_c, axis=1)[0], \

np.max(self.z1_c, axis=1)[0]
pmin_c, pmax_c = np.min(self.z1_c, axis=1)[1], \

np.max(self.z1_c, axis=1)[1]

wmin_s, wmax_s = np.min(self.z1_s, axis=1)[0], \
np.max(self.z1_s, axis=1)[0]

pmin_S, pmax_S = np.min(self.z1_s, axis=1)[1], \
np.max(self.z1_s, axis=1)[1]

self.w_bnds_s, self.w_bnds_c = (wmin_s, wmax_s), (wmin_c, wmax_c)
self.p_bnds_s, self.p_bnds_c = (pmin_S, pmax_S), (pmin_c, pmax_c)

Save iteration
self.c_dic_c[iters], self.c_dic_s[iters] = np.copy(self.c1_c), \

np.copy(self.c1_s)
self.iters = iters

(continues on next page)

910 Chapter 46. Competitive Equilibria of a Model of Chang

Advanced Quantitative Economics with Python

(continued from previous page)

elapsed = time.time() - t
print('Convergence achieved after {} iterations and {} \

seconds'.format(iters, round(elapsed, 2)))

def solve_bellman(self, θ_min, θ_max, order, disp=False, tol=1e-7, maxiters=100):
"""
Continuous Method to solve the Bellman equation in section 25.3
"""
mbar = self.mbar

Utility and production functions
uc = lambda c: np.log(c)
uc_p = lambda c: 1 / c
v = lambda m: 1 / 500 * (mbar * m - 0.5 * m**2)**0.5
v_p = lambda m: 0.5/500 * (mbar*m - 0.5 * m**2)**(-0.5) * (mbar - m)
u = lambda h, m: uc(f(h, m)) + v(m)

def f(h, m):
x = m * (h - 1)
f = 180 - (0.4 * x)**2
return f

def θ(h, m):
x = m * (h - 1)
θ = uc_p(f(h, m)) * (m + x)
return θ

Bounds for Maximization
lb1 = np.array([self.h_min, 0, θ_min])
ub1 = np.array([self.h_max, self.mbar - 1e-5, θ_max])
lb2 = np.array([self.h_min, θ_min])
ub2 = np.array([self.h_max, θ_max])

Initialize Value Function coefficients
Calculate roots of Chebyshev polynomial
k = np.linspace(order, 1, order)
roots = np.cos((2 * k - 1) * np.pi / (2 * order))
Scale to approximation space
s = θ_min + (roots - -1) / 2 * (θ_max - θ_min)
Create a basis matrix
Φ = cheb.chebvander(roots, order - 1)
c = np.zeros(Φ.shape[0])

Function to minimize and constraints
def p_fun(x):

scale = -1 + 2 * (x[2] - θ_min)/(θ_max - θ_min)
p_fun = - (u(x[0], x[1]) \

+ self.β * np.dot(cheb.chebvander(scale, order - 1), c))
return p_fun

def p_fun2(x):
scale = -1 + 2*(x[1] - θ_min)/(θ_max - θ_min)
p_fun = - (u(x[0],mbar) \

+ self.β * np.dot(cheb.chebvander(scale, order - 1), c))
return p_fun

(continues on next page)

46.6. Calculating all Promise-Value Pairs in CE 911

Advanced Quantitative Economics with Python

(continued from previous page)

cons1 = ({'type': 'eq', 'fun': lambda x: uc_p(f(x[0], x[1])) * x[1]
* (x[0] - 1) + v_p(x[1]) * x[1] + self.β * x[2] - θ},

{'type': 'eq', 'fun': lambda x: uc_p(f(x[0], x[1]))
* x[0] * x[1] - θ})

cons2 = ({'type': 'ineq', 'fun': lambda x: uc_p(f(x[0], mbar)) * mbar
* (x[0] - 1) + v_p(mbar) * mbar + self.β * x[1] - θ},

{'type': 'eq', 'fun': lambda x: uc_p(f(x[0], mbar))
* x[0] * mbar - θ})

bnds1 = np.concatenate([lb1.reshape(3, 1), ub1.reshape(3, 1)], axis=1)
bnds2 = np.concatenate([lb2.reshape(2, 1), ub2.reshape(2, 1)], axis=1)

Bellman Iterations
diff = 1
iters = 1

while diff > tol:
1. Maximization, given value function guess

p_iter1 = np.zeros(order)
for i in range(order):

θ = s[i]
res = minimize(p_fun,

lb1 + (ub1-lb1) / 2,
method='SLSQP',
bounds=bnds1,
constraints=cons1,
tol=1e-10)

if res.success == True:
p_iter1[i] = -p_fun(res.x)

res = minimize(p_fun2,
lb2 + (ub2-lb2) / 2,
method='SLSQP',
bounds=bnds2,
constraints=cons2,
tol=1e-10)

if -p_fun2(res.x) > p_iter1[i] and res.success == True:
p_iter1[i] = -p_fun2(res.x)

2. Bellman updating of Value Function coefficients
c1 = np.linalg.solve(Φ, p_iter1)
3. Compute distance and update
diff = np.linalg.norm(c - c1)
if bool(disp == True):

print(diff)
c = np.copy(c1)
iters = iters + 1
if iters > maxiters:

print('Convergence failed after {} iterations'.format(maxiters))
break

self.θ_grid = s
self.p_iter = p_iter1
self.Φ = Φ
self.c = c
print('Convergence achieved after {} iterations'.format(iters))

(continues on next page)

912 Chapter 46. Competitive Equilibria of a Model of Chang

Advanced Quantitative Economics with Python

(continued from previous page)

Check residuals
θ_grid_fine = np.linspace(θ_min, θ_max, 100)
resid_grid = np.zeros(100)
p_grid = np.zeros(100)
θ_prime_grid = np.zeros(100)
m_grid = np.zeros(100)
h_grid = np.zeros(100)
for i in range(100):

θ = θ_grid_fine[i]
res = minimize(p_fun,

lb1 + (ub1-lb1) / 2,
method='SLSQP',
bounds=bnds1,
constraints=cons1,
tol=1e-10)

if res.success == True:
p = -p_fun(res.x)
p_grid[i] = p
θ_prime_grid[i] = res.x[2]
h_grid[i] = res.x[0]
m_grid[i] = res.x[1]

res = minimize(p_fun2,
lb2 + (ub2-lb2)/2,
method='SLSQP',
bounds=bnds2,
constraints=cons2,
tol=1e-10)

if -p_fun2(res.x) > p and res.success == True:
p = -p_fun2(res.x)
p_grid[i] = p
θ_prime_grid[i] = res.x[1]
h_grid[i] = res.x[0]
m_grid[i] = self.mbar

scale = -1 + 2 * (θ - θ_min)/(θ_max - θ_min)
resid_grid[i] = np.dot(cheb.chebvander(scale, order-1), c) - p

self.resid_grid = resid_grid
self.θ_grid_fine = θ_grid_fine
self.θ_prime_grid = θ_prime_grid
self.m_grid = m_grid
self.h_grid = h_grid
self.p_grid = p_grid
self.x_grid = m_grid * (h_grid - 1)

Simulate
θ_series = np.zeros(31)
m_series = np.zeros(30)
h_series = np.zeros(30)

Find initial θ
def ValFun(x):

scale = -1 + 2*(x - θ_min)/(θ_max - θ_min)
p_fun = np.dot(cheb.chebvander(scale, order - 1), c)
return -p_fun

(continues on next page)

46.6. Calculating all Promise-Value Pairs in CE 913

Advanced Quantitative Economics with Python

(continued from previous page)

res = minimize(ValFun,
(θ_min + θ_max)/2,
bounds=[(θ_min, θ_max)])

θ_series[0] = res.x

Simulate
for i in range(30):

θ = θ_series[i]
res = minimize(p_fun,

lb1 + (ub1-lb1)/2,
method='SLSQP',
bounds=bnds1,
constraints=cons1,
tol=1e-10)

if res.success == True:
p = -p_fun(res.x)
h_series[i] = res.x[0]
m_series[i] = res.x[1]
θ_series[i+1] = res.x[2]

res2 = minimize(p_fun2,
lb2 + (ub2-lb2)/2,
method='SLSQP',
bounds=bnds2,
constraints=cons2,
tol=1e-10)

if -p_fun2(res2.x) > p and res2.success == True:
h_series[i] = res2.x[0]
m_series[i] = self.mbar
θ_series[i+1] = res2.x[1]

self.θ_series = θ_series
self.m_series = m_series
self.h_series = h_series
self.x_series = m_series * (h_series - 1)

ch1 = ChangModel(β=0.3, mbar=30, h_min=0.9, h_max=2, n_h=8, n_m=35, N_g=10)
ch1.solve_sustainable()

Solving Chang Model Using Outer Hyperplane Approximation

Maximum difference when updating hyperplane levels:

[1.9168]

[0.66782]

[0.49235]

[0.32412]

914 Chapter 46. Competitive Equilibria of a Model of Chang

Advanced Quantitative Economics with Python

[0.19022]

[0.10863]

[0.05817]

[0.0262]

[0.01836]

[0.01415]

[0.00297]

[0.00089]

[0.00027]

[0.00008]

[0.00002]

[0.00001]
Convergence achieved after 16 iterations and 43.51 seconds

def plot_competitive(ChangModel):
"""
Method that only plots competitive equilibrium set
"""
poly_C = polytope.Polytope(ChangModel.H, ChangModel.c1_c)
ext_C = polytope.extreme(poly_C)

fig, ax = plt.subplots(figsize=(7, 5))

ax.set_xlabel('w', fontsize=16)
ax.set_ylabel(r"θ", fontsize=18)

ax.fill(ext_C[:,0], ext_C[:,1], 'r', zorder=0)
ChangModel.min_theta = min(ext_C[:, 1])
ChangModel.max_theta = max(ext_C[:, 1])

Add point showing Ramsey Plan
idx_Ramsey = np.where(ext_C[:, 0] == max(ext_C[:, 0]))[0][0]
R = ext_C[idx_Ramsey, :]
ax.scatter(R[0], R[1], 150, 'black', 'o', zorder=1)
w_min = min(ext_C[:, 0])

Label Ramsey Plan slightly to the right of the point

(continues on next page)

46.6. Calculating all Promise-Value Pairs in CE 915

Advanced Quantitative Economics with Python

(continued from previous page)

ax.annotate("R", xy=(R[0], R[1]), xytext=(R[0] + 0.03 * (R[0] - w_min),
R[1]), fontsize=18)

plt.tight_layout()
plt.show()

plot_competitive(ch1)

ch2 = ChangModel(β=0.8, mbar=30, h_min=0.9, h_max=1/0.8,
n_h=8, n_m=35, N_g=10)

ch2.solve_sustainable()

Solving Chang Model Using Outer Hyperplane Approximation

Maximum difference when updating hyperplane levels:

[0.06369]

[0.02476]

[0.02153]

916 Chapter 46. Competitive Equilibria of a Model of Chang

Advanced Quantitative Economics with Python

[0.01915]

[0.01795]

[0.01642]

[0.01507]

[0.01284]

[0.01106]

[0.00694]

[0.0085]

[0.00781]

[0.00433]

[0.00492]

[0.00303]

[0.00182]

[0.00638]

[0.00116]

[0.00093]

[0.00075]

[0.0006]

[0.00494]

[0.00038]

[0.00121]

46.6. Calculating all Promise-Value Pairs in CE 917

Advanced Quantitative Economics with Python

[0.00024]

[0.0002]

[0.00016]

[0.00013]

[0.0001]

[0.00008]

[0.00006]

[0.00005]

[0.00004]

[0.00003]

[0.00003]

[0.00002]

[0.00002]

[0.00001]

[0.00001]

[0.00001]
Convergence achieved after 40 iterations and 125.61 seconds

plot_competitive(ch2)

918 Chapter 46. Competitive Equilibria of a Model of Chang

Advanced Quantitative Economics with Python

46.7 Solving a Continuation Ramsey Planner’s Bellman Equation

In this section we solve the Bellman equation confronting a continuation Ramsey planner.
The construction of a Ramsey plan is decomposed into a two subproblems in Ramsey plans, time inconsistency, sustainable
plans and dynamic Stackelberg problems.

• Subproblem 1 is faced by a sequence of continuation Ramsey planners at 𝑡 ≥ 1.
• Subproblem 2 is faced by a Ramsey planner at 𝑡 = 0.

The problem is:

𝐽(𝜃) = max
𝑚,𝑥,ℎ,𝜃′

𝑢(𝑓(𝑥)) + 𝑣(𝑚) + 𝛽𝐽(𝜃′)

subject to:

𝜃 ≤ 𝑢′(𝑓(𝑥))𝑥 + 𝑣′(𝑚)𝑚 + 𝛽𝜃′

𝜃 = 𝑢′(𝑓(𝑥))(𝑚 + 𝑥)

𝑥 = 𝑚(ℎ − 1)

(𝑚, 𝑥, ℎ) ∈ 𝐸

𝜃′ ∈ Ω
To solve this Bellman equation, we must know the set Ω.

46.7. Solving a Continuation Ramsey Planner’s Bellman Equation 919

Advanced Quantitative Economics with Python

We have solved the Bellman equation for the two sets of parameter values for which we computed the equilibrium value
sets above.
Hence for these parameter configurations, we know the bounds of Ω.
The two sets of parameters differ only in the level of 𝛽.
From the figures earlier in this lecture, we know that when 𝛽 = 0.3, Ω = [0.0088, 0.0499], and when 𝛽 = 0.8,
Ω = [0.0395, 0.2193]

ch1 = ChangModel(β=0.3, mbar=30, h_min=0.99, h_max=1/0.3,
n_h=8, n_m=35, N_g=50)

ch2 = ChangModel(β=0.8, mbar=30, h_min=0.1, h_max=1/0.8,
n_h=20, n_m=50, N_g=50)

/tmp/ipykernel_5943/1608401414.py:33: RuntimeWarning: invalid value encountered in␣
↪log
uc = lambda c: np.log(c)

ch1.solve_bellman(θ_min=0.01, θ_max=0.0499, order=30, tol=1e-6)
ch2.solve_bellman(θ_min=0.045, θ_max=0.15, order=30, tol=1e-6)

/tmp/ipykernel_5943/1608401414.py:309: RuntimeWarning: invalid value encountered␣
↪in log
uc = lambda c: np.log(c)

Convergence achieved after 15 iterations

/usr/share/miniconda3/envs/quantecon/lib/python3.11/site-packages/scipy/optimize/_
↪optimize.py:404: RuntimeWarning: Values in x were outside bounds during a␣
↪minimize step, clipping to bounds
warnings.warn("Values in x were outside bounds during a "

Convergence achieved after 72 iterations

First, a quick check that our approximations of the value functions are good.
We do this by calculating the residuals between iterates on the value function on a fine grid:

max(abs(ch1.resid_grid)), max(abs(ch2.resid_grid))

(6.46313155971967e-06, 6.875358415925348e-07)

The value functions plotted below trace out the right edges of the sets of equilibrium values plotted above

fig, axes = plt.subplots(1, 2, figsize=(12, 4))

for ax, model in zip(axes, (ch1, ch2)):
ax.plot(model.θ_grid, model.p_iter)
ax.set(xlabel=r"θ",

ylabel=r"$J(\theta)$",
title=rf"$\beta = {model.β}$")

(continues on next page)

920 Chapter 46. Competitive Equilibria of a Model of Chang

Advanced Quantitative Economics with Python

(continued from previous page)

plt.show()

The next figure plots the optimal policy functions; values of 𝜃′, 𝑚, 𝑥, ℎ for each value of the state 𝜃:

for model in (ch1, ch2):

fig, axes = plt.subplots(2, 2, figsize=(12, 6), sharex=True)
fig.suptitle(rf"$\beta = {model.β}$", fontsize=16)

plots = [model.θ_prime_grid, model.m_grid,
model.h_grid, model.x_grid]

labels = [r"θ'", "m", "h", "x"]

for ax, plot, label in zip(axes.flatten(), plots, labels):
ax.plot(model.θ_grid_fine, plot)
ax.set_xlabel(r"θ", fontsize=14)
ax.set_ylabel(label, fontsize=14)

plt.show()

46.7. Solving a Continuation Ramsey Planner’s Bellman Equation 921

Advanced Quantitative Economics with Python

With the first set of parameter values, the value of 𝜃′ chosen by the Ramsey planner quickly hits the upper limit of Ω.
But with the second set of parameters it converges to a value in the interior of the set.
Consequently, the choice of ̄𝜃 is clearly important with the first set of parameter values.
One way of seeing this is plotting 𝜃′(𝜃) for each set of parameters.
With the first set of parameter values, this function does not intersect the 45-degree line until ̄𝜃, whereas in the second
set of parameter values, it intersects in the interior.

922 Chapter 46. Competitive Equilibria of a Model of Chang

Advanced Quantitative Economics with Python

fig, axes = plt.subplots(1, 2, figsize=(12, 4))

for ax, model in zip(axes, (ch1, ch2)):
ax.plot(model.θ_grid_fine, model.θ_prime_grid, label=r"$\theta'(\theta)$")
ax.plot(model.θ_grid_fine, model.θ_grid_fine, label=r"θ")
ax.set(xlabel=r"θ", title=rf"$\beta = {model.β}$")

axes[0].legend()
plt.show()

Subproblem 2 is equivalent to the planner choosing the initial value of 𝜃 (i.e. the value which maximizes the value
function).
From this starting point, we can then trace out the paths for {𝜃𝑡, 𝑚𝑡, ℎ𝑡, 𝑥𝑡}∞

𝑡=0 that support this equilibrium.
These are shown below for both sets of parameters

for model in (ch1, ch2):

fig, axes = plt.subplots(2, 2, figsize=(12, 6))
fig.suptitle(rf"$\beta = {model.β}$")

plots = [model.θ_series, model.m_series, model.h_series, model.x_series]
labels = [r"θ", "m", "h", "x"]

for ax, plot, label in zip(axes.flatten(), plots, labels):
ax.plot(plot)
ax.set(xlabel='t', ylabel=label)

plt.show()

46.7. Solving a Continuation Ramsey Planner’s Bellman Equation 923

Advanced Quantitative Economics with Python

924 Chapter 46. Competitive Equilibria of a Model of Chang

Advanced Quantitative Economics with Python

46.7.1 Next Steps

In Credible Government Policies in Chang Model we shall find a subset of competitive equilibria that are sustainable in
the sense that a sequence of government administrations that chooses sequentially, rather than once and for all at time 0
will choose to implement them.
In the process of constructing them, we shall construct another, smaller set of competitive equilibria.

46.7. Solving a Continuation Ramsey Planner’s Bellman Equation 925

Advanced Quantitative Economics with Python

926 Chapter 46. Competitive Equilibria of a Model of Chang

CHAPTER

FORTYSEVEN

CREDIBLE GOVERNMENT POLICIES IN A MODEL OF CHANG

Contents

• Credible Government Policies in a Model of Chang

– Overview

– The Setting

– Calculating the Set of Sustainable Promise-Value Pairs

In addition to what’s in Anaconda, this lecture will need the following libraries:

!pip install polytope

47.1 Overview

Some of the material in this lecture and competitive equilibria in the Chang model can be viewed as more sophisticated
and complete treatments of the topics discussed in Ramsey plans, time inconsistency, sustainable plans.
This lecture assumes almost the same economic environment analyzed in competitive equilibria in the Chang model.
The only change – and it is a substantial one – is the timing protocol for making government decisions.
In competitive equilibria in the Chang model, a Ramsey planner chose a comprehensive government policy once-and-for-all
at time 0.
Now in this lecture, there is no time 0 Ramsey planner.
Instead there is a sequence of government decision-makers, one for each 𝑡.
The time 𝑡 government decision-maker choose time 𝑡 government actions after forecasting what future governments will
do.
We use the notion of a sustainable plan proposed in [CK90], also referred to as a credible public policy in [Sto89].
Technically, this lecture starts where lecture competitive equilibria in the Chang model on Ramsey plans within the Chang
[Cha98] model stopped.
That lecture presents recursive representations of competitive equilibria and a Ramsey plan for a version of a model of
Calvo [Cal78] that Chang used to analyze and illustrate these concepts.
We used two operators to characterize competitive equilibria and a Ramsey plan, respectively.
In this lecture, we define a credible public policy or sustainable plan.

927

Advanced Quantitative Economics with Python

Starting from a large enough initial set 𝑍0, we use iterations on Chang’s set-to-set operator �̃�(𝑍) to compute a set of
values associated with sustainable plans.
Chang’s operator �̃�(𝑍) is closely connected with the operator 𝐷(𝑍) introduced in lecture competitive equilibria in the
Chang model.

• �̃�(𝑍) incorporates all of the restrictions imposed in constructing the operator 𝐷(𝑍), but ….
• It adds some additional restrictions

– these additional restrictions incorporate the idea that a plan must be sustainable.
– sustainable means that the government wants to implement it at all times after all histories.

Let’s start with some standard imports:

import numpy as np
import polytope
import matplotlib.pyplot as plt
%matplotlib inline

`polytope` failed to import `cvxopt.glpk`.

will use `scipy.optimize.linprog`

47.2 The Setting

We begin by reviewing the set up deployed in competitive equilibria in the Chang model.
Chang’s model, adopted from Calvo, is designed to focus on the intertemporal trade-offs between the welfare benefits
of deflation and the welfare costs associated with the high tax collections required to retire money at a rate that delivers
deflation.
A benevolent time 0 government can promote utility generating increases in real balances only by imposing an infinite
sequence of sufficiently large distorting tax collections.
To promote the welfare increasing effects of high real balances, the government wants to induce gradual deflation.
We start by reviewing notation.
For a sequence of scalars ⃗𝑧 ≡ {𝑧𝑡}∞

𝑡=0, let ⃗𝑧𝑡 = (𝑧0, … , 𝑧𝑡), ⃗𝑧𝑡 = (𝑧𝑡, 𝑧𝑡+1, …).
An infinitely lived representative agent and an infinitely lived government exist at dates 𝑡 = 0, 1, ….
The objects in play are

• an initial quantity 𝑀−1 of nominal money holdings

• a sequence of inverse money growth rates ℎ⃗ and an associated sequence of nominal money holdings �⃗�
• a sequence of values of money ⃗𝑞
• a sequence of real money holdings �⃗�
• a sequence of total tax collections ⃗𝑥
• a sequence of per capita rates of consumption ⃗𝑐
• a sequence of per capita incomes ⃗𝑦

928 Chapter 47. Credible Government Policies in a Model of Chang

Advanced Quantitative Economics with Python

A benevolent government chooses sequences (�⃗�, ℎ⃗, ⃗𝑥) subject to a sequence of budget constraints and other constraints
imposed by competitive equilibrium.
Given tax collection and price of money sequences, a representative household chooses sequences (⃗𝑐, �⃗�) of consumption
and real balances.
In competitive equilibrium, the price of money sequence ⃗𝑞 clears markets, thereby reconciling decisions of the government
and the representative household.

47.2.1 The Household’s Problem

A representative household faces a nonnegative value of money sequence ⃗𝑞 and sequences ⃗𝑦, ⃗𝑥 of income and total tax
collections, respectively.
The household chooses nonnegative sequences ⃗𝑐, �⃗� of consumption and nominal balances, respectively, to maximize

∞
∑
𝑡=0

𝛽𝑡 [𝑢(𝑐𝑡) + 𝑣(𝑞𝑡𝑀𝑡)] (47.1)

subject to

𝑞𝑡𝑀𝑡 ≤ 𝑦𝑡 + 𝑞𝑡𝑀𝑡−1 − 𝑐𝑡 − 𝑥𝑡 (47.2)

and

𝑞𝑡𝑀𝑡 ≤ �̄� (47.3)

Here 𝑞𝑡 is the reciprocal of the price level at 𝑡, also known as the value of money.
Chang [Cha98] assumes that

• 𝑢 ∶ ℝ+ → ℝ is twice continuously differentiable, strictly concave, and strictly increasing;
• 𝑣 ∶ ℝ+ → ℝ is twice continuously differentiable and strictly concave;
• 𝑢′(𝑐)𝑐→0 = lim𝑚→0 𝑣′(𝑚) = +∞;
• there is a finite level 𝑚 = 𝑚𝑓 such that 𝑣′(𝑚𝑓) = 0

Real balances carried out of a period equal 𝑚𝑡 = 𝑞𝑡𝑀𝑡.
Inequality (47.2) is the household’s time 𝑡 budget constraint.
It tells how real balances 𝑞𝑡𝑀𝑡 carried out of period 𝑡 depend on income, consumption, taxes, and real balances 𝑞𝑡𝑀𝑡−1
carried into the period.
Equation (47.3) imposes an exogenous upper bound �̄� on the choice of real balances, where �̄� ≥ 𝑚𝑓 .

47.2.2 Government

The government chooses a sequence of inverse money growth rates with time 𝑡 component ℎ𝑡 ≡ 𝑀𝑡−1
𝑀𝑡

∈ Π ≡ [𝜋, 𝜋],
where 0 < 𝜋 < 1 < 1

𝛽 ≤ 𝜋.
The government faces a sequence of budget constraints with time 𝑡 component

−𝑥𝑡 = 𝑞𝑡(𝑀𝑡 − 𝑀𝑡−1)

which, by using the definitions of 𝑚𝑡 and ℎ𝑡, can also be expressed as

−𝑥𝑡 = 𝑚𝑡(1 − ℎ𝑡) (47.4)

47.2. The Setting 929

Advanced Quantitative Economics with Python

The restrictions 𝑚𝑡 ∈ [0, �̄�] and ℎ𝑡 ∈ Π evidently imply that 𝑥𝑡 ∈ 𝑋 ≡ [(𝜋 − 1)�̄�, (𝜋 − 1)�̄�].
We define the set 𝐸 ≡ [0, �̄�] × Π × 𝑋, so that we require that (𝑚, ℎ, 𝑥) ∈ 𝐸.
To represent the idea that taxes are distorting, Chang makes the following assumption about outcomes for per capita
output:

𝑦𝑡 = 𝑓(𝑥𝑡) (47.5)

where 𝑓 ∶ ℝ → ℝ satisfies 𝑓(𝑥) > 0, is twice continuously differentiable, 𝑓″(𝑥) < 0, and 𝑓(𝑥) = 𝑓(−𝑥) for all 𝑥 ∈ ℝ,
so that subsidies and taxes are equally distorting.
The purpose is not to model the causes of tax distortions in any detail but simply to summarize the outcome of those
distortions via the function 𝑓(𝑥).
A key part of the specification is that tax distortions are increasing in the absolute value of tax revenues.
The government chooses a competitive equilibrium that maximizes (47.1).

47.2.3 Within-period Timing Protocol

For the results in this lecture, the timing of actions within a period is important because of the incentives that it activates.
Chang assumed the following within-period timing of decisions:

• first, the government chooses ℎ𝑡 and 𝑥𝑡;
• then given ⃗𝑞 and its expectations about future values of 𝑥 and 𝑦’s, the household chooses 𝑀𝑡 and therefore 𝑚𝑡
because 𝑚𝑡 = 𝑞𝑡𝑀𝑡;

• then output 𝑦𝑡 = 𝑓(𝑥𝑡) is realized;
• finally 𝑐𝑡 = 𝑦𝑡

This within-period timing confronts the government with choices framed by how the private sector wants to respond when
the government takes time 𝑡 actions that differ from what the private sector had expected.
This timing will shape the incentives confronting the government at each history that are to be incorporated in the con-
struction of the �̃� operator below.

47.2.4 Household’s Problem

Given 𝑀−1 and {𝑞𝑡}∞
𝑡=0, the household’s problem is

ℒ = max
⃗𝑐,�⃗�

min
�⃗�,�⃗�

∞
∑
𝑡=0

𝛽𝑡{𝑢(𝑐𝑡) + 𝑣(𝑀𝑡𝑞𝑡) + 𝜆𝑡[𝑦𝑡 − 𝑐𝑡 − 𝑥𝑡 + 𝑞𝑡𝑀𝑡−1 − 𝑞𝑡𝑀𝑡]

+ 𝜇𝑡[�̄� − 𝑞𝑡𝑀𝑡]}

First-order conditions with respect to 𝑐𝑡 and 𝑀𝑡, respectively, are

𝑢′(𝑐𝑡) = 𝜆𝑡
𝑞𝑡[𝑢′(𝑐𝑡) − 𝑣′(𝑀𝑡𝑞𝑡)] ≤ 𝛽𝑢′(𝑐𝑡+1)𝑞𝑡+1, = if 𝑀𝑡𝑞𝑡 < �̄�

Using ℎ𝑡 = 𝑀𝑡−1
𝑀𝑡

and 𝑞𝑡 = 𝑚𝑡
𝑀𝑡

in these first-order conditions and rearranging implies

𝑚𝑡[𝑢′(𝑐𝑡) − 𝑣′(𝑚𝑡)] ≤ 𝛽𝑢′(𝑓(𝑥𝑡+1))𝑚𝑡+1ℎ𝑡+1, = if 𝑚𝑡 < �̄� (47.6)

930 Chapter 47. Credible Government Policies in a Model of Chang

Advanced Quantitative Economics with Python

Define the following key variable

𝜃𝑡+1 ≡ 𝑢′(𝑓(𝑥𝑡+1))𝑚𝑡+1ℎ𝑡+1 (47.7)

This is real money balances at time 𝑡 + 1 measured in units of marginal utility, which Chang refers to as ‘the marginal
utility of real balances’.
From the standpoint of the household at time 𝑡, equation (47.7) shows that 𝜃𝑡+1 intermediates the influences of
(⃗𝑥𝑡+1, �⃗�𝑡+1) on the household’s choice of real balances 𝑚𝑡.
By “intermediates” we mean that the future paths (⃗𝑥𝑡+1, �⃗�𝑡+1) influence 𝑚𝑡 entirely through their effects on the scalar
𝜃𝑡+1.
The observation that the one dimensional promised marginal utility of real balances 𝜃𝑡+1 functions in this way is an
important step in constructing a class of competitive equilibria that have a recursive representation.
A closely related observation pervaded the analysis of Stackelberg plans in dynamic Stackelberg problems and the Calvo
model.

47.2.5 Competitive Equilibrium

Definition:
• A government policy is a pair of sequences (ℎ⃗, ⃗𝑥) where ℎ𝑡 ∈ Π ∀𝑡 ≥ 0.
• A price system is a non-negative value of money sequence ⃗𝑞.
• An allocation is a triple of non-negative sequences (⃗𝑐, �⃗�, ⃗𝑦).

It is required that time 𝑡 components (𝑚𝑡, 𝑥𝑡, ℎ𝑡) ∈ 𝐸.
Definition:
Given 𝑀−1, a government policy (ℎ⃗, ⃗𝑥), price system ⃗𝑞, and allocation (⃗𝑐, �⃗�, ⃗𝑦) are said to be a competitive equilibrium
if

• 𝑚𝑡 = 𝑞𝑡𝑀𝑡 and 𝑦𝑡 = 𝑓(𝑥𝑡).
• The government budget constraint is satisfied.
• Given ⃗𝑞, ⃗𝑥, ⃗𝑦, (⃗𝑐, �⃗�) solves the household’s problem.

47.2.6 A Credible Government Policy

Chang works with
A credible government policy with a recursive representation

• Here there is no time 0 Ramsey planner.
• Instead there is a sequence of governments, one for each 𝑡, that choose time 𝑡 government actions after forecasting
what future governments will do.

• Let 𝑤 = ∑∞
𝑡=0 𝛽𝑡 [𝑢(𝑐𝑡) + 𝑣(𝑞𝑡𝑀𝑡)] be a value associated with a particular competitive equilibrium.

• A recursive representation of a credible government policy is a pair of initial conditions (𝑤0, 𝜃0) and a five-tuple
of functions

ℎ(𝑤𝑡, 𝜃𝑡), 𝑚(ℎ𝑡, 𝑤𝑡, 𝜃𝑡), 𝑥(ℎ𝑡, 𝑤𝑡, 𝜃𝑡), 𝜒(ℎ𝑡, 𝑤𝑡, 𝜃𝑡), Ψ(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)

mapping 𝑤𝑡, 𝜃𝑡 and in some cases ℎ𝑡 into ℎ̂𝑡, 𝑚𝑡, 𝑥𝑡, 𝑤𝑡+1, and 𝜃𝑡+1, respectively.

47.2. The Setting 931

Advanced Quantitative Economics with Python

• Starting from an initial condition (𝑤0, 𝜃0), a credible government policy can be constructed by iterating on these
functions in the following order that respects the within-period timing:

ℎ̂𝑡 = ℎ(𝑤𝑡, 𝜃𝑡)
𝑚𝑡 = 𝑚(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)
𝑥𝑡 = 𝑥(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)

𝑤𝑡+1 = 𝜒(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)
𝜃𝑡+1 = Ψ(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)

(47.8)

• Here it is to be understood that ℎ̂𝑡 is the action that the government policy instructs the government to take, while
ℎ𝑡 possibly not equal to ℎ̂𝑡 is some other action that the government is free to take at time 𝑡.

The plan is credible if it is in the time 𝑡 government’s interest to execute it.
Credibility requires that the plan be such that for all possible choices of ℎ𝑡 that are consistent with competitive equilibria,

𝑢(𝑓(𝑥(ℎ̂𝑡, 𝑤𝑡, 𝜃𝑡))) + 𝑣(𝑚(ℎ̂𝑡, 𝑤𝑡, 𝜃𝑡)) + 𝛽𝜒(ℎ̂𝑡, 𝑤𝑡, 𝜃𝑡)
≥ 𝑢(𝑓(𝑥(ℎ𝑡, 𝑤𝑡, 𝜃𝑡))) + 𝑣(𝑚(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)) + 𝛽𝜒(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)

so that at each instance and circumstance of choice, a government attains a weakly higher lifetime utility with continuation
value 𝑤𝑡+1 = Ψ(ℎ𝑡, 𝑤𝑡, 𝜃𝑡) by adhering to the plan and confirming the associated time 𝑡 action ℎ̂𝑡 that the public had
expected earlier.
Please note the subtle change in arguments of the functions used to represent a competitive equilibrium and a Ramsey
plan, on the one hand, and a credible government plan, on the other hand.
The extra arguments appearing in the functions used to represent a credible plan come from allowing the government to
contemplate disappointing the private sector’s expectation about its time 𝑡 choice ℎ̂𝑡.
A credible plan induces the government to confirm the private sector’s expectation.
The recursive representation of the plan uses the evolution of continuation values to deter the government from wanting
to disappoint the private sector’s expectations.
Technically, a Ramsey plan and a credible plan both incorporate history dependence.
For a Ramsey plan, this is encoded in the dynamics of the state variable 𝜃𝑡, a promised marginal utility that the Ramsey
plan delivers to the private sector.
For a credible government plan, we the two-dimensional state vector (𝑤𝑡, 𝜃𝑡) encodes history dependence.

47.2.7 Sustainable Plans

A government strategy 𝜎 and an allocation rule 𝛼 are said to constitute a sustainable plan (SP) if.
1. 𝜎 is admissible.
2. Given 𝜎, 𝛼 is competitive.
3. After any history ℎ⃗𝑡−1, the continuation of 𝜎 is optimal for the government; i.e., the sequence ℎ⃗𝑡 induced by 𝜎

after ℎ⃗𝑡−1 maximizes over 𝐶𝐸𝜋 given 𝛼.
Given any history ℎ⃗𝑡−1, the continuation of a sustainable plan is a sustainable plan.
Let Θ = {(�⃗�, ⃗𝑥, ℎ⃗) ∈ 𝐶𝐸 ∶ there is an SP whose outcome is(�⃗�, ⃗𝑥, ℎ⃗)}.
Sustainable outcomes are elements of Θ.

932 Chapter 47. Credible Government Policies in a Model of Chang

Advanced Quantitative Economics with Python

Now consider the space

𝑆 = {(𝑤, 𝜃) ∶ there is a sustainable outcome (�⃗�, ⃗𝑥, ℎ⃗) ∈ Θ

with value

𝑤 =
∞

∑
𝑡=0

𝛽𝑡[𝑢(𝑓(𝑥𝑡)) + 𝑣(𝑚𝑡)] and such that 𝑢′(𝑓(𝑥0))(𝑚0 + 𝑥0) = 𝜃}

The space 𝑆 is a compact subset of 𝑊 × Ω where 𝑊 = [𝑤, 𝑤] is the space of values associated with sustainable plans.
Here 𝑤 and 𝑤 are finite bounds on the set of values.
Because there is at least one sustainable plan, 𝑆 is nonempty.
Now recall the within-period timing protocol, which we can depict (ℎ, 𝑥) → 𝑚 = 𝑞𝑀 → 𝑦 = 𝑐.
With this timing protocol in mind, the time 0 component of an SP has the following components:

1. A period 0 action ℎ̂ ∈ Π that the public expects the government to take, together with subsequent within-period
consequences 𝑚(ℎ̂), 𝑥(ℎ̂) when the government acts as expected.

2. For any first-period action ℎ ≠ ℎ̂ with ℎ ∈ 𝐶𝐸0
𝜋, a pair of within-period consequences 𝑚(ℎ), 𝑥(ℎ) when the

government does not act as the public had expected.
3. For every ℎ ∈ Π, a pair (𝑤′(ℎ), 𝜃′(ℎ)) ∈ 𝑆 to carry into next period.

These components must be such that it is optimal for the government to choose ℎ̂ as expected; and for every possible
ℎ ∈ Π, the government budget constraint and the household’s Euler equation must hold with continuation 𝜃 being 𝜃′(ℎ).
Given the timing protocol within the model, the representative household’s response to a government deviation to ℎ ≠
ℎ̂ from a prescribed ℎ̂ consists of a first-period action 𝑚(ℎ) and associated subsequent actions, together with future
equilibrium prices, captured by (𝑤′(ℎ), 𝜃′(ℎ)).
At this point, Chang introduces an idea in the spirit of Abreu, Pearce, and Stacchetti [APS90].
Let 𝑍 be a nonempty subset of 𝑊 × Ω.
Think of using pairs (𝑤′, 𝜃′) drawn from 𝑍 as candidate continuation value, promised marginal utility pairs.
Define the following operator:

�̃�(𝑍) = {(𝑤, 𝜃) ∶ there is ℎ̂ ∈ 𝐶𝐸0
𝜋 and for each ℎ ∈ 𝐶𝐸0

𝜋

a four-tuple (𝑚(ℎ), 𝑥(ℎ), 𝑤′(ℎ), 𝜃′(ℎ)) ∈ [0, �̄�] × 𝑋 × 𝑍
(47.9)

such that

𝑤 = 𝑢(𝑓(𝑥(ℎ̂))) + 𝑣(𝑚(ℎ̂)) + 𝛽𝑤′(ℎ̂) (47.10)

𝜃 = 𝑢′(𝑓(𝑥(ℎ̂)))(𝑚(ℎ̂) + 𝑥(ℎ̂)) (47.11)

and for all ℎ ∈ 𝐶𝐸0
𝜋

𝑤 ≥ 𝑢(𝑓(𝑥(ℎ))) + 𝑣(𝑚(ℎ)) + 𝛽𝑤′(ℎ) (47.12)

𝑥(ℎ) = 𝑚(ℎ)(ℎ − 1) (47.13)

and

𝑚(ℎ)(𝑢′(𝑓(𝑥(ℎ))) − 𝑣′(𝑚(ℎ))) ≤ 𝛽𝜃′(ℎ) (47.14)

with equality if 𝑚(ℎ) < �̄�}

47.2. The Setting 933

Advanced Quantitative Economics with Python

This operator adds the key incentive constraint to the conditions that had defined the earlier 𝐷(𝑍) operator defined in
competitive equilibria in the Chang model.
Condition (47.12) requires that the plan deter the government from wanting to take one-shot deviations when candidate
continuation values are drawn from 𝑍.
Proposition:

1. If 𝑍 ⊂ �̃�(𝑍), then �̃�(𝑍) ⊂ 𝑆 (‘self-generation’).

2. 𝑆 = �̃�(𝑆) (‘factorization’).
Proposition:.

1. Monotonicity of �̃�: 𝑍 ⊂ 𝑍′ implies �̃�(𝑍) ⊂ �̃�(𝑍′).
2. 𝑍 compact implies that �̃�(𝑍) is compact.

Chang establishes that 𝑆 is compact and that therefore there exists a highest value SP and a lowest value SP.
Further, the preceding structure allows Chang to compute 𝑆 by iterating to convergence on �̃� provided that one begins
with a sufficiently large initial set 𝑍0.
This structure delivers the following recursive representation of a sustainable outcome:

1. choose an initial (𝑤0, 𝜃0) ∈ 𝑆;
2. generate a sustainable outcome recursively by iterating on (47.8), which we repeat here for convenience:

ℎ̂𝑡 = ℎ(𝑤𝑡, 𝜃𝑡)
𝑚𝑡 = 𝑚(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)
𝑥𝑡 = 𝑥(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)

𝑤𝑡+1 = 𝜒(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)
𝜃𝑡+1 = Ψ(ℎ𝑡, 𝑤𝑡, 𝜃𝑡)

47.3 Calculating the Set of Sustainable Promise-Value Pairs

Above we defined the �̃�(𝑍) operator as (47.9).
Chang (1998) provides a method for dealing with the final three constraints.
These incentive constraints ensure that the government wants to choose ℎ̂ as the private sector had expected it to.
Chang’s simplification starts from the idea that, when consideringwhether or not to confirm the private sector’s expectation,
the government only needs to consider the payoff of the best possible deviation.
Equally, to provide incentives to the government, we only need to consider the harshest possible punishment.
Let ℎ denote some possible deviation. Chang defines:

𝑃(ℎ; 𝑍) = min𝑢(𝑓(𝑥)) + 𝑣(𝑚) + 𝛽𝑤′

where the minimization is subject to

𝑥 = 𝑚(ℎ − 1)

𝑚(ℎ)(𝑢′(𝑓(𝑥(ℎ))) + 𝑣′(𝑚(ℎ))) ≤ 𝛽𝜃′(ℎ) (with equality if 𝑚(ℎ) < �̄�)}

(𝑚, 𝑥, 𝑤′, 𝜃′) ∈ [0, �̄�] × 𝑋 × 𝑍
For a given deviation ℎ, this problem finds the worst possible sustainable value.

934 Chapter 47. Credible Government Policies in a Model of Chang

Advanced Quantitative Economics with Python

We then define:

𝐵𝑅(𝑍) = max𝑃(ℎ; 𝑍) subject to ℎ ∈ 𝐶𝐸0
𝜋

𝐵𝑅(𝑍) is the value of the government’s most tempting deviation.
With this in hand, we can define a new operator 𝐸(𝑍) that is equivalent to the �̃�(𝑍) operator but simpler to implement:

𝐸(𝑍) = {(𝑤, 𝜃) ∶ ∃ℎ ∈ 𝐶𝐸0
𝜋 and (𝑚(ℎ), 𝑥(ℎ), 𝑤′(ℎ), 𝜃′(ℎ)) ∈ [0, �̄�] × 𝑋 × 𝑍

such that

𝑤 = 𝑢(𝑓(𝑥(ℎ))) + 𝑣(𝑚(ℎ)) + 𝛽𝑤′(ℎ)

𝜃 = 𝑢′(𝑓(𝑥(ℎ)))(𝑚(ℎ) + 𝑥(ℎ))

𝑥(ℎ) = 𝑚(ℎ)(ℎ − 1)

𝑚(ℎ)(𝑢′(𝑓(𝑥(ℎ))) − 𝑣′(𝑚(ℎ))) ≤ 𝛽𝜃′(ℎ) (with equality if 𝑚(ℎ) < �̄�)
and

𝑤 ≥ 𝐵𝑅(𝑍)}

Aside from the final incentive constraint, this is the same as the operator in competitive equilibria in the Chang model.
Consequently, to implement this operator we just need to add one step to our outer hyperplane approximation algorithm :

1. Initialize subgradients, 𝐻 , and hyperplane levels, 𝐶0.
2. Given a set of subgradients, 𝐻 , and hyperplane levels, 𝐶𝑡, calculate 𝐵𝑅(𝑆𝑡).
3. Given 𝐻 , 𝐶𝑡, and 𝐵𝑅(𝑆𝑡), for each subgradient ℎ𝑖 ∈ 𝐻 :

• Solve a linear program (described below) for each action in the action space.
• Find the maximum and update the corresponding hyperplane level, 𝐶𝑖,𝑡+1.

4. If |𝐶𝑡+1 − 𝐶𝑡| > 𝜖, return to 2.
Step 1 simply creates a large initial set 𝑆0.
Given some set 𝑆𝑡, Step 2 then constructs the value 𝐵𝑅(𝑆𝑡).
To do this, we solve the following problem for each point in the action space (𝑚𝑗, ℎ𝑗):

min
[𝑤′,𝜃′]

𝑢(𝑓(𝑥𝑗)) + 𝑣(𝑚𝑗) + 𝛽𝑤′

subject to

𝐻 ⋅ (𝑤′, 𝜃′) ≤ 𝐶𝑡

𝑥𝑗 = 𝑚𝑗(ℎ𝑗 − 1)

𝑚𝑗(𝑢′(𝑓(𝑥𝑗)) − 𝑣′(𝑚𝑗)) ≤ 𝛽𝜃′ (= if 𝑚𝑗 < �̄�)
This gives us a matrix of possible values, corresponding to each point in the action space.
To find 𝐵𝑅(𝑍), we minimize over the 𝑚 dimension and maximize over the ℎ dimension.
Step 3 then constructs the set 𝑆𝑡+1 = 𝐸(𝑆𝑡). The linear program in Step 3 is designed to construct a set 𝑆𝑡+1 that is as
large as possible while satisfying the constraints of the 𝐸(𝑆) operator.

47.3. Calculating the Set of Sustainable Promise-Value Pairs 935

Advanced Quantitative Economics with Python

To do this, for each subgradient ℎ𝑖, and for each point in the action space (𝑚𝑗, ℎ𝑗), we solve the following problem:

max
[𝑤′,𝜃′]

ℎ𝑖 ⋅ (𝑤, 𝜃)

subject to

𝐻 ⋅ (𝑤′, 𝜃′) ≤ 𝐶𝑡

𝑤 = 𝑢(𝑓(𝑥𝑗)) + 𝑣(𝑚𝑗) + 𝛽𝑤′

𝜃 = 𝑢′(𝑓(𝑥𝑗))(𝑚𝑗 + 𝑥𝑗)

𝑥𝑗 = 𝑚𝑗(ℎ𝑗 − 1)

𝑚𝑗(𝑢′(𝑓(𝑥𝑗)) − 𝑣′(𝑚𝑗)) ≤ 𝛽𝜃′ (= if 𝑚𝑗 < �̄�)

𝑤 ≥ 𝐵𝑅(𝑍)
This problem maximizes the hyperplane level for a given set of actions.
The second part of Step 3 then finds the maximum possible hyperplane level across the action space.
The algorithm constructs a sequence of progressively smaller sets 𝑆𝑡+1 ⊂ 𝑆𝑡 ⊂ 𝑆𝑡−1 ⋯ ⊂ 𝑆0.
Step 4 ends the algorithm when the difference between these sets is small enough.
We have created a Python class that solves the model assuming the following functional forms:

𝑢(𝑐) = 𝑙𝑜𝑔(𝑐)

𝑣(𝑚) = 1
500(𝑚�̄� − 0.5𝑚2)0.5

𝑓(𝑥) = 180 − (0.4𝑥)2

The remaining parameters {𝛽, �̄�, ℎ, ℎ̄} are then variables to be specified for an instance of the Chang class.
Below we use the class to solve the model and plot the resulting equilibrium set, once with 𝛽 = 0.3 and once with 𝛽 = 0.8.
We also plot the (larger) competitive equilibrium sets, which we described in competitive equilibria in the Chang model.
(We have set the number of subgradients to 10 in order to speed up the code for now. We can increase accuracy by
increasing the number of subgradients)
The following code computes sustainable plans

"""
Provides a class called ChangModel to solve different
parameterizations of the Chang (1998) model.
"""

import numpy as np
import quantecon as qe
import time

from scipy.spatial import ConvexHull
from scipy.optimize import linprog, minimize, minimize_scalar
from scipy.interpolate import UnivariateSpline
import numpy.polynomial.chebyshev as cheb

class ChangModel:

(continues on next page)

936 Chapter 47. Credible Government Policies in a Model of Chang

Advanced Quantitative Economics with Python

(continued from previous page)

"""
Class to solve for the competitive and sustainable sets in the Chang (1998)
model, for different parameterizations.
"""

def __init__(self, β, mbar, h_min, h_max, n_h, n_m, N_g):
Record parameters
self.β, self.mbar, self.h_min, self.h_max = β, mbar, h_min, h_max
self.n_h, self.n_m, self.N_g = n_h, n_m, N_g

Create other parameters
self.m_min = 1e-9
self.m_max = self.mbar
self.N_a = self.n_h*self.n_m

Utility and production functions
uc = lambda c: np.log(c)
uc_p = lambda c: 1/c
v = lambda m: 1/500 * (mbar * m - 0.5 * m**2)**0.5
v_p = lambda m: 0.5/500 * (mbar * m - 0.5 * m**2)**(-0.5) * (mbar - m)
u = lambda h, m: uc(f(h, m)) + v(m)

def f(h, m):
x = m * (h - 1)
f = 180 - (0.4 * x)**2
return f

def θ(h, m):
x = m * (h - 1)
θ = uc_p(f(h, m)) * (m + x)
return θ

Create set of possible action combinations, A
A1 = np.linspace(h_min, h_max, n_h).reshape(n_h, 1)
A2 = np.linspace(self.m_min, self.m_max, n_m).reshape(n_m, 1)
self.A = np.concatenate((np.kron(np.ones((n_m, 1)), A1),

np.kron(A2, np.ones((n_h, 1)))), axis=1)

Pre-compute utility and output vectors
self.euler_vec = -np.multiply(self.A[:, 1], \

uc_p(f(self.A[:, 0], self.A[:, 1])) - v_p(self.A[:, 1]))
self.u_vec = u(self.A[:, 0], self.A[:, 1])
self.Θ_vec = θ(self.A[:, 0], self.A[:, 1])
self.f_vec = f(self.A[:, 0], self.A[:, 1])
self.bell_vec = np.multiply(uc_p(f(self.A[:, 0],

self.A[:, 1])),
np.multiply(self.A[:, 1],
(self.A[:, 0] - 1))) \

+ np.multiply(self.A[:, 1],
v_p(self.A[:, 1]))

Find extrema of (w, θ) space for initial guess of equilibrium sets
p_vec = np.zeros(self.N_a)
w_vec = np.zeros(self.N_a)
for i in range(self.N_a):

p_vec[i] = self.Θ_vec[i]

(continues on next page)

47.3. Calculating the Set of Sustainable Promise-Value Pairs 937

Advanced Quantitative Economics with Python

(continued from previous page)

w_vec[i] = self.u_vec[i]/(1 - β)

w_space = np.array([min(w_vec[~np.isinf(w_vec)]),
max(w_vec[~np.isinf(w_vec)])])

p_space = np.array([0, max(p_vec[~np.isinf(w_vec)])])
self.p_space = p_space

Set up hyperplane levels and gradients for iterations
def SG_H_V(N, w_space, p_space):

"""
This function initializes the subgradients, hyperplane levels,
and extreme points of the value set by choosing an appropriate
origin and radius. It is based on a similar function in QuantEcon's
Games.jl
"""

First, create a unit circle. Want points placed on [0, 2π]
inc = 2 * np.pi / N
degrees = np.arange(0, 2 * np.pi, inc)

Points on circle
H = np.zeros((N, 2))
for i in range(N):

x = degrees[i]
H[i, 0] = np.cos(x)
H[i, 1] = np.sin(x)

Then calculate origin and radius
o = np.array([np.mean(w_space), np.mean(p_space)])
r1 = max((max(w_space) - o[0])**2, (o[0] - min(w_space))**2)
r2 = max((max(p_space) - o[1])**2, (o[1] - min(p_space))**2)
r = np.sqrt(r1 + r2)

Now calculate vertices
Z = np.zeros((2, N))
for i in range(N):

Z[0, i] = o[0] + r*H.T[0, i]
Z[1, i] = o[1] + r*H.T[1, i]

Corresponding hyperplane levels
C = np.zeros(N)
for i in range(N):

C[i] = np.dot(Z[:, i], H[i, :])

return C, H, Z

C, self.H, Z = SG_H_V(N_g, w_space, p_space)
C = C.reshape(N_g, 1)
self.c0_c, self.c0_s, self.c1_c, self.c1_s = np.copy(C), np.copy(C), \

np.copy(C), np.copy(C)
self.z0_s, self.z0_c, self.z1_s, self.z1_c = np.copy(Z), np.copy(Z), \

np.copy(Z), np.copy(Z)

self.w_bnds_s, self.w_bnds_c = (w_space[0], w_space[1]), \
(w_space[0], w_space[1])

self.p_bnds_s, self.p_bnds_c = (p_space[0], p_space[1]), \

(continues on next page)

938 Chapter 47. Credible Government Policies in a Model of Chang

Advanced Quantitative Economics with Python

(continued from previous page)

(p_space[0], p_space[1])

Create dictionaries to save equilibrium set for each iteration
self.c_dic_s, self.c_dic_c = {}, {}
self.c_dic_s[0], self.c_dic_c[0] = self.c0_s, self.c0_c

def solve_worst_spe(self):
"""
Method to solve for BR(Z). See p.449 of Chang (1998)
"""

p_vec = np.full(self.N_a, np.nan)
c = [1, 0]

Pre-compute constraints
aineq_mbar = np.vstack((self.H, np.array([0, -self.β])))
bineq_mbar = np.vstack((self.c0_s, 0))

aineq = self.H
bineq = self.c0_s
aeq = [[0, -self.β]]

for j in range(self.N_a):
Only try if consumption is possible
if self.f_vec[j] > 0:

If m = mbar, use inequality constraint
if self.A[j, 1] == self.mbar:

bineq_mbar[-1] = self.euler_vec[j]
res = linprog(c, A_ub=aineq_mbar, b_ub=bineq_mbar,

bounds=(self.w_bnds_s, self.p_bnds_s))
else:

beq = self.euler_vec[j]
res = linprog(c, A_ub=aineq, b_ub=bineq, A_eq=aeq, b_eq=beq,

bounds=(self.w_bnds_s, self.p_bnds_s))
if res.status == 0:

p_vec[j] = self.u_vec[j] + self.β * res.x[0]

Max over h and min over other variables (see Chang (1998) p.449)
self.br_z = np.nanmax(np.nanmin(p_vec.reshape(self.n_m, self.n_h), 0))

def solve_subgradient(self):
"""
Method to solve for E(Z). See p.449 of Chang (1998)
"""

Pre-compute constraints
aineq_C_mbar = np.vstack((self.H, np.array([0, -self.β])))
bineq_C_mbar = np.vstack((self.c0_c, 0))

aineq_C = self.H
bineq_C = self.c0_c
aeq_C = [[0, -self.β]]

aineq_S_mbar = np.vstack((np.vstack((self.H, np.array([0, -self.β]))),
np.array([-self.β, 0])))

bineq_S_mbar = np.vstack((self.c0_s, np.zeros((2, 1))))

(continues on next page)

47.3. Calculating the Set of Sustainable Promise-Value Pairs 939

Advanced Quantitative Economics with Python

(continued from previous page)

aineq_S = np.vstack((self.H, np.array([-self.β, 0])))
bineq_S = np.vstack((self.c0_s, 0))
aeq_S = [[0, -self.β]]

Update maximal hyperplane level
for i in range(self.N_g):

c_a1a2_c, t_a1a2_c = np.full(self.N_a, -np.inf), \
np.zeros((self.N_a, 2))

c_a1a2_s, t_a1a2_s = np.full(self.N_a, -np.inf), \
np.zeros((self.N_a, 2))

c = [-self.H[i, 0], -self.H[i, 1]]

for j in range(self.N_a):
Only try if consumption is possible
if self.f_vec[j] > 0:

COMPETITIVE EQUILIBRIA
If m = mbar, use inequality constraint
if self.A[j, 1] == self.mbar:

bineq_C_mbar[-1] = self.euler_vec[j]
res = linprog(c, A_ub=aineq_C_mbar, b_ub=bineq_C_mbar,

bounds=(self.w_bnds_c, self.p_bnds_c))
If m < mbar, use equality constraint
else:

beq_C = self.euler_vec[j]
res = linprog(c, A_ub=aineq_C, b_ub=bineq_C, A_eq = aeq_C,

b_eq = beq_C, bounds=(self.w_bnds_c, \
self.p_bnds_c))

if res.status == 0:
c_a1a2_c[j] = self.H[i, 0] * (self.u_vec[j] \

+ self.β * res.x[0]) + self.H[i, 1] * self.Θ_vec[j]
t_a1a2_c[j] = res.x

SUSTAINABLE EQUILIBRIA
If m = mbar, use inequality constraint
if self.A[j, 1] == self.mbar:

bineq_S_mbar[-2] = self.euler_vec[j]
bineq_S_mbar[-1] = self.u_vec[j] - self.br_z
res = linprog(c, A_ub=aineq_S_mbar, b_ub=bineq_S_mbar,

bounds=(self.w_bnds_s, self.p_bnds_s))
If m < mbar, use equality constraint
else:

bineq_S[-1] = self.u_vec[j] - self.br_z
beq_S = self.euler_vec[j]
res = linprog(c, A_ub=aineq_S, b_ub=bineq_S, A_eq = aeq_S,

b_eq = beq_S, bounds=(self.w_bnds_s, \
self.p_bnds_s))

if res.status == 0:
c_a1a2_s[j] = self.H[i, 0] * (self.u_vec[j] \

+ self.β*res.x[0]) + self.H[i, 1] * self.Θ_vec[j]
t_a1a2_s[j] = res.x

idx_c = np.where(c_a1a2_c == max(c_a1a2_c))[0][0]
self.z1_c[:, i] = np.array([self.u_vec[idx_c]

(continues on next page)

940 Chapter 47. Credible Government Policies in a Model of Chang

Advanced Quantitative Economics with Python

(continued from previous page)

+ self.β * t_a1a2_c[idx_c, 0],
self.Θ_vec[idx_c]])

idx_s = np.where(c_a1a2_s == max(c_a1a2_s))[0][0]
self.z1_s[:, i] = np.array([self.u_vec[idx_s]

+ self.β * t_a1a2_s[idx_s, 0],
self.Θ_vec[idx_s]])

for i in range(self.N_g):
self.c1_c[i] = np.dot(self.z1_c[:, i], self.H[i, :])
self.c1_s[i] = np.dot(self.z1_s[:, i], self.H[i, :])

def solve_sustainable(self, tol=1e-5, max_iter=250):
"""
Method to solve for the competitive and sustainable equilibrium sets.
"""

t = time.time()
diff = tol + 1
iters = 0

print('### --------------- ###')
print('Solving Chang Model Using Outer Hyperplane Approximation')
print('### --------------- ### \n')

print('Maximum difference when updating hyperplane levels:')

while diff > tol and iters < max_iter:
iters = iters + 1
self.solve_worst_spe()
self.solve_subgradient()
diff = max(np.maximum(abs(self.c0_c - self.c1_c),

abs(self.c0_s - self.c1_s)))
print(diff)

Update hyperplane levels
self.c0_c, self.c0_s = np.copy(self.c1_c), np.copy(self.c1_s)

Update bounds for w and θ
wmin_c, wmax_c = np.min(self.z1_c, axis=1)[0], \

np.max(self.z1_c, axis=1)[0]
pmin_c, pmax_c = np.min(self.z1_c, axis=1)[1], \

np.max(self.z1_c, axis=1)[1]

wmin_s, wmax_s = np.min(self.z1_s, axis=1)[0], \
np.max(self.z1_s, axis=1)[0]

pmin_S, pmax_S = np.min(self.z1_s, axis=1)[1], \
np.max(self.z1_s, axis=1)[1]

self.w_bnds_s, self.w_bnds_c = (wmin_s, wmax_s), (wmin_c, wmax_c)
self.p_bnds_s, self.p_bnds_c = (pmin_S, pmax_S), (pmin_c, pmax_c)

Save iteration
self.c_dic_c[iters], self.c_dic_s[iters] = np.copy(self.c1_c), \

np.copy(self.c1_s)
self.iters = iters

(continues on next page)

47.3. Calculating the Set of Sustainable Promise-Value Pairs 941

Advanced Quantitative Economics with Python

(continued from previous page)

elapsed = time.time() - t
print('Convergence achieved after {} iterations and {} \

seconds'.format(iters, round(elapsed, 2)))

def solve_bellman(self, θ_min, θ_max, order, disp=False, tol=1e-7, maxiters=100):
"""
Continuous Method to solve the Bellman equation in section 25.3
"""
mbar = self.mbar

Utility and production functions
uc = lambda c: np.log(c)
uc_p = lambda c: 1 / c
v = lambda m: 1 / 500 * (mbar * m - 0.5 * m**2)**0.5
v_p = lambda m: 0.5/500 * (mbar*m - 0.5 * m**2)**(-0.5) * (mbar - m)
u = lambda h, m: uc(f(h, m)) + v(m)

def f(h, m):
x = m * (h - 1)
f = 180 - (0.4 * x)**2
return f

def θ(h, m):
x = m * (h - 1)
θ = uc_p(f(h, m)) * (m + x)
return θ

Bounds for Maximization
lb1 = np.array([self.h_min, 0, θ_min])
ub1 = np.array([self.h_max, self.mbar - 1e-5, θ_max])
lb2 = np.array([self.h_min, θ_min])
ub2 = np.array([self.h_max, θ_max])

Initialize Value Function coefficients
Calculate roots of Chebyshev polynomial
k = np.linspace(order, 1, order)
roots = np.cos((2 * k - 1) * np.pi / (2 * order))
Scale to approximation space
s = θ_min + (roots - -1) / 2 * (θ_max - θ_min)
Create a basis matrix
Φ = cheb.chebvander(roots, order - 1)
c = np.zeros(Φ.shape[0])

Function to minimize and constraints
def p_fun(x):

scale = -1 + 2 * (x[2] - θ_min)/(θ_max - θ_min)
p_fun = - (u(x[0], x[1]) \

+ self.β * np.dot(cheb.chebvander(scale, order - 1), c))
return p_fun

def p_fun2(x):
scale = -1 + 2*(x[1] - θ_min)/(θ_max - θ_min)
p_fun = - (u(x[0],mbar) \

+ self.β * np.dot(cheb.chebvander(scale, order - 1), c))
return p_fun

(continues on next page)

942 Chapter 47. Credible Government Policies in a Model of Chang

Advanced Quantitative Economics with Python

(continued from previous page)

cons1 = ({'type': 'eq', 'fun': lambda x: uc_p(f(x[0], x[1])) * x[1]
* (x[0] - 1) + v_p(x[1]) * x[1] + self.β * x[2] - θ},

{'type': 'eq', 'fun': lambda x: uc_p(f(x[0], x[1]))
* x[0] * x[1] - θ})

cons2 = ({'type': 'ineq', 'fun': lambda x: uc_p(f(x[0], mbar)) * mbar
* (x[0] - 1) + v_p(mbar) * mbar + self.β * x[1] - θ},

{'type': 'eq', 'fun': lambda x: uc_p(f(x[0], mbar))
* x[0] * mbar - θ})

bnds1 = np.concatenate([lb1.reshape(3, 1), ub1.reshape(3, 1)], axis=1)
bnds2 = np.concatenate([lb2.reshape(2, 1), ub2.reshape(2, 1)], axis=1)

Bellman Iterations
diff = 1
iters = 1

while diff > tol:
1. Maximization, given value function guess

p_iter1 = np.zeros(order)
for i in range(order):

θ = s[i]
res = minimize(p_fun,

lb1 + (ub1-lb1) / 2,
method='SLSQP',
bounds=bnds1,
constraints=cons1,
tol=1e-10)

if res.success == True:
p_iter1[i] = -p_fun(res.x)

res = minimize(p_fun2,
lb2 + (ub2-lb2) / 2,
method='SLSQP',
bounds=bnds2,
constraints=cons2,
tol=1e-10)

if -p_fun2(res.x) > p_iter1[i] and res.success == True:
p_iter1[i] = -p_fun2(res.x)

2. Bellman updating of Value Function coefficients
c1 = np.linalg.solve(Φ, p_iter1)
3. Compute distance and update
diff = np.linalg.norm(c - c1)
if bool(disp == True):

print(diff)
c = np.copy(c1)
iters = iters + 1
if iters > maxiters:

print('Convergence failed after {} iterations'.format(maxiters))
break

self.θ_grid = s
self.p_iter = p_iter1
self.Φ = Φ
self.c = c
print('Convergence achieved after {} iterations'.format(iters))

(continues on next page)

47.3. Calculating the Set of Sustainable Promise-Value Pairs 943

Advanced Quantitative Economics with Python

(continued from previous page)

Check residuals
θ_grid_fine = np.linspace(θ_min, θ_max, 100)
resid_grid = np.zeros(100)
p_grid = np.zeros(100)
θ_prime_grid = np.zeros(100)
m_grid = np.zeros(100)
h_grid = np.zeros(100)
for i in range(100):

θ = θ_grid_fine[i]
res = minimize(p_fun,

lb1 + (ub1-lb1) / 2,
method='SLSQP',
bounds=bnds1,
constraints=cons1,
tol=1e-10)

if res.success == True:
p = -p_fun(res.x)
p_grid[i] = p
θ_prime_grid[i] = res.x[2]
h_grid[i] = res.x[0]
m_grid[i] = res.x[1]

res = minimize(p_fun2,
lb2 + (ub2-lb2)/2,
method='SLSQP',
bounds=bnds2,
constraints=cons2,
tol=1e-10)

if -p_fun2(res.x) > p and res.success == True:
p = -p_fun2(res.x)
p_grid[i] = p
θ_prime_grid[i] = res.x[1]
h_grid[i] = res.x[0]
m_grid[i] = self.mbar

scale = -1 + 2 * (θ - θ_min)/(θ_max - θ_min)
resid_grid[i] = np.dot(cheb.chebvander(scale, order-1), c) - p

self.resid_grid = resid_grid
self.θ_grid_fine = θ_grid_fine
self.θ_prime_grid = θ_prime_grid
self.m_grid = m_grid
self.h_grid = h_grid
self.p_grid = p_grid
self.x_grid = m_grid * (h_grid - 1)

Simulate
θ_series = np.zeros(31)
m_series = np.zeros(30)
h_series = np.zeros(30)

Find initial θ
def ValFun(x):

scale = -1 + 2*(x - θ_min)/(θ_max - θ_min)
p_fun = np.dot(cheb.chebvander(scale, order - 1), c)
return -p_fun

(continues on next page)

944 Chapter 47. Credible Government Policies in a Model of Chang

Advanced Quantitative Economics with Python

(continued from previous page)

res = minimize(ValFun,
(θ_min + θ_max)/2,
bounds=[(θ_min, θ_max)])

θ_series[0] = res.x

Simulate
for i in range(30):

θ = θ_series[i]
res = minimize(p_fun,

lb1 + (ub1-lb1)/2,
method='SLSQP',
bounds=bnds1,
constraints=cons1,
tol=1e-10)

if res.success == True:
p = -p_fun(res.x)
h_series[i] = res.x[0]
m_series[i] = res.x[1]
θ_series[i+1] = res.x[2]

res2 = minimize(p_fun2,
lb2 + (ub2-lb2)/2,
method='SLSQP',
bounds=bnds2,
constraints=cons2,
tol=1e-10)

if -p_fun2(res2.x) > p and res2.success == True:
h_series[i] = res2.x[0]
m_series[i] = self.mbar
θ_series[i+1] = res2.x[1]

self.θ_series = θ_series
self.m_series = m_series
self.h_series = h_series
self.x_series = m_series * (h_series - 1)

47.3.1 Comparison of Sets

The set of (𝑤, 𝜃) associated with sustainable plans is smaller than the set of (𝑤, 𝜃) pairs associated with competitive
equilibria, since the additional constraints associated with sustainability must also be satisfied.
Let’s compute two examples, one with a low 𝛽, another with a higher 𝛽

ch1 = ChangModel(β=0.3, mbar=30, h_min=0.9, h_max=2, n_h=8, n_m=35, N_g=10)

ch1.solve_sustainable()

Solving Chang Model Using Outer Hyperplane Approximation

Maximum difference when updating hyperplane levels:

47.3. Calculating the Set of Sustainable Promise-Value Pairs 945

Advanced Quantitative Economics with Python

[1.9168]

[0.66782]

[0.49235]

[0.32412]

[0.19022]

[0.10863]

[0.05817]

[0.0262]

[0.01836]

[0.01415]

[0.00297]

[0.00089]

[0.00027]

[0.00008]

[0.00002]

[0.00001]
Convergence achieved after 16 iterations and 43.66 seconds

The following plot shows both the set of 𝑤, 𝜃 pairs associated with competitive equilibria (in red) and the smaller set of
𝑤, 𝜃 pairs associated with sustainable plans (in blue).

def plot_equilibria(ChangModel):
"""
Method to plot both equilibrium sets
"""
fig, ax = plt.subplots(figsize=(7, 5))

ax.set_xlabel('w', fontsize=16)
ax.set_ylabel(r"θ", fontsize=18)

(continues on next page)

946 Chapter 47. Credible Government Policies in a Model of Chang

Advanced Quantitative Economics with Python

(continued from previous page)

poly_S = polytope.Polytope(ChangModel.H, ChangModel.c1_s)
poly_C = polytope.Polytope(ChangModel.H, ChangModel.c1_c)
ext_C = polytope.extreme(poly_C)
ext_S = polytope.extreme(poly_S)

ax.fill(ext_C[:, 0], ext_C[:, 1], 'r', zorder=-1)
ax.fill(ext_S[:, 0], ext_S[:, 1], 'b', zorder=0)

Add point showing Ramsey Plan
idx_Ramsey = np.where(ext_C[:, 0] == max(ext_C[:, 0]))[0][0]
R = ext_C[idx_Ramsey, :]
ax.scatter(R[0], R[1], 150, 'black', 'o', zorder=1)
w_min = min(ext_C[:, 0])

Label Ramsey Plan slightly to the right of the point
ax.annotate("R", xy=(R[0], R[1]),

xytext=(R[0] + 0.03 * (R[0] - w_min),
R[1]), fontsize=18)

plt.tight_layout()
plt.show()

plot_equilibria(ch1)

Evidently, the Ramsey plan, denoted by the 𝑅, is not sustainable.
Let’s raise the discount factor and recompute the sets

47.3. Calculating the Set of Sustainable Promise-Value Pairs 947

Advanced Quantitative Economics with Python

ch2 = ChangModel(β=0.8, mbar=30, h_min=0.9, h_max=1/0.8,
n_h=8, n_m=35, N_g=10)

ch2.solve_sustainable()

Solving Chang Model Using Outer Hyperplane Approximation

Maximum difference when updating hyperplane levels:

[0.06369]

[0.02476]

[0.02153]

[0.01915]

[0.01795]

[0.01642]

[0.01507]

[0.01284]

[0.01106]

[0.00694]

[0.0085]

[0.00781]

[0.00433]

[0.00492]

[0.00303]

[0.00182]

948 Chapter 47. Credible Government Policies in a Model of Chang

Advanced Quantitative Economics with Python

[0.00638]

[0.00116]

[0.00093]

[0.00075]

[0.0006]

[0.00494]

[0.00038]

[0.00121]

[0.00024]

[0.0002]

[0.00016]

[0.00013]

[0.0001]

[0.00008]

[0.00006]

[0.00005]

[0.00004]

[0.00003]

[0.00003]

[0.00002]

[0.00002]

47.3. Calculating the Set of Sustainable Promise-Value Pairs 949

Advanced Quantitative Economics with Python

[0.00001]

[0.00001]

[0.00001]
Convergence achieved after 40 iterations and 125.45 seconds

Let’s plot both sets

plot_equilibria(ch2)

Evidently, the Ramsey plan is now sustainable.

950 Chapter 47. Credible Government Policies in a Model of Chang

Part IX

Other

951

CHAPTER

FORTYEIGHT

TROUBLESHOOTING

Contents

• Troubleshooting

– Fixing Your Local Environment

– Reporting an Issue

This page is for readers experiencing errors when running the code from the lectures.

48.1 Fixing Your Local Environment

The basic assumption of the lectures is that code in a lecture should execute whenever
1. it is executed in a Jupyter notebook and
2. the notebook is running on a machine with the latest version of Anaconda Python.

You have installed Anaconda, haven’t you, following the instructions in this lecture?
Assuming that you have, the most common source of problems for our readers is that their Anaconda distribution is not
up to date.
Here’s a useful article on how to update Anaconda.
Another option is to simply remove Anaconda and reinstall.
You also need to keep the external code libraries, such as QuantEcon.py up to date.
For this task you can either

• use pip install –upgrade quantecon on the command line, or
• execute !pip install –upgrade quantecon within a Jupyter notebook.

If your local environment is still not working you can do two things.
First, you can use a remote machine instead, by clicking on the Launch Notebook icon available for each lecture

953

https://python-programming.quantecon.org/getting_started.html
https://www.anaconda.com/keeping-anaconda-date/
https://quantecon.org/quantecon-py

Advanced Quantitative Economics with Python

Second, you can report an issue, so we can try to fix your local set up.
We like getting feedback on the lectures so please don’t hesitate to get in touch.

48.2 Reporting an Issue

One way to give feedback is to raise an issue through our issue tracker.
Please be as specific as possible. Tell us where the problem is and as much detail about your local set up as you can
provide.
Another feedback option is to use our discourse forum.
Finally, you can provide direct feedback to contact@quantecon.org

954 Chapter 48. Troubleshooting

https://github.com/QuantEcon/lecture-python-advanced/issues
https://discourse.quantecon.org/
mailto:contact@quantecon.org

CHAPTER

FORTYNINE

REFERENCES

955

Advanced Quantitative Economics with Python

956 Chapter 49. References

CHAPTER

FIFTY

EXECUTION STATISTICS

This table contains the latest execution statistics.

Document Modified Method Run Time (s) Status
BCG_complete_mkts 2023-12-19 14:52 cache 49.83 ✅
BCG_incomplete_mkts 2023-12-19 14:54 cache 81.1 ✅
additive_functionals 2023-12-19 14:54 cache 15.76 ✅
amss 2023-12-19 14:54 cache 9.96 ❌ (CellExecutionError)
amss2 2023-12-14 03:39 cache 62.44 ✅
amss3 2023-12-14 03:44 cache 276.92 ✅
arellano 2023-12-19 14:56 cache 83.39 ✅
arma 2023-12-14 03:45 cache 9.8 ✅
asset_pricing_lph 2023-12-19 14:56 cache 2.63 ✅
black_litterman 2023-12-19 14:56 cache 32.59 ✅
calvo 2023-12-14 03:46 cache 7.11 ✅
cattle_cycles 2023-12-19 14:56 cache 6.45 ✅
chang_credible 2023-12-19 14:59 cache 176.2 ✅
chang_ramsey 2023-12-19 15:05 cache 355.62 ✅
classical_filtering 2023-12-14 03:55 cache 1.37 ✅
coase 2023-12-14 03:55 cache 8.36 ✅
cons_news 2023-12-14 03:55 cache 6.55 ✅
discrete_dp 2023-12-14 03:55 cache 31.49 ✅
dyn_stack 2023-12-14 03:56 cache 8.36 ✅
entropy 2023-12-14 03:56 cache 0.87 ✅
estspec 2023-12-14 03:56 cache 7.15 ✅
five_preferences 2023-12-14 03:56 cache 38.17 ✅
growth_in_dles 2023-12-19 15:05 cache 6.29 ✅
hs_invertibility_example 2023-12-19 15:05 cache 6.44 ✅
hs_recursive_models 2023-12-14 03:57 cache 0.78 ✅
intro 2023-12-14 03:57 cache 0.78 ✅
irfs_in_hall_model 2023-12-19 15:05 cache 6.46 ✅
knowing_forecasts_of_others 2023-12-19 15:06 cache 24.11 ✅
lqramsey 2023-12-14 03:57 cache 7.99 ✅
lu_tricks 2023-12-14 03:57 cache 2.17 ✅
lucas_asset_pricing_dles 2023-12-19 15:06 cache 6.22 ✅
lucas_model 2023-12-14 03:58 cache 9.4 ✅
markov_jump_lq 2023-12-14 03:59 cache 77.72 ✅
matsuyama 2023-12-19 15:06 cache 7.15 ✅
muth_kalman 2023-12-19 15:06 cache 6.77 ✅

continues on next page

957

Advanced Quantitative Economics with Python

Table 50.1 – continued from previous page
Document Modified Method Run Time (s) Status
opt_tax_recur 2023-12-19 15:06 cache 1.62 ❌
orth_proj 2023-12-14 06:00 cache 1.06 ✅
permanent_income_dles 2023-12-19 15:06 cache 6.08 ✅
rob_markov_perf 2023-12-14 06:01 cache 6.26 ✅
robustness 2023-12-14 06:01 cache 7.88 ✅
rosen_schooling_model 2023-12-19 15:06 cache 6.22 ✅
smoothing 2023-12-14 06:01 cache 6.65 ✅
smoothing_tax 2023-12-19 15:07 cache 9.18 ✅
stationary_densities 2023-12-14 06:01 cache 11.06 ✅
status 2023-12-14 03:57 cache 0.78 ✅
tax_smoothing_1 2023-12-14 06:01 cache 12.77 ✅
tax_smoothing_2 2023-12-14 06:02 cache 7.21 ✅
tax_smoothing_3 2023-12-14 06:02 cache 6.96 ✅
troubleshooting 2023-12-14 03:57 cache 0.78 ✅
un_insure 2023-12-19 15:07 cache 12.25 ✅
zreferences 2023-12-14 03:57 cache 0.78 ✅

These lectures are built on linux instances through github actions so are executed using the following hardware
specifications

958 Chapter 50. Execution Statistics

https://docs.github.com/en/actions/reference/specifications-for-github-hosted-runners#supported-runners-and-hardware-resources
https://docs.github.com/en/actions/reference/specifications-for-github-hosted-runners#supported-runners-and-hardware-resources

BIBLIOGRAPHY

[Abr88] Dilip Abreu. On the theory of infinitely repeated games with discounting.Econometrica, 56:383–396, 1988.
[APS90] Dilip Abreu, David Pearce, and Ennio Stacchetti. Toward a theory of discounted repeated games with

imperfect monitoring. Econometrica, 58(5):1041–1063, September 1990.
[AMSSeppala02] S Rao Aiyagari, Albert Marcet, Thomas J Sargent, and Juha Seppälä. Optimal taxation without state-

contingent debt. Journal of Political Economy, 110(6):1220–1254, 2002.
[AMS02] Franklin Allen, Stephen Morris, and Hyun Song Shin. Beauty contests, bubbles, and iterated expectations

in asset markets. mimeo, 2002.
[AHMS96] Evan Anderson, Lars Peter Hansen, Ellen R. McGrattan, and Thomas J. Sargent. Mechanics of forming

and estimating dynamic linear economies. In Hans M. Amman, David A. Kendrick, and John Rust, editors,
Handbook of computational economics, 171–252. Elsevier Science, North-Holland, 1996.

[AHS03] Evan W. Anderson, Lars Peter Hansen, and Thomas J. Sargent. A Quartet of Semigroups for Model Spec-
ification, Robustness, Prices of Risk, and Model Detection. Journal of the European Economic Association,
1(1):68–123, March 2003. URL: https://ideas.repec.org/a/tpr/jeurec/v1y2003i1p68-123.html, doi:.

[Are08] Cristina Arellano. Default risk and income fluctuations in emerging economies. The American Economic
Review, pages 690–712, 2008.

[AP91] Papoulis Athanasios and S Unnikrishna Pillai. Probability, random variables, and stochastic processes. Mc-
Graw Hill, 1991.

[AP11] Orazio P Attanasio and Nicola Pavoni. Risk sharing in private information models with asset accumulation:
explaining the excess smoothness of consumption. Econometrica, 79(4):1027–1068, 2011.

[BCZ14] David Backus, Mikhail Chernov, and Stanley Zin. Sources of Entropy in Representative Agent
Models. Journal of Finance, 69(1):51–99, February 2014. URL: https://ideas.repec.org/a/bla/jfinan/
v69y2014i1p51-99.html, doi:.

[BHS09] Francisco Barillas, Lars Peter Hansen, and Thomas J. Sargent. Doubts or variability? Journal
of Economic Theory, 144(6):2388–2418, November 2009. URL: https://ideas.repec.org/a/eee/jetheo/
v144y2009i6p2388-2418.html, doi:.

[Bar79] Robert J Barro. On the Determination of the Public Debt. Journal of Political Economy, 87(5):940–971,
1979.

[Bar99] Robert J Barro. Determinants of democracy. Journal of Political economy, 107(S6):S158–S183, 1999.
[BM03] Robert J Barro and Rachel McCleary. Religion and economic growth. Technical Report, National Bureau

of Economic Research, 2003.
[BEGS17] Anmol Bhandari, David Evans, Mikhail Golosov, and Thomas J. Sargent. Fiscal Policy and Debt Manage-

ment with Incomplete Markets. The Quarterly Journal of Economics, 132(2):617–663, 2017.

959

https://ideas.repec.org/a/tpr/jeurec/v1y2003i1p68-123.html
https://doi.org/
https://ideas.repec.org/a/bla/jfinan/v69y2014i1p51-99.html
https://ideas.repec.org/a/bla/jfinan/v69y2014i1p51-99.html
https://doi.org/
https://ideas.repec.org/a/eee/jetheo/v144y2009i6p2388-2418.html
https://ideas.repec.org/a/eee/jetheo/v144y2009i6p2388-2418.html
https://doi.org/

Advanced Quantitative Economics with Python

[BCG18] Alberto Bisin, Gian Luca Clementi, and Piero Gottardi. Capital and hedging demand with incomplete
markets. Technical Report, NYU and EUI, 2018.

[BL92] Fischer Black and Robert Litterman. Global portfolio optimization. Financial analysts journal, 48(5):28–
43, 1992.

[Buc04] James A. Bucklew. An Introduction to Rare Event Simulation. Springer Verlag, New York, 2004.
[Cag56] Philip Cagan. The monetary dynamics of hyperinflation. In Milton Friedman, editor, Studies in the Quantity

Theory of Money, pages 25–117. University of Chicago Press, Chicago, 1956.
[Cal78] Guillermo A. Calvo. On the time consistency of optimal policy in a monetary economy. Econometrica,

46(6):1411–1428, 1978.
[CR83] Gary Chamberlain and Michael Rothschild. Arbitrage, Factor Structure, and Mean-Variance Analysis on

Large Asset Markets. Econometrica, 51(5):1281–1304, September 1983. URL: https://ideas.repec.org/a/
ecm/emetrp/v51y1983i5p1281-304.html, doi:.

[Cha98] Roberto Chang. Credible monetary policy in an infinite horizon model: recursive approaches. Journal of
Economic Theory, 81(2):431–461, 1998.

[CK90] Varadarajan V Chari and Patrick J Kehoe. Sustainable plans. Journal of Political Economy, pages 783–802,
1990.

[Coa37] Ronald Harry Coase. The nature of the firm. economica, 4(16):386–405, 1937.
[Coc05] John H. Cochrane. Asset Pricing: revised edition. Princeton University Press, Princeton, New Jersey, 2005.
[CC08] J. D. Cryer and K-S. Chan. Time Series Analysis. Springer, 2nd edition edition, 2008.
[DJ92] Raymond J Deneckere and Kenneth L Judd. Cyclical and chaotic behavior in a dynamic equilibriummodel,

with implications for fiscal policy. Cycles and chaos in economic equilibrium, pages 308–329, 1992.
[Dic75] J Dickey. Bayesian alternatives to the f-test and least-squares estimate in the normal linear model. In S.E.

Fienberg and A. Zellner, editors, Studies in Bayesian econometrics and statistics, pages 515–554. North-
Holland, Amsterdam, 1975.

[DVGC99] JBR Do Val, JC Geromel, and OLV Costa. Solutions for the linear-quadratic control problem of markov
jump linear systems. Journal of Optimization Theory and Applications, 103(2):283–311, 1999.

[Fri56] M. Friedman. A Theory of the Consumption Function. Princeton University Press, 1956.
[Gal37] Albert Gallatin. Report on the finances**, november, 1807. In Reports of the Secretary of the Treasury of

the United States, Vol 1. Government printing office, Washington, DC, 1837.
[GS89] Itzhak Gilboa and David Schmeidler. Maxmin Expected Utility with Non-Unique Prior. Journal of Math-

ematical Economics, 18(2):141–153, apr 1989.
[Hal78] Robert E Hall. Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory and Evi-

dence. Journal of Political Economy, 86(6):971–987, 1978.
[HS08a] L P Hansen and T J Sargent. Robustness. Princeton University Press, 2008.
[Han12] Lars Peter Hansen. Dynamic Valuation Decomposition Within Stochastic Economies. Economet-

rica, 80(3):911–967, May 2012. URL: https://ideas.repec.org/a/ecm/emetrp/v80y2012i3p911-967.html,
doi:10.3982/ECTA8070.

[HJ91] Lars Peter Hansen and Ravi Jagannathan. Implications of Security Market Data for Models of Dynamic
Economies. Journal of Political Economy, 99(2):225–262, April 1991. URL: https://ideas.repec.org/a/ucp/
jpolec/v99y1991i2p225-62.html, doi:10.1086/261749.

[HR87] Lars Peter Hansen and Scott F Richard. The Role of Conditioning Information in Deducing Testable.
Econometrica, 55(3):587–613, May 1987.

960 Bibliography

https://ideas.repec.org/a/ecm/emetrp/v51y1983i5p1281-304.html
https://ideas.repec.org/a/ecm/emetrp/v51y1983i5p1281-304.html
https://doi.org/
https://ideas.repec.org/a/ecm/emetrp/v80y2012i3p911-967.html
https://doi.org/10.3982/ECTA8070
https://ideas.repec.org/a/ucp/jpolec/v99y1991i2p225-62.html
https://ideas.repec.org/a/ucp/jpolec/v99y1991i2p225-62.html
https://doi.org/10.1086/261749

Advanced Quantitative Economics with Python

[HS80] Lars Peter Hansen and Thomas J Sargent. Formulating and estimating dynamic linear rational expectations
models. Journal of Economic Dynamics and control, 2:7–46, 1980.

[HS00] Lars Peter Hansen and Thomas J Sargent.Wanting robustness in macroeconomics.Manuscript, Department
of Economics, Stanford University., 2000.

[HS08b] Lars Peter Hansen and Thomas J Sargent. Robustness. Princeton University Press, 2008.
[HS01] Lars Peter Hansen and Thomas J. Sargent. Robust control and model uncertainty. American Economic

Review, 91(2):60–66, 2001.
[HS13] Lars Peter Hansen and Thomas J. Sargent. Recursive Linear Models of Dynamic Economics. Princeton

University Press, Princeton, New Jersey, 2013.
[HS24] Lars Peter Hansen and Thomas J. Sargent. Risk, uncertainty, and value. University of Chicago and NYU

manuscript, 2024.
[HST99] Lars Peter Hansen, Thomas J. Sargent, and Thomas D. Tallarini. Robust Permanent Income and

Pricing. Review of Economic Studies, 66(4):873–907, 1999. URL: https://ideas.repec.org/a/oup/restud/
v66y1999i4p873-907..html, doi:.

[HK79] J. Michael Harrison and David M. Kreps. Martingales and arbitrage in multiperiod securities mar-
kets. Journal of Economic Theory, 20(3):381–408, June 1979. URL: https://ideas.repec.org/a/eee/jetheo/
v20y1979i3p381-408.html, doi:.

[HK85] Elhanan Helpman and Paul Krugman. Market structure and international trade. MIT Press Cambridge,
1985.

[HLL96] O Hernandez-Lerma and J B Lasserre. Discrete-Time Markov Control Processes: Basic Optimality Criteria.
Number Vol 1 in Applications of Mathematics Stochastic Modelling and Applied Probability. Springer,
1996.

[HN97] Hugo A Hopenhayn and Juan Pablo Nicolini. Optimal Unemployment Insurance. Journal of Political Econ-
omy, 105(2):412–438, April 1997. URL: https://ideas.repec.org/a/ucp/jpolec/v105y1997i2p412-38.html,
doi:10.1086/262078.

[HR93] Hugo A Hopenhayn and Richard Rogerson. Job Turnover and Policy Evaluation: A General Equilibrium
Analysis. Journal of Political Economy, 101(5):915–938, 1993.

[Jac73] D. H. Jacobson. Optimal stochastic linear systems with exponential performance criteria and their relation
to differential games. IEEE Transactions on Automatic Control, 18(2):124–131, 1973.

[Jud98] K L Judd. Numerical Methods in Economics. Scientific and Engineering. MIT Press, 1998.
[Jud85] Kenneth L Judd. On the performance of patents. Econometrica, pages 567–585, 1985.
[JYC03] Kenneth L. Judd, Sevin Yeltekin, and James Conklin. Computing Supergame Equilibria. Econometrica,

71(4):1239–1254, 07 2003. URL: https://ideas.repec.org/a/ecm/emetrp/v71y2003i4p1239-1254.html,
doi:.

[Kas00] Kenneth Kasa. Forecasting the forecasts of others in the frequency domain. Review of Economic Dynamics,
3:726–756, 2000.

[KNS18] Tomoo Kikuchi, Kazuo Nishimura, and John Stachurski. Span of control, transaction costs, and the struc-
ture of production chains. Theoretical Economics, 13(2):729–760, 2018.

[Kni21] Frank H. Knight. Risk, Uncertainty, and Profit. Houghton Mifflin, 1921.
[Kre81] David M. Kreps. Arbitrage and equilibrium in economies with infinitely many commodities. Jour-

nal of Mathematical Economics, 8(1):15–35, March 1981. URL: https://ideas.repec.org/a/eee/mateco/
v8y1981i1p15-35.html, doi:.

[KP80] Finn E Kydland and Edward C Prescott. Dynamic optimal taxation, rational expectations and optimal
control. Journal of Economic Dynamics and Control, 2:79–91, 1980.

Bibliography 961

https://ideas.repec.org/a/oup/restud/v66y1999i4p873-907..html
https://ideas.repec.org/a/oup/restud/v66y1999i4p873-907..html
https://doi.org/
https://ideas.repec.org/a/eee/jetheo/v20y1979i3p381-408.html
https://ideas.repec.org/a/eee/jetheo/v20y1979i3p381-408.html
https://doi.org/
https://ideas.repec.org/a/ucp/jpolec/v105y1997i2p412-38.html
https://doi.org/10.1086/262078
https://ideas.repec.org/a/ecm/emetrp/v71y2003i4p1239-1254.html
https://doi.org/
https://ideas.repec.org/a/eee/mateco/v8y1981i1p15-35.html
https://ideas.repec.org/a/eee/mateco/v8y1981i1p15-35.html
https://doi.org/

Advanced Quantitative Economics with Python

[LM94] A Lasota and M C MacKey. Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics. Applied Mathe-
matical Sciences. Springer-Verlag, 1994.

[Lea78] Edward E Leamer. Specification searches: Ad hoc inference with nonexperimental data. Volume 53. John
Wiley & Sons Incorporated, 1978.

[LWY13] EricM. Leeper, Todd B.Walker, and Shu‐Chun Susan Yang. Fiscal foresight and information flows. Econo-
metrica, 81(3):1115–1145, May 2013.

[LS18] L Ljungqvist and T J Sargent. Recursive Macroeconomic Theory. MIT Press, 4 edition, 2018.
[Luc87] Robert E Lucas. Models of business cycles. Volume 26. Oxford Blackwell, 1987.
[Luc78] Robert E Lucas, Jr. Asset prices in an exchange economy. Econometrica: Journal of the Econometric Soci-

ety, 46(6):1429–1445, 1978.
[LS83] Robert E Lucas, Jr. and Nancy L Stokey. Optimal Fiscal and Monetary Policy in an Economy without

Capital. Journal of monetary Economics, 12(3):55–93, 1983.
[MMR06] Fabio Maccheroni, Massimo Marinacci, and Aldo Rustichini. Ambiguity Aversion, Robustness, and the

Variational Representation of Preferences. Econometrica, 74(6):1147–1498, 2006.
[MT09] S P Meyn and R L Tweedie. Markov Chains and Stochastic Stability. Cambridge University Press, 2009.
[MF02] Mario J Miranda and P L Fackler. Applied Computational Economics and Finance. Cambridge: MIT Press,

2002.
[MM58] Franco Modigliani and Merton H. Miller. Corporation finance and the theory of investment. American

Economic Review, XLVIII(3):261–297, 1958.
[Mut60] John F Muth. Optimal properties of exponentially weighted forecasts. Journal of the american statistical

association, 55(290):299–306, 1960.
[Orf88] Sophocles J Orfanidis. Optimum Signal Processing: An Introduction. McGraw Hill Publishing, New York,

New York, 1988.
[PCL86] Joseph Pearlman, David Currie, and Paul Levine. Rational Expectations Models with Private Information.

Economic Modelling, 3(2):90–105, 1986.
[PS05] Joseph G. Pearlman and Thomas J. Sargent. Knowing the Forecasts of Others. Review of Economic Dy-

namics, 8(2):480–497, April 2005. URL: https://ideas.repec.org/a/red/issued/v8y2005i2p480-497.html,
doi:10.1016/j.red.2004.10.011.

[Put05] Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2005.

[Ram27] F. P. Ramsey. A Contribution to the theory of taxation. Economic Journal, 37(145):47–61, 1927.
[REL75] Jr. Robert E. Lucas. An equilibrium model of the business cycle. Journal of Political Economy, 83:1113–

1144, 1975.
[Rom05] Steven Roman. Advanced linear algebra. Volume 3. Springer, 2005.
[RMS94] Sherwin Rosen, Kevin M Murphy, and Jose A Scheinkman. Cattle cycles. Journal of Political Economy,

102(3):468–492, 1994.
[Ros78] Stephen A Ross. A Simple Approach to the Valuation of Risky Streams. The Journal of Business,

51(3):453–475, July 1978. URL: https://ideas.repec.org/a/ucp/jnlbus/v51y1978i3p453-75.html.
[Ros76] Stephen A. Ross. The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3):341–

360, December 1976. URL: https://ideas.repec.org/a/eee/jetheo/v13y1976i3p341-360.html, doi:.
[Roz67] Y. A. Rozanov. Stationary Random Processes. Holden-Day, San Francisco, 1967.

962 Bibliography

https://ideas.repec.org/a/red/issued/v8y2005i2p480-497.html
https://doi.org/10.1016/j.red.2004.10.011
https://ideas.repec.org/a/ucp/jnlbus/v51y1978i3p453-75.html
https://ideas.repec.org/a/eee/jetheo/v13y1976i3p341-360.html
https://doi.org/

Advanced Quantitative Economics with Python

[Rus96] John Rust. Numerical dynamic programming in economics.Handbook of computational economics, 1:619–
729, 1996.

[RR04] Jaewoo Ryoo and Sherwin Rosen. The engineering labor market. Journal of political economy,
112(S1):S110–S140, 2004.

[SHR91] Thomas Sargent, Lars Peter Hansen, and Will Roberts. Observable implications of present value budget
balance. In Rational Expectations Econometrics. Westview Press, 1991.

[Sar77] Thomas J Sargent. The Demand for Money During Hyperinflations under Rational Expectations: I. Inter-
national Economic Review, 18(1):59–82, February 1977.

[Sar87] Thomas J Sargent. Macroeconomic Theory. Academic Press, New York, 2nd edition, 1987.
[Sar91] Thomas J. Sargent. Equilibrium with signal extraction from endogenous variables. Journal of Economic

Dynamics and Control, 15:245–273, 1991.
[SW49] Claude E. Shannon andWarrenWeaver. TheMathematical Theory of Communication. University of Illinois

Press, Urbana, 1949.
[SW79] Steven Shavell and Laurence Weiss. The optimal payment of unemployment insurance benefits over time.

Journal of political Economy, 87(6):1347–1362, 1979.
[Shi95] A N Shiriaev. Probability. Graduate texts in mathematics. Springer. Springer, 2nd edition, 1995.
[Sin87] Kenneth J. Singleton. Asset prices in a time-series model with disparately informed competitive traders. In

WilliamA. Barnett andKenneth J. Singleton, editors,NewApprroaches toMonetary Economics. Cambridge
University Press, 1987.

[SLP89] N L Stokey, R E Lucas, and E C Prescott. Recursive Methods in Economic Dynamics. Harvard University
Press, 1989.

[Sto89] Nancy L Stokey. Reputation and time consistency. The American Economic Review, pages 134–139, 1989.
[Sto91] Nancy L. Stokey. Credible public policy. Journal of Economic Dynamics and Control, 15(4):627–656,

October 1991.
[SW09] Lars E.O. Svensson and Noah Williams. Optimal Monetary Policy under Uncertainty in DSGEModels: A

Markov Jump-Linear-Quadratic Approach. In Klaus Schmidt-Hebbel, Carl E.Walsh, Norman Loayza (Se-
ries Editor), and Klaus Schmidt-Hebbel (Series, editors,Monetary Policy under Uncertainty and Learning,
volume 13 of Central Banking, Analysis, and Economic Policies Book Series, chapter 3, pages 077–114.
Central Bank of Chile, edition, March 2009.

[SW+08] Lars EO Svensson, Noah Williams, and others. Optimal monetary policy under uncertainty: a markov
jump-linear-quadratic approach. Federal Reserve Bank of St. Louis Review, 90(4):275–293, 2008.

[Tal00] Thomas D Tallarini. Risk-sensitive real business cycles. Journal of Monetary Economics, 45(3):507–532,
June 2000.

[Tow83] Robert M. Townsend. Forecasting the forecasts of others. Journal of Political Economy, 91:546–588, 1983.
[Whi63] Peter Whittle. Prediction and regulation by linear least-square methods. English Univ. Press, 1963.
[Whi81] PeterWhittle. Risk-sensitive linear/quadratic/gaussian control.Advances in Applied Probability, 13(4):764–

777, 1981.
[Whi83] Peter Whittle. Prediction and Regulation by Linear Least Squares Methods. University of Minnesota Press,

Minneapolis, Minnesota, 2nd edition, 1983.
[Whi90] Peter Whittle. Risk-Sensitive Optimal Control. Wiley, New York, 1990.

Bibliography 963

Advanced Quantitative Economics with Python

964 Bibliography

INDEX

A
AR, 480
ARMA, 478, 480
ARMA Processes, 473

B
Bellman Equation, 431

C
Coase's Theory of the Firm, 291
Complex Numbers, 479
Consumption

Tax, 91
Continuous State Markov Chains, 23
Covariance Stationary, 475
Covariance Stationary Processes, 473

AR, 476
MA, 476

D
Discrete State Dynamic Programming, 53

E
Elementary Asset Pricing, 615

F
Fixed Point Theory, 608

G
General Linear Processes, 475

L
Linear Markov Perfect Equilibria, 452
Lucas Model, 604

Assets, 604
Computation, 608
Consumers, 605
Dynamic Program, 605
Equilibrium Constraints, 606
Equilibrium Price Function, 606
Pricing, 605

Solving, 607

M
MA, 480
Markov Chains

Continuous State, 23
Markov Perfect Equilibrium

Applications, 455
Overview, 451

Models
Additive functionals, 511, 751
Lucas Asset Pricing, 603

N
Nonparametric Estimation, 500

O
Optimal Taxation in an LQ Economy, 229
Orthogonal Projection, 5

P
Periodograms, 495, 496

Computation, 497
Interpretation, 496

python, 43, 144, 197, 207, 222, 307, 336, 347, 356, 365,
371, 378, 385, 628

R
Ramsey Problem

Optimal Taxation, 229
Robustness, 431

S
Smoothing, 495, 500

Tax, 107
Spectra, 495

Estimation, 495
Spectra, Estimation

AR(1) Setting, 503
Fast Fourier Transform, 495
Pre-Filtering, 503
Smoothing, 500, 501, 503

965

Advanced Quantitative Economics with Python

Spectral Analysis, 473, 474, 478
Spectral Densities, 479
Spectral Density, 480

interpretation, 480
Inverting the Transformation, 485
Mathematical Theory, 485

W
White Noise, 475, 480
Wold Representation, 476

966 Index

	I Tools and Techniques
	Orthogonal Projections and Their Applications
	Overview
	Further Reading

	Key Definitions
	Linear Independence vs Orthogonality

	The Orthogonal Projection Theorem
	Proof of Sufficiency
	Orthogonal Projection as a Mapping
	Orthogonal Complement

	Orthonormal Basis
	Projection onto an Orthonormal Basis

	Projection Via Matrix Algebra
	Starting with the Basis
	The Orthonormal Case
	Application: Overdetermined Systems of Equations

	Least Squares Regression
	Squared Risk Measures
	Solution

	Orthogonalization and Decomposition
	Gram-Schmidt Orthogonalization
	QR Decomposition
	Linear Regression via QR Decomposition

	Exercises

	Continuous State Markov Chains
	Overview
	The Density Case
	Definitions and Basic Properties
	Connection to Stochastic Difference Equations
	Distribution Dynamics
	Computation
	Implementation
	Example

	Beyond Densities
	Example and Definitions
	Computation

	Stability
	Theoretical Results
	An Example of Stability
	Computing Stationary Densities

	Exercises
	Appendix

	Reverse Engineering a la Muth
	Friedman (1956) and Muth (1960)
	A Process for Which Adaptive Expectations are Optimal
	Some Useful State-Space Math
	Estimates of Unobservables
	Relationship of Unobservables to Observables
	Innovations

	MA and AR Representations

	Discrete State Dynamic Programming
	Overview
	How to Read this Lecture
	Code
	References

	Discrete DPs
	Policies
	Formal Definition
	Value and Optimality
	Two Operators
	The Bellman Equation and the Principle of Optimality

	Solving Discrete DPs
	Value Function Iteration
	Policy Function Iteration
	Modified Policy Function Iteration

	Example: A Growth Model
	Discrete DP Representation
	Defining a DiscreteDP Instance
	State-Action Pair Formulation

	Exercises
	Solutions
	Setup
	Solving the Model
	Comparison of the Solution Methods
	Value Iteration
	Modified Policy Iteration
	Speed Comparison

	Replication of the Figures
	Convergence of Value Iteration
	Dynamics of the Capital Stock

	Appendix: Algorithms
	Value Iteration
	Policy Iteration
	Modified Policy Iteration

	II LQ Control
	Information and Consumption Smoothing
	Overview
	Same non-financial incomes, different information

	Two Representations of One Nonfinancial Income Process
	Application of Kalman filter
	News Shocks and Less Informative Shocks
	Representation of εt Shock in Terms of Future yt
	Representation in Terms of at Shocks
	Permanent Income Consumption-Smoothing Model
	State Space Representations
	Computations
	Simulating Income Process and Two Associated Shock Processes
	Calculating Innovations in Another Way
	Another Invertibility Issue

	Consumption Smoothing with Complete and Incomplete Markets
	Overview
	Relationship to Other Lectures

	Background
	Linear State Space Version of Complete Markets Model
	Interpretation of Graph
	Incomplete Markets Version
	Finite State Markov Income Process
	Market Structure

	Model 1 (Complete Markets)
	Key Outcomes
	Code

	Model 2 (One-Period Risk-Free Debt Only)
	Summary of Outcomes
	The Incomplete Markets Model
	A sequel

	Tax Smoothing with Complete and Incomplete Markets
	Overview
	Isomorphism between Consumption and Tax Smoothing
	Link to History

	Code
	Revisiting the consumption-smoothing model
	Relabeling variables to create tax-smoothing models

	Tax Smoothing with Complete Markets
	Returns on State-Contingent Debt
	An Example of Tax Smoothing
	Explanation

	More Finite Markov Chain Tax-Smoothing Examples
	Parameters
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Continuous-State Gaussian Model
	Related Lectures

	Markov Jump Linear Quadratic Dynamic Programming
	Overview
	Review of useful LQ dynamic programming formulas
	Linked Riccati equations for Markov LQ dynamic programming
	Applications
	Example 1
	Example 2
	More examples

	How to Pay for a War: Part 1
	Reader’s Guide
	Public Finance Questions
	Barro (1979) Model
	Python Class to Solve Markov Jump Linear Quadratic Control Problems
	Barro Model with a Time-varying Interest Rate

	How to Pay for a War: Part 2
	An Application of Markov Jump Linear Quadratic Dynamic Programming
	Two example specifications
	One- and Two-period Bonds but No Restructuring
	Mapping into an LQ Markov Jump Problem
	Penalty on Different Issuance Across Maturities
	A Model with Restructuring
	Restructuring as a Markov Jump Linear Quadratic Control Problem
	Example with Restructuring

	How to Pay for a War: Part 3
	Another Application of Markov Jump Linear Quadratic Dynamic Programming
	Roll-Over Risk
	A Dead End
	Better Representation of Roll-Over Risk

	Optimal Taxation in an LQ Economy
	Overview
	Model Features

	The Ramsey Problem
	Technology
	Households
	Government
	Exogenous Variables
	Feasibility
	Government Budget Constraint
	Equilibrium
	Solution
	Computing the Quadratic Term
	Finite State Markov Case
	Other Variables
	A Martingale

	Implementation
	Comments on the Code

	Examples
	The Continuous Case
	The Discrete Case

	Exercises

	III Multiple Agent Models
	Default Risk and Income Fluctuations
	Overview
	Structure
	Output, Consumption and Debt
	Asset Markets
	Financial Markets
	Government’s Decisions
	Reentering International Credit Market

	Equilibrium
	Definition of Equilibrium

	Computation
	Results
	Exercises

	Globalization and Cycles
	Overview
	Background

	Key Ideas
	Innovation Cycles
	Synchronization

	Model
	Prices
	New Varieties
	Law of Motion

	Simulation
	Time Series of Firm Measures
	Basin of Attraction

	Exercises

	Coase’s Theory of the Firm
	Overview
	Why Firms Exist
	A Trade-Off
	Summary
	A Quantitative Interpretation

	The Model
	Subcontracting
	Costs

	Equilibrium
	Informal Definition of Equilibrium
	Formal Definition of Equilibrium

	Existence, Uniqueness and Computation of Equilibria
	A Fixed Point Method
	Marginal Conditions

	Implementation
	Exercises

	IV Dynamic Linear Economies
	Recursive Models of Dynamic Linear Economies
	A Suite of Models
	Overview of the Models
	Forecasting?
	Theory and Econometrics
	More Details
	Stochastic Model of Information Flows and Outcomes
	Information Sets
	Prediction Theory
	Orthogonal Decomposition
	Taste and Technology Shocks
	Production Technology
	Household Technology
	Preferences
	Endowment Economy
	Single-Period Adjustment Costs
	Optimal Resource Allocation
	Lagrangian Formulation
	Dynamic Programming
	Other mathematical infrastructure
	Representative Household
	Type I Firm
	Type II Firm
	Competitive Equilibrium: Definition
	Asset pricing
	Re-Opening Markets

	Econometrics
	Factorization of Likelihood Function
	Covariance Generating Functions
	Spectral Factorization Identity
	Wold and Vector Autoregressive Representations

	Dynamic Demand Curves and Canonical Household Technologies
	Canonical Household Technologies
	Dynamic Demand Functions

	Gorman Aggregation and Engel Curves
	Re-Opened Markets
	Dynamic Demand
	Attaining a Canonical Household Technology

	Partial Equilibrium
	Equilibrium Investment Under Uncertainty
	A Rosen-Topel Housing Model
	Cattle Cycles
	Models of Occupational Choice and Pay
	Market for Engineers
	Skilled and Unskilled Workers

	Permanent Income Models
	Gorman Heterogeneous Households
	Non-Gorman Heterogeneous Households

	Growth in Dynamic Linear Economies
	Common Structure
	A Planning Problem
	Example Economies
	Example 1: Hall (1978)
	Example 2: Altered Growth Condition
	Example 3: A Jones-Manuelli (1990) Economy
	Example 3.1: Varying Sensitivity
	Example 3.2: More Impatience

	Lucas Asset Pricing Using DLE
	Asset Pricing Equations
	Asset Pricing Simulations

	IRFs in Hall Models
	Example 1: Hall (1978)
	Example 2: Higher Adjustment Costs
	Example 3: Durable Consumption Goods

	Permanent Income Model using the DLE Class
	The Permanent Income Model
	Solution with the DLE Class

	Rosen Schooling Model
	A One-Occupation Model
	Mapping into HS2013 Framework
	Preferences
	Technology
	Information
	Effects of Changes in Education Technology and Demand

	Cattle Cycles
	The Model
	Mapping into HS2013 Framework
	Preferences
	Technology
	Information

	Shock Non Invertibility
	Overview
	Model
	Code

	V Risk, Model Uncertainty, and Robustness
	Risk and Model Uncertainty
	Overview
	Basic objects
	Five preference specifications
	Expected utility
	Constraint preferences
	Multiplier preferences
	Risk-sensitive preferences
	Digression on moment generating functions

	Ex post Bayesian preferences
	Comparing preferences
	Risk aversion and misspecification aversion
	Indifference curves
	State price deflators
	Consumption-equivalent measures of uncertainty aversion

	Iso-utility and iso-entropy curves and expansion paths
	Bounds on expected utility
	Why entropy?
	Entropy and statistical detection
	Axiomatic justifications

	Etymology of Entropy
	Information Theory
	A Measure of Unpredictability
	Example
	Example

	Mathematical Properties of Entropy
	Conditional Entropy
	Independence as Maximum Conditional Entropy
	Thermodynamics
	Statistical Divergence
	Continuous distributions
	Relative entropy and Gaussian distributions
	Von Neumann Entropy
	Backus-Chernov-Zin Entropy
	Wiener-Kolmogorov Prediction Error Formula as Entropy
	Multivariate Processes
	Frequency Domain Robust Control
	Relative Entropy for a Continuous Random Variable

	Robustness
	Overview
	Sets of Models Imply Sets Of Values
	Inspiring Video
	Other References

	The Model
	Constructing More Robust Policies
	Analyzing the Bellman Equation

	Robustness as Outcome of a Two-Person Zero-Sum Game
	Agent 2’s Problem
	Using Agent 2’s Problem to Construct Bounds on the Value Sets
	The Lower Bound
	The Upper Bound
	Reshaping the Set of Values

	Agent 1’s Problem
	Nash Equilibrium

	The Stochastic Case
	Solving the Model
	Computing Other Quantities
	Worst-Case Value of a Policy

	Implementation
	Application
	Appendix

	Robust Markov Perfect Equilibrium
	Overview
	Basic Setup

	Linear Markov Perfect Equilibria with Robust Agents
	Modified Coupled Linear Regulator Problems
	Computing Equilibrium
	Key Insight
	Worst-case Shocks
	Infinite Horizon
	Implementation

	Application
	A Duopoly Model
	Parameters and Solution
	Markov Perfect Equilibrium with Robustness

	Some Details
	Consistency Check
	Comparative Dynamics under Baseline Transition Dynamics
	Heterogeneous Beliefs

	VI Time Series Models
	Covariance Stationary Processes
	Overview
	ARMA Processes
	Spectral Analysis
	Other Reading

	Introduction
	Definitions
	Example 1: White Noise
	Example 2: General Linear Processes
	Wold Representation
	AR and MA
	ARMA Processes

	Spectral Analysis
	Complex Numbers
	Spectral Densities
	Example 1: White Noise
	Example 2: AR and MA and ARMA
	Interpreting the Spectral Density
	Inverting the Transformation
	Mathematical Theory

	Implementation
	Application
	Explanation
	Computing the Autocovariance Function

	Estimation of Spectra
	Overview
	Periodograms
	Interpretation
	Calculation

	Smoothing
	Estimation with Smoothing
	Pre-Filtering and Smoothing
	The AR(1) Setting

	Exercises

	Additive and Multiplicative Functionals
	Overview
	A Particular Additive Functional
	Linear State-Space Representation

	Dynamics
	Simulation
	Plotting

	Decomposition

	Code
	Associated Multiplicative Functional
	Peculiar Large Sample Property

	More About the Multiplicative Martingale
	Simulating a Multiplicative Martingale Again
	Sample Paths
	Multiplicative Martingale as Likelihood Ratio Process

	Classical Control with Linear Algebra
	Overview
	References

	A Control Problem
	Example

	Finite Horizon Theory
	Matrix Methods
	A Single Lag Term
	An Alternative Representation
	Additional Lag Terms

	Infinite Horizon Limit
	Undiscounted Problems
	Transforming Discounted to Undiscounted Problem

	Implementation
	Example

	Exercises

	Classical Prediction and Filtering With Linear Algebra
	Overview
	References

	Finite Dimensional Prediction
	Implementation
	Example 1
	Example 2
	Prediction

	Combined Finite Dimensional Control and Prediction
	Infinite Horizon Prediction and Filtering Problems
	Problem Formulation

	Exercises

	Knowing the Forecasts of Others
	Introduction
	A Sequence of Models

	The Setting
	Tactics
	Equilibrium Conditions
	Equilibrium under perfect foresight

	Equilibrium with θt stochastic but observed at t
	Filtering
	One noisy signal
	State-reconstruction error

	A new state variable
	Two Noisy Signals

	Guess-and-Verify Tactic
	Equilibrium with One Noisy Signal on θt
	Step 1: Solve for λ and λ
	Step 2: Solve for p
	Step 3: Represent the system using quantecon.LinearStateSpace
	Step 4: Compute impulse response functions
	Step 5: Compute stationary covariance matrices and population regressions

	Equilibrium with Two Noisy Signals on θt
	Key Step
	An observed common shock benchmark
	Comparison of All Signal Structures
	Notes on History of the Problem
	Further historical remarks

	VII Asset Pricing and Finance
	Asset Pricing II: The Lucas Asset Pricing Model
	Overview
	The Lucas Model
	Basic Setup
	Assets
	Consumers

	Pricing a Lucas Tree
	The Dynamic Program
	Next Steps
	Equilibrium Constraints
	The Equilibrium Price Function

	Solving the Model
	Setting up the Problem
	A Little Fixed Point Theory

	Computation – An Example

	Exercises

	Elementary Asset Pricing Theory
	Overview
	Key Equation
	Implications of Key Equation
	Expected Return - Beta Representation
	Mean-Variance Frontier
	Sharpe Ratios and the Price of Risk
	Mathematical Structure of Frontier
	Multi-factor Models
	Empirical Implementations
	Exercises

	Two Modifications of Mean-Variance Portfolio Theory
	Overview
	Mean-Variance Portfolio Choice
	Estimating Mean and Variance
	Black-Litterman Starting Point
	Details
	Adding Views
	Bayesian Interpretation
	Curve Decolletage
	Black-Litterman Recommendation as Regularization
	A Robust Control Operator
	A Robust Mean-Variance Portfolio Model
	Appendix
	Special Case – IID Sample
	Dependence and Sampling Frequency
	Frequency and the Mean Estimator

	Irrelevance of Capital Structures with Complete Markets
	Introduction
	Setup
	Endowments
	Technology:
	Preferences:
	Parameterizations
	Pareto criterion and planning problem
	Helpful observations and bookkeeping
	Remarks

	Competitive equilibrium
	Measures of agents and firms
	Ownership
	Asset markets

	Objects appearing in a competitive equilibrium
	A representative firm’s problem
	A consumer’s problem
	Computing competitive equilibrium prices and quantities
	Modigliani-Miller theorem

	Code
	Examples
	1st example
	2nd example

	Equilibrium Capital Structures with Incomplete Markets
	Introduction
	Setup
	Ownership
	Measures of agents and firms
	Endowments
	Feasibility:
	Parameterizations
	Preferences:
	Risk-sharing motives

	Asset Markets
	Consumers
	Pricing functions
	Firms
	Firm’s optimization problem

	Equilibrium verification
	Pseudo Code
	Code
	Examples
	First example
	A Modigliani-Miller theorem?
	Equilibrium equity and bond price functions

	Comments on equilibrium pricing functions
	Another example economy

	A picture worth a thousand words

	VIII Dynamic Programming Squared
	Optimal Unemployment Insurance
	Overview
	Shavell and Weiss’s Model
	Autarky
	Full Information
	Incentive Problem

	Private Information
	Computational Details
	Python Computations
	Parameter Values
	Computation under Private Information
	Algorithm

	Outcomes
	Replacement Ratios and Continuation Values
	Interpretations

	Stackelberg Plans
	Overview
	Duopoly
	Stackelberg Leader and Follower
	Statement of Leader’s and Follower’s Problems
	Firms’ Problems

	Stackelberg Problem
	Interpretation of Second Block of Equations
	More Mechanical Details
	Two Subproblems

	Two Bellman Equations
	Stackelberg Plan for Duopoly
	Calculations to Prepare Duopoly Model
	Firm 1’s Problem

	Recursive Representation of Stackelberg Plan
	Comments and Interpretations

	Dynamic Programming and Time Consistency of Follower’s Problem
	Recursive Formulation of a Follower’s Problem
	Time Consistency of Follower’s Plan

	Computing Stackelberg Plan
	Time Series for Price and Quantities
	Value of Stackelberg Leader

	Time Inconsistency of Stackelberg Plan
	Recursive Formulation of Follower’s Problem
	Explanation of Alignment

	Markov Perfect Equilibrium
	Comparing Markov Perfect Equilibrium and Stackelberg Outcome

	Ramsey Plans, Time Inconsistency, Sustainable Plans
	Overview
	The Model
	Structure
	Intertemporal Structure
	Four Models of Government Policy
	A Ramsey Planner
	Subproblem 1
	Subproblem 2
	Representation of Ramsey Plan
	Multiple roles of θt
	Time Inconsistency

	A Constrained-to-a-Constant-Growth-Rate Ramsey Government
	Markov Perfect Governments
	Outcomes under Three Timing Protocols
	Time Inconsistency of Ramsey Plan
	Meaning of Time Inconsistency
	Ramsey Plans Strike Back

	A Fourth Model of Government Decision Making
	A Theory of Government Decision Making
	Temptation to Deviate from Plan

	Sustainable or Credible Plan
	Abreu’s Self-Enforcing Plan
	Abreu Carrot-Stick Plan
	Example of Self-Enforcing Plan
	Recursive Representation of a Sustainable Plan

	Whose Credible Plan is it?
	Comparison of Equilibrium Values
	Note on Dynamic Programming Squared

	Optimal Taxation with State-Contingent Debt
	Overview
	A Competitive Equilibrium with Distorting Taxes
	Arrow-Debreu Version of Price System
	Primal Approach
	The Implementability Constraint
	Solution Details
	The Ramsey Allocation for a Given Multiplier
	Further Specialization
	Determining the Lagrange Multiplier
	Time Inconsistency
	Specification with CRRA Utility
	Sequence Implementation

	Recursive Formulation of the Ramsey Problem
	Intertemporal Delegation
	Two Bellman Equations
	The Continuation Ramsey Problem
	The Ramsey Problem
	First-Order Conditions
	State Variable Degeneracy
	Manifestations of Time Inconsistency
	Recursive Implementation

	Examples
	Anticipated One-Period War
	Government Saving
	Time 0 Manipulation of Interest Rate
	Time 0 and Time-Inconsistency
	Tax Smoothing and non-CRRA Preferences
	Further Comments

	Optimal Taxation without State-Contingent Debt
	Overview
	Competitive Equilibrium with Distorting Taxes
	Risk-free One-Period Debt Only
	Comparison with Lucas-Stokey Economy
	Ramsey Problem Without State-contingent Debt
	Lagrangian Formulation

	Some Calculations

	Recursive Version of AMSS Model
	Recasting State Variables
	Measurability Constraints
	Two Bellman Equations
	Martingale Supercedes State-Variable Degeneracy
	Absence of State Variable Degeneracy
	Digression on Non-negative Transfers
	Code

	Examples
	Anticipated One-Period War
	Perpetual War Alert

	Fluctuating Interest Rates Deliver Fiscal Insurance
	Overview
	Forces at Work
	Logical Flow of Lecture
	Equations from Lucas-Stokey (1983) Model
	Specification with CRRA Utility

	Example Economy
	Reverse Engineering Strategy
	Code for Reverse Engineering
	Short Simulation for Reverse-engineered: Initial Debt
	Long Simulation
	Remarks about Long Simulation

	BEGS Approximations of Limiting Debt and Convergence Rate
	Asymptotic Mean
	Rate of Convergence
	Formulas and Code Details

	Fiscal Risk and Government Debt
	Overview
	The Economy
	First and Second Moments

	Long Simulation
	Asymptotic Mean and Rate of Convergence
	Asymptotic Mean
	Rate of Convergence
	More Advanced Topic
	Chicken and Egg
	Approximating the Ergodic Mean
	Step by Step
	Execution
	Step 1
	Step 2

	Note about Code
	Running the code
	Step 3
	Step 4
	Step 6

	Competitive Equilibria of a Model of Chang
	Overview
	The Setting

	Setting
	The Household’s Problem
	Government
	Household’s Problem

	Competitive Equilibrium
	Inventory of Objects in Play
	Analysis
	Some Useful Notation
	Another Operator

	Calculating all Promise-Value Pairs in CE
	Solving a Continuation Ramsey Planner’s Bellman Equation
	Next Steps

	Credible Government Policies in a Model of Chang
	Overview
	The Setting
	The Household’s Problem
	Government
	Within-period Timing Protocol
	Household’s Problem
	Competitive Equilibrium
	A Credible Government Policy
	Sustainable Plans

	Calculating the Set of Sustainable Promise-Value Pairs
	Comparison of Sets

	IX Other
	Troubleshooting
	Fixing Your Local Environment
	Reporting an Issue

	References
	Execution Statistics
	Bibliography
	Index

